Source

go-sunos / src / pkg / runtime / proc.c

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "zaexperiment.h"
#include "malloc.h"
#include "stack.h"
#include "race.h"
#include "type.h"
#include "../../cmd/ld/textflag.h"

// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
//     M must have an associated P to execute Go code, however it can be
//     blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.

typedef struct Sched Sched;
struct Sched {
	Lock;

	uint64	goidgen;

	M*	midle;	 // idle m's waiting for work
	int32	nmidle;	 // number of idle m's waiting for work
	int32	nmidlelocked; // number of locked m's waiting for work
	int32	mcount;	 // number of m's that have been created
	int32	maxmcount;	// maximum number of m's allowed (or die)

	P*	pidle;  // idle P's
	uint32	npidle;
	uint32	nmspinning;

	// Global runnable queue.
	G*	runqhead;
	G*	runqtail;
	int32	runqsize;

	// Global cache of dead G's.
	Lock	gflock;
	G*	gfree;

	uint32	gcwaiting;	// gc is waiting to run
	int32	stopwait;
	Note	stopnote;
	uint32	sysmonwait;
	Note	sysmonnote;
	uint64	lastpoll;

	int32	profilehz;	// cpu profiling rate
};

// The max value of GOMAXPROCS.
// There are no fundamental restrictions on the value.
enum { MaxGomaxprocs = 1<<8 };

Sched	runtime·sched;
int32	runtime·gomaxprocs;
uint32	runtime·needextram;
bool	runtime·iscgo;
M	runtime·m0;
G	runtime·g0;	 // idle goroutine for m0
G*	runtime·allg;
G*	runtime·lastg;
M*	runtime·allm;
M*	runtime·extram;
int8*	runtime·goos;
int32	runtime·ncpu;
static int32	newprocs;

void runtime·mstart(void);
static void runqput(P*, G*);
static G* runqget(P*);
static bool runqputslow(P*, G*, uint32, uint32);
static G* runqsteal(P*, P*);
static void mput(M*);
static M* mget(void);
static void mcommoninit(M*);
static void schedule(void);
static void procresize(int32);
static void acquirep(P*);
static P* releasep(void);
static void newm(void(*)(void), P*);
static void stopm(void);
static void startm(P*, bool);
static void handoffp(P*);
static void wakep(void);
static void stoplockedm(void);
static void startlockedm(G*);
static void sysmon(void);
static uint32 retake(int64);
static void incidlelocked(int32);
static void checkdead(void);
static void exitsyscall0(G*);
static void park0(G*);
static void goexit0(G*);
static void gfput(P*, G*);
static G* gfget(P*);
static void gfpurge(P*);
static void globrunqput(G*);
static void globrunqputbatch(G*, G*, int32);
static G* globrunqget(P*, int32);
static P* pidleget(void);
static void pidleput(P*);
static void injectglist(G*);
static bool preemptall(void);
static bool preemptone(P*);
static bool exitsyscallfast(void);
static bool haveexperiment(int8*);

// The bootstrap sequence is:
//
//	call osinit
//	call schedinit
//	make & queue new G
//	call runtime·mstart
//
// The new G calls runtime·main.
void
runtime·schedinit(void)
{
	int32 n, procs;
	byte *p;
	Eface i;

	runtime·sched.maxmcount = 10000;
	runtime·precisestack = haveexperiment("precisestack");

	runtime·mallocinit();
	mcommoninit(m);
	
	// Initialize the itable value for newErrorCString,
	// so that the next time it gets called, possibly
	// in a fault during a garbage collection, it will not
	// need to allocated memory.
	runtime·newErrorCString(0, &i);

	runtime·goargs();
	runtime·goenvs();
	runtime·parsedebugvars();

	// Allocate internal symbol table representation now, we need it for GC anyway.
	runtime·symtabinit();

	runtime·sched.lastpoll = runtime·nanotime();
	procs = 1;
	p = runtime·getenv("GOMAXPROCS");
	if(p != nil && (n = runtime·atoi(p)) > 0) {
		if(n > MaxGomaxprocs)
			n = MaxGomaxprocs;
		procs = n;
	}
	runtime·allp = runtime·malloc((MaxGomaxprocs+1)*sizeof(runtime·allp[0]));
	procresize(procs);

	mstats.enablegc = 1;

	if(raceenabled)
		g->racectx = runtime·raceinit();
}

extern void main·init(void);
extern void main·main(void);

static FuncVal scavenger = {runtime·MHeap_Scavenger};

static FuncVal initDone = { runtime·unlockOSThread };

// The main goroutine.
void
runtime·main(void)
{
	Defer d;
	
	// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
	// Using decimal instead of binary GB and MB because
	// they look nicer in the stack overflow failure message.
	if(sizeof(void*) == 8)
		runtime·maxstacksize = 1000000000;
	else
		runtime·maxstacksize = 250000000;

	newm(sysmon, nil);

	// Lock the main goroutine onto this, the main OS thread,
	// during initialization.  Most programs won't care, but a few
	// do require certain calls to be made by the main thread.
	// Those can arrange for main.main to run in the main thread
	// by calling runtime.LockOSThread during initialization
	// to preserve the lock.
	runtime·lockOSThread();
	
	// Defer unlock so that runtime.Goexit during init does the unlock too.
	d.fn = &initDone;
	d.siz = 0;
	d.link = g->defer;
	d.argp = (void*)-1;
	d.special = true;
	d.free = false;
	g->defer = &d;

	if(m != &runtime·m0)
		runtime·throw("runtime·main not on m0");
	runtime·newproc1(&scavenger, nil, 0, 0, runtime·main);
	main·init();

	if(g->defer != &d || d.fn != &initDone)
		runtime·throw("runtime: bad defer entry after init");
	g->defer = d.link;
	runtime·unlockOSThread();

	main·main();
	if(raceenabled)
		runtime·racefini();

	// Make racy client program work: if panicking on
	// another goroutine at the same time as main returns,
	// let the other goroutine finish printing the panic trace.
	// Once it does, it will exit. See issue 3934.
	if(runtime·panicking)
		runtime·park(nil, nil, "panicwait");

	runtime·exit(0);
	for(;;)
		*(int32*)runtime·main = 0;
}

void
runtime·goroutineheader(G *gp)
{
	int8 *status;

	switch(gp->status) {
	case Gidle:
		status = "idle";
		break;
	case Grunnable:
		status = "runnable";
		break;
	case Grunning:
		status = "running";
		break;
	case Gsyscall:
		status = "syscall";
		break;
	case Gwaiting:
		if(gp->waitreason)
			status = gp->waitreason;
		else
			status = "waiting";
		break;
	default:
		status = "???";
		break;
	}
	runtime·printf("goroutine %D [%s]:\n", gp->goid, status);
}

void
runtime·tracebackothers(G *me)
{
	G *gp;
	int32 traceback;

	traceback = runtime·gotraceback(nil);
	
	// Show the current goroutine first, if we haven't already.
	if((gp = m->curg) != nil && gp != me) {
		runtime·printf("\n");
		runtime·goroutineheader(gp);
		runtime·traceback(~(uintptr)0, ~(uintptr)0, 0, gp);
	}

	for(gp = runtime·allg; gp != nil; gp = gp->alllink) {
		if(gp == me || gp == m->curg || gp->status == Gdead)
			continue;
		if(gp->issystem && traceback < 2)
			continue;
		runtime·printf("\n");
		runtime·goroutineheader(gp);
		if(gp->status == Grunning) {
			runtime·printf("\tgoroutine running on other thread; stack unavailable\n");
			runtime·printcreatedby(gp);
		} else
			runtime·traceback(~(uintptr)0, ~(uintptr)0, 0, gp);
	}
}

static void
checkmcount(void)
{
	// sched lock is held
	if(runtime·sched.mcount > runtime·sched.maxmcount) {
		runtime·printf("runtime: program exceeds %d-thread limit\n", runtime·sched.maxmcount);
		runtime·throw("thread exhaustion");
	}
}

static void
mcommoninit(M *mp)
{
	// If there is no mcache runtime·callers() will crash,
	// and we are most likely in sysmon thread so the stack is senseless anyway.
	if(m->mcache)
		runtime·callers(1, mp->createstack, nelem(mp->createstack));

	mp->fastrand = 0x49f6428aUL + mp->id + runtime·cputicks();

	runtime·lock(&runtime·sched);
	mp->id = runtime·sched.mcount++;
	checkmcount();
	runtime·mpreinit(mp);

	// Add to runtime·allm so garbage collector doesn't free m
	// when it is just in a register or thread-local storage.
	mp->alllink = runtime·allm;
	// runtime·NumCgoCall() iterates over allm w/o schedlock,
	// so we need to publish it safely.
	runtime·atomicstorep(&runtime·allm, mp);
	runtime·unlock(&runtime·sched);
}

// Mark gp ready to run.
void
runtime·ready(G *gp)
{
	// Mark runnable.
	m->locks++;  // disable preemption because it can be holding p in a local var
	if(gp->status != Gwaiting) {
		runtime·printf("goroutine %D has status %d\n", gp->goid, gp->status);
		runtime·throw("bad g->status in ready");
	}
	gp->status = Grunnable;
	runqput(m->p, gp);
	if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0)  // TODO: fast atomic
		wakep();
	m->locks--;
	if(m->locks == 0 && g->preempt)  // restore the preemption request in case we've cleared it in newstack
		g->stackguard0 = StackPreempt;
}

int32
runtime·gcprocs(void)
{
	int32 n;

	// Figure out how many CPUs to use during GC.
	// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
	runtime·lock(&runtime·sched);
	n = runtime·gomaxprocs;
	if(n > runtime·ncpu)
		n = runtime·ncpu;
	if(n > MaxGcproc)
		n = MaxGcproc;
	if(n > runtime·sched.nmidle+1) // one M is currently running
		n = runtime·sched.nmidle+1;
	runtime·unlock(&runtime·sched);
	return n;
}

static bool
needaddgcproc(void)
{
	int32 n;

	runtime·lock(&runtime·sched);
	n = runtime·gomaxprocs;
	if(n > runtime·ncpu)
		n = runtime·ncpu;
	if(n > MaxGcproc)
		n = MaxGcproc;
	n -= runtime·sched.nmidle+1; // one M is currently running
	runtime·unlock(&runtime·sched);
	return n > 0;
}

void
runtime·helpgc(int32 nproc)
{
	M *mp;
	int32 n, pos;

	runtime·lock(&runtime·sched);
	pos = 0;
	for(n = 1; n < nproc; n++) {  // one M is currently running
		if(runtime·allp[pos]->mcache == m->mcache)
			pos++;
		mp = mget();
		if(mp == nil)
			runtime·throw("runtime·gcprocs inconsistency");
		mp->helpgc = n;
		mp->mcache = runtime·allp[pos]->mcache;
		pos++;
		runtime·notewakeup(&mp->park);
	}
	runtime·unlock(&runtime·sched);
}

// Similar to stoptheworld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
void
runtime·freezetheworld(void)
{
	int32 i;

	if(runtime·gomaxprocs == 1)
		return;
	// stopwait and preemption requests can be lost
	// due to races with concurrently executing threads,
	// so try several times
	for(i = 0; i < 5; i++) {
		// this should tell the scheduler to not start any new goroutines
		runtime·sched.stopwait = 0x7fffffff;
		runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1);
		// this should stop running goroutines
		if(!preemptall())
			break;  // no running goroutines
		runtime·usleep(1000);
	}
	// to be sure
	runtime·usleep(1000);
	preemptall();
	runtime·usleep(1000);
}

void
runtime·stoptheworld(void)
{
	int32 i;
	uint32 s;
	P *p;
	bool wait;

	runtime·lock(&runtime·sched);
	runtime·sched.stopwait = runtime·gomaxprocs;
	runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1);
	preemptall();
	// stop current P
	m->p->status = Pgcstop;
	runtime·sched.stopwait--;
	// try to retake all P's in Psyscall status
	for(i = 0; i < runtime·gomaxprocs; i++) {
		p = runtime·allp[i];
		s = p->status;
		if(s == Psyscall && runtime·cas(&p->status, s, Pgcstop))
			runtime·sched.stopwait--;
	}
	// stop idle P's
	while(p = pidleget()) {
		p->status = Pgcstop;
		runtime·sched.stopwait--;
	}
	wait = runtime·sched.stopwait > 0;
	runtime·unlock(&runtime·sched);

	// wait for remaining P's to stop voluntarily
	if(wait) {
		for(;;) {
			// wait for 100us, then try to re-preempt in case of any races
			if(runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) {
				runtime·noteclear(&runtime·sched.stopnote);
				break;
			}
			preemptall();
		}
	}
	if(runtime·sched.stopwait)
		runtime·throw("stoptheworld: not stopped");
	for(i = 0; i < runtime·gomaxprocs; i++) {
		p = runtime·allp[i];
		if(p->status != Pgcstop)
			runtime·throw("stoptheworld: not stopped");
	}
}

static void
mhelpgc(void)
{
	m->helpgc = -1;
}

void
runtime·starttheworld(void)
{
	P *p, *p1;
	M *mp;
	G *gp;
	bool add;

	m->locks++;  // disable preemption because it can be holding p in a local var
	gp = runtime·netpoll(false);  // non-blocking
	injectglist(gp);
	add = needaddgcproc();
	runtime·lock(&runtime·sched);
	if(newprocs) {
		procresize(newprocs);
		newprocs = 0;
	} else
		procresize(runtime·gomaxprocs);
	runtime·sched.gcwaiting = 0;

	p1 = nil;
	while(p = pidleget()) {
		// procresize() puts p's with work at the beginning of the list.
		// Once we reach a p without a run queue, the rest don't have one either.
		if(p->runqhead == p->runqtail) {
			pidleput(p);
			break;
		}
		p->m = mget();
		p->link = p1;
		p1 = p;
	}
	if(runtime·sched.sysmonwait) {
		runtime·sched.sysmonwait = false;
		runtime·notewakeup(&runtime·sched.sysmonnote);
	}
	runtime·unlock(&runtime·sched);

	while(p1) {
		p = p1;
		p1 = p1->link;
		if(p->m) {
			mp = p->m;
			p->m = nil;
			if(mp->nextp)
				runtime·throw("starttheworld: inconsistent mp->nextp");
			mp->nextp = p;
			runtime·notewakeup(&mp->park);
		} else {
			// Start M to run P.  Do not start another M below.
			newm(nil, p);
			add = false;
		}
	}

	if(add) {
		// If GC could have used another helper proc, start one now,
		// in the hope that it will be available next time.
		// It would have been even better to start it before the collection,
		// but doing so requires allocating memory, so it's tricky to
		// coordinate.  This lazy approach works out in practice:
		// we don't mind if the first couple gc rounds don't have quite
		// the maximum number of procs.
		newm(mhelpgc, nil);
	}
	m->locks--;
	if(m->locks == 0 && g->preempt)  // restore the preemption request in case we've cleared it in newstack
		g->stackguard0 = StackPreempt;
}

// Called to start an M.
void
runtime·mstart(void)
{
#ifdef GOOS_windows
#ifdef GOARCH_386
	// It is used by windows-386 only. Unfortunately, seh needs
	// to be located on os stack, and mstart runs on os stack
	// for both m0 and m.
	SEH seh;
#endif
#endif

	if(g != m->g0)
		runtime·throw("bad runtime·mstart");

	// Record top of stack for use by mcall.
	// Once we call schedule we're never coming back,
	// so other calls can reuse this stack space.
	runtime·gosave(&m->g0->sched);
	m->g0->sched.pc = (uintptr)-1;  // make sure it is never used
	m->g0->stackguard = m->g0->stackguard0;  // cgo sets only stackguard0, copy it to stackguard
#ifdef GOOS_windows
#ifdef GOARCH_386
	m->seh = &seh;
#endif
#endif
	runtime·asminit();
	runtime·minit();

	// Install signal handlers; after minit so that minit can
	// prepare the thread to be able to handle the signals.
	if(m == &runtime·m0)
		runtime·initsig();
	
	if(m->mstartfn)
		m->mstartfn();

	if(m->helpgc) {
		m->helpgc = 0;
		stopm();
	} else if(m != &runtime·m0) {
		acquirep(m->nextp);
		m->nextp = nil;
	}
	schedule();

	// TODO(brainman): This point is never reached, because scheduler
	// does not release os threads at the moment. But once this path
	// is enabled, we must remove our seh here.
}

// When running with cgo, we call _cgo_thread_start
// to start threads for us so that we can play nicely with
// foreign code.
void (*_cgo_thread_start)(void*);

typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
	M *m;
	G *g;
	void (*fn)(void);
};

// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
M*
runtime·allocm(P *p)
{
	M *mp;
	static Type *mtype;  // The Go type M

	m->locks++;  // disable GC because it can be called from sysmon
	if(m->p == nil)
		acquirep(p);  // temporarily borrow p for mallocs in this function
	if(mtype == nil) {
		Eface e;
		runtime·gc_m_ptr(&e);
		mtype = ((PtrType*)e.type)->elem;
	}

	mp = runtime·cnew(mtype);
	mcommoninit(mp);

	// In case of cgo, pthread_create will make us a stack.
	// Windows will layout sched stack on OS stack.
	if(runtime·iscgo || Windows)
		mp->g0 = runtime·malg(-1);
	else
		mp->g0 = runtime·malg(8192);

	if(p == m->p)
		releasep();
	m->locks--;
	if(m->locks == 0 && g->preempt)  // restore the preemption request in case we've cleared it in newstack
		g->stackguard0 = StackPreempt;

	return mp;
}

static M* lockextra(bool nilokay);
static void unlockextra(M*);

// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via casp) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
#pragma textflag NOSPLIT
void
runtime·needm(byte x)
{
	M *mp;

	if(runtime·needextram) {
		// Can happen if C/C++ code calls Go from a global ctor.
		// Can not throw, because scheduler is not initialized yet.
		runtime·write(2, "fatal error: cgo callback before cgo call\n",
			sizeof("fatal error: cgo callback before cgo call\n")-1);
		runtime·exit(1);
	}

	// Lock extra list, take head, unlock popped list.
	// nilokay=false is safe here because of the invariant above,
	// that the extra list always contains or will soon contain
	// at least one m.
	mp = lockextra(false);

	// Set needextram when we've just emptied the list,
	// so that the eventual call into cgocallbackg will
	// allocate a new m for the extra list. We delay the
	// allocation until then so that it can be done
	// after exitsyscall makes sure it is okay to be
	// running at all (that is, there's no garbage collection
	// running right now).
	mp->needextram = mp->schedlink == nil;
	unlockextra(mp->schedlink);

	// Install m and g (= m->g0) and set the stack bounds
	// to match the current stack. We don't actually know
	// how big the stack is, like we don't know how big any
	// scheduling stack is, but we assume there's at least 32 kB,
	// which is more than enough for us.
	runtime·setmg(mp, mp->g0);
	g->stackbase = (uintptr)(&x + 1024);
	g->stackguard = (uintptr)(&x - 32*1024);
	g->stackguard0 = g->stackguard;

#ifdef GOOS_windows
#ifdef GOARCH_386
	// On windows/386, we need to put an SEH frame (two words)
	// somewhere on the current stack. We are called from cgocallback_gofunc
	// and we know that it will leave two unused words below m->curg->sched.sp.
	// Use those.
	m->seh = (SEH*)((uintptr*)&x + 1);
#endif
#endif

	// Initialize this thread to use the m.
	runtime·asminit();
	runtime·minit();
}

// newextram allocates an m and puts it on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
void
runtime·newextram(void)
{
	M *mp, *mnext;
	G *gp;

	// Create extra goroutine locked to extra m.
	// The goroutine is the context in which the cgo callback will run.
	// The sched.pc will never be returned to, but setting it to
	// runtime.goexit makes clear to the traceback routines where
	// the goroutine stack ends.
	mp = runtime·allocm(nil);
	gp = runtime·malg(4096);
	gp->sched.pc = (uintptr)runtime·goexit;
	gp->sched.sp = gp->stackbase;
	gp->sched.lr = 0;
	gp->sched.g = gp;
	gp->syscallpc = gp->sched.pc;
	gp->syscallsp = gp->sched.sp;
	gp->syscallstack = gp->stackbase;
	gp->syscallguard = gp->stackguard;
	gp->status = Gsyscall;
	mp->curg = gp;
	mp->locked = LockInternal;
	mp->lockedg = gp;
	gp->lockedm = mp;
	gp->goid = runtime·xadd64(&runtime·sched.goidgen, 1);
	if(raceenabled)
		gp->racectx = runtime·racegostart(runtime·newextram);
	// put on allg for garbage collector
	runtime·lock(&runtime·sched);
	if(runtime·lastg == nil)
		runtime·allg = gp;
	else
		runtime·lastg->alllink = gp;
	runtime·lastg = gp;
	runtime·unlock(&runtime·sched);

	// Add m to the extra list.
	mnext = lockextra(true);
	mp->schedlink = mnext;
	unlockextra(mp);
}

// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
void
runtime·dropm(void)
{
	M *mp, *mnext;

	// Undo whatever initialization minit did during needm.
	runtime·unminit();

#ifdef GOOS_windows
#ifdef GOARCH_386
	m->seh = nil;  // reset dangling typed pointer
#endif
#endif

	// Clear m and g, and return m to the extra list.
	// After the call to setmg we can only call nosplit functions.
	mp = m;
	runtime·setmg(nil, nil);

	mnext = lockextra(true);
	mp->schedlink = mnext;
	unlockextra(mp);
}

#define MLOCKED ((M*)1)

// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to runtime.extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
#pragma textflag NOSPLIT
static M*
lockextra(bool nilokay)
{
	M *mp;
	void (*yield)(void);

	for(;;) {
		mp = runtime·atomicloadp(&runtime·extram);
		if(mp == MLOCKED) {
			yield = runtime·osyield;
			yield();
			continue;
		}
		if(mp == nil && !nilokay) {
			runtime·usleep(1);
			continue;
		}
		if(!runtime·casp(&runtime·extram, mp, MLOCKED)) {
			yield = runtime·osyield;
			yield();
			continue;
		}
		break;
	}
	return mp;
}

#pragma textflag NOSPLIT
static void
unlockextra(M *mp)
{
	runtime·atomicstorep(&runtime·extram, mp);
}


// Create a new m.  It will start off with a call to fn, or else the scheduler.
static void
newm(void(*fn)(void), P *p)
{
	M *mp;

	mp = runtime·allocm(p);
	mp->nextp = p;
	mp->mstartfn = fn;

	if(runtime·iscgo) {
		CgoThreadStart ts;

		if(_cgo_thread_start == nil)
			runtime·throw("_cgo_thread_start missing");
		ts.m = mp;
		ts.g = mp->g0;
		ts.fn = runtime·mstart;
		runtime·asmcgocall(_cgo_thread_start, &ts);
		return;
	}
	runtime·newosproc(mp, (byte*)mp->g0->stackbase);
}

// Stops execution of the current m until new work is available.
// Returns with acquired P.
static void
stopm(void)
{
	if(m->locks)
		runtime·throw("stopm holding locks");
	if(m->p)
		runtime·throw("stopm holding p");
	if(m->spinning) {
		m->spinning = false;
		runtime·xadd(&runtime·sched.nmspinning, -1);
	}

retry:
	runtime·lock(&runtime·sched);
	mput(m);
	runtime·unlock(&runtime·sched);
	runtime·notesleep(&m->park);
	runtime·noteclear(&m->park);
	if(m->helpgc) {
		runtime·gchelper();
		m->helpgc = 0;
		m->mcache = nil;
		goto retry;
	}
	acquirep(m->nextp);
	m->nextp = nil;
}

static void
mspinning(void)
{
	m->spinning = true;
}

// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
static void
startm(P *p, bool spinning)
{
	M *mp;
	void (*fn)(void);

	runtime·lock(&runtime·sched);
	if(p == nil) {
		p = pidleget();
		if(p == nil) {
			runtime·unlock(&runtime·sched);
			if(spinning)
				runtime·xadd(&runtime·sched.nmspinning, -1);
			return;
		}
	}
	mp = mget();
	runtime·unlock(&runtime·sched);
	if(mp == nil) {
		fn = nil;
		if(spinning)
			fn = mspinning;
		newm(fn, p);
		return;
	}
	if(mp->spinning)
		runtime·throw("startm: m is spinning");
	if(mp->nextp)
		runtime·throw("startm: m has p");
	mp->spinning = spinning;
	mp->nextp = p;
	runtime·notewakeup(&mp->park);
}

// Hands off P from syscall or locked M.
static void
handoffp(P *p)
{
	// if it has local work, start it straight away
	if(p->runqhead != p->runqtail || runtime·sched.runqsize) {
		startm(p, false);
		return;
	}
	// no local work, check that there are no spinning/idle M's,
	// otherwise our help is not required
	if(runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) == 0 &&  // TODO: fast atomic
		runtime·cas(&runtime·sched.nmspinning, 0, 1)) {
		startm(p, true);
		return;
	}
	runtime·lock(&runtime·sched);
	if(runtime·sched.gcwaiting) {
		p->status = Pgcstop;
		if(--runtime·sched.stopwait == 0)
			runtime·notewakeup(&runtime·sched.stopnote);
		runtime·unlock(&runtime·sched);
		return;
	}
	if(runtime·sched.runqsize) {
		runtime·unlock(&runtime·sched);
		startm(p, false);
		return;
	}
	// If this is the last running P and nobody is polling network,
	// need to wakeup another M to poll network.
	if(runtime·sched.npidle == runtime·gomaxprocs-1 && runtime·atomicload64(&runtime·sched.lastpoll) != 0) {
		runtime·unlock(&runtime·sched);
		startm(p, false);
		return;
	}
	pidleput(p);
	runtime·unlock(&runtime·sched);
}

// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
static void
wakep(void)
{
	// be conservative about spinning threads
	if(!runtime·cas(&runtime·sched.nmspinning, 0, 1))
		return;
	startm(nil, true);
}

// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
static void
stoplockedm(void)
{
	P *p;

	if(m->lockedg == nil || m->lockedg->lockedm != m)
		runtime·throw("stoplockedm: inconsistent locking");
	if(m->p) {
		// Schedule another M to run this p.
		p = releasep();
		handoffp(p);
	}
	incidlelocked(1);
	// Wait until another thread schedules lockedg again.
	runtime·notesleep(&m->park);
	runtime·noteclear(&m->park);
	if(m->lockedg->status != Grunnable)
		runtime·throw("stoplockedm: not runnable");
	acquirep(m->nextp);
	m->nextp = nil;
}

// Schedules the locked m to run the locked gp.
static void
startlockedm(G *gp)
{
	M *mp;
	P *p;

	mp = gp->lockedm;
	if(mp == m)
		runtime·throw("startlockedm: locked to me");
	if(mp->nextp)
		runtime·throw("startlockedm: m has p");
	// directly handoff current P to the locked m
	incidlelocked(-1);
	p = releasep();
	mp->nextp = p;
	runtime·notewakeup(&mp->park);
	stopm();
}

// Stops the current m for stoptheworld.
// Returns when the world is restarted.
static void
gcstopm(void)
{
	P *p;

	if(!runtime·sched.gcwaiting)
		runtime·throw("gcstopm: not waiting for gc");
	if(m->spinning) {
		m->spinning = false;
		runtime·xadd(&runtime·sched.nmspinning, -1);
	}
	p = releasep();
	runtime·lock(&runtime·sched);
	p->status = Pgcstop;
	if(--runtime·sched.stopwait == 0)
		runtime·notewakeup(&runtime·sched.stopnote);
	runtime·unlock(&runtime·sched);
	stopm();
}

// Schedules gp to run on the current M.
// Never returns.
static void
execute(G *gp)
{
	int32 hz;

	if(gp->status != Grunnable) {
		runtime·printf("execute: bad g status %d\n", gp->status);
		runtime·throw("execute: bad g status");
	}
	gp->status = Grunning;
	gp->preempt = false;
	gp->stackguard0 = gp->stackguard;
	m->p->schedtick++;
	m->curg = gp;
	gp->m = m;

	// Check whether the profiler needs to be turned on or off.
	hz = runtime·sched.profilehz;
	if(m->profilehz != hz)
		runtime·resetcpuprofiler(hz);

	runtime·gogo(&gp->sched);
}

// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
static G*
findrunnable(void)
{
	G *gp;
	P *p;
	int32 i;

top:
	if(runtime·sched.gcwaiting) {
		gcstopm();
		goto top;
	}
	// local runq
	gp = runqget(m->p);
	if(gp)
		return gp;
	// global runq
	if(runtime·sched.runqsize) {
		runtime·lock(&runtime·sched);
		gp = globrunqget(m->p, 0);
		runtime·unlock(&runtime·sched);
		if(gp)
			return gp;
	}
	// poll network
	gp = runtime·netpoll(false);  // non-blocking
	if(gp) {
		injectglist(gp->schedlink);
		gp->status = Grunnable;
		return gp;
	}
	// If number of spinning M's >= number of busy P's, block.
	// This is necessary to prevent excessive CPU consumption
	// when GOMAXPROCS>>1 but the program parallelism is low.
	if(!m->spinning && 2 * runtime·atomicload(&runtime·sched.nmspinning) >= runtime·gomaxprocs - runtime·atomicload(&runtime·sched.npidle))  // TODO: fast atomic
		goto stop;
	if(!m->spinning) {
		m->spinning = true;
		runtime·xadd(&runtime·sched.nmspinning, 1);
	}
	// random steal from other P's
	for(i = 0; i < 2*runtime·gomaxprocs; i++) {
		if(runtime·sched.gcwaiting)
			goto top;
		p = runtime·allp[runtime·fastrand1()%runtime·gomaxprocs];
		if(p == m->p)
			gp = runqget(p);
		else
			gp = runqsteal(m->p, p);
		if(gp)
			return gp;
	}
stop:
	// return P and block
	runtime·lock(&runtime·sched);
	if(runtime·sched.gcwaiting) {
		runtime·unlock(&runtime·sched);
		goto top;
	}
	if(runtime·sched.runqsize) {
		gp = globrunqget(m->p, 0);
		runtime·unlock(&runtime·sched);
		return gp;
	}
	p = releasep();
	pidleput(p);
	runtime·unlock(&runtime·sched);
	if(m->spinning) {
		m->spinning = false;
		runtime·xadd(&runtime·sched.nmspinning, -1);
	}
	// check all runqueues once again
	for(i = 0; i < runtime·gomaxprocs; i++) {
		p = runtime·allp[i];
		if(p && p->runqhead != p->runqtail) {
			runtime·lock(&runtime·sched);
			p = pidleget();
			runtime·unlock(&runtime·sched);
			if(p) {
				acquirep(p);
				goto top;
			}
			break;
		}
	}
	// poll network
	if(runtime·xchg64(&runtime·sched.lastpoll, 0) != 0) {
		if(m->p)
			runtime·throw("findrunnable: netpoll with p");
		if(m->spinning)
			runtime·throw("findrunnable: netpoll with spinning");
		gp = runtime·netpoll(true);  // block until new work is available
		runtime·atomicstore64(&runtime·sched.lastpoll, runtime·nanotime());
		if(gp) {
			runtime·lock(&runtime·sched);
			p = pidleget();
			runtime·unlock(&runtime·sched);
			if(p) {
				acquirep(p);
				injectglist(gp->schedlink);
				gp->status = Grunnable;
				return gp;
			}
			injectglist(gp);
		}
	}
	stopm();
	goto top;
}

static void
resetspinning(void)
{
	int32 nmspinning;

	if(m->spinning) {
		m->spinning = false;
		nmspinning = runtime·xadd(&runtime·sched.nmspinning, -1);
		if(nmspinning < 0)
			runtime·throw("findrunnable: negative nmspinning");
	} else
		nmspinning = runtime·atomicload(&runtime·sched.nmspinning);

	// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
	// so see if we need to wakeup another P here.
	if (nmspinning == 0 && runtime·atomicload(&runtime·sched.npidle) > 0)
		wakep();
}

// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
static void
injectglist(G *glist)
{
	int32 n;
	G *gp;

	if(glist == nil)
		return;
	runtime·lock(&runtime·sched);
	for(n = 0; glist; n++) {
		gp = glist;
		glist = gp->schedlink;
		gp->status = Grunnable;
		globrunqput(gp);
	}
	runtime·unlock(&runtime·sched);

	for(; n && runtime·sched.npidle; n--)
		startm(nil, false);
}

// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
static void
schedule(void)
{
	G *gp;
	uint32 tick;

	if(m->locks)
		runtime·throw("schedule: holding locks");

top:
	if(runtime·sched.gcwaiting) {
		gcstopm();
		goto top;
	}

	gp = nil;
	// Check the global runnable queue once in a while to ensure fairness.
	// Otherwise two goroutines can completely occupy the local runqueue
	// by constantly respawning each other.
	tick = m->p->schedtick;
	// This is a fancy way to say tick%61==0,
	// it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
	if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime·sched.runqsize > 0) {
		runtime·lock(&runtime·sched);
		gp = globrunqget(m->p, 1);
		runtime·unlock(&runtime·sched);
		if(gp)
			resetspinning();
	}
	if(gp == nil) {
		gp = runqget(m->p);
		if(gp && m->spinning)
			runtime·throw("schedule: spinning with local work");
	}
	if(gp == nil) {
		gp = findrunnable();  // blocks until work is available
		resetspinning();
	}

	if(gp->lockedm) {
		// Hands off own p to the locked m,
		// then blocks waiting for a new p.
		startlockedm(gp);
		goto top;
	}

	execute(gp);
}

// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling runtime·ready(gp).
void
runtime·park(void(*unlockf)(Lock*), Lock *lock, int8 *reason)
{
	m->waitlock = lock;
	m->waitunlockf = unlockf;
	g->waitreason = reason;
	runtime·mcall(park0);
}

// runtime·park continuation on g0.
static void
park0(G *gp)
{
	gp->status = Gwaiting;
	gp->m = nil;
	m->curg = nil;
	if(m->waitunlockf) {
		m->waitunlockf(m->waitlock);
		m->waitunlockf = nil;
		m->waitlock = nil;
	}
	if(m->lockedg) {
		stoplockedm();
		execute(gp);  // Never returns.
	}
	schedule();
}

// Scheduler yield.
void
runtime·gosched(void)
{
	runtime·mcall(runtime·gosched0);
}

// runtime·gosched continuation on g0.
void
runtime·gosched0(G *gp)
{
	gp->status = Grunnable;
	gp->m = nil;
	m->curg = nil;
	runtime·lock(&runtime·sched);
	globrunqput(gp);
	runtime·unlock(&runtime·sched);
	if(m->lockedg) {
		stoplockedm();
		execute(gp);  // Never returns.
	}
	schedule();
}

// Finishes execution of the current goroutine.
// Need to mark it as nosplit, because it runs with sp > stackbase (as runtime·lessstack).
// Since it does not return it does not matter.  But if it is preempted
// at the split stack check, GC will complain about inconsistent sp.
#pragma textflag NOSPLIT
void
runtime·goexit(void)
{
	if(raceenabled)
		runtime·racegoend();
	runtime·mcall(goexit0);
}

// runtime·goexit continuation on g0.
static void
goexit0(G *gp)
{
	gp->status = Gdead;
	gp->m = nil;
	gp->lockedm = nil;
	m->curg = nil;
	m->lockedg = nil;
	if(m->locked & ~LockExternal) {
		runtime·printf("invalid m->locked = %d\n", m->locked);
		runtime·throw("internal lockOSThread error");
	}	
	m->locked = 0;
	runtime·unwindstack(gp, nil);
	gfput(m->p, gp);
	schedule();
}

#pragma textflag NOSPLIT
static void
save(void *pc, uintptr sp)
{
	g->sched.pc = (uintptr)pc;
	g->sched.sp = sp;
	g->sched.lr = 0;
	g->sched.ret = 0;
	g->sched.ctxt = 0;
	g->sched.g = g;
}

// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime·gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
#pragma textflag NOSPLIT
void
·entersyscall(int32 dummy)
{
	// Disable preemption because during this function g is in Gsyscall status,
	// but can have inconsistent g->sched, do not let GC observe it.
	m->locks++;

	// Leave SP around for GC and traceback.
	save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
	g->syscallsp = g->sched.sp;
	g->syscallpc = g->sched.pc;
	g->syscallstack = g->stackbase;
	g->syscallguard = g->stackguard;
	g->status = Gsyscall;
	if(g->syscallsp < g->syscallguard-StackGuard || g->syscallstack < g->syscallsp) {
		// runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
		//	g->syscallsp, g->syscallguard-StackGuard, g->syscallstack);
		runtime·throw("entersyscall");
	}

	if(runtime·atomicload(&runtime·sched.sysmonwait)) {  // TODO: fast atomic
		runtime·lock(&runtime·sched);
		if(runtime·atomicload(&runtime·sched.sysmonwait)) {
			runtime·atomicstore(&runtime·sched.sysmonwait, 0);
			runtime·notewakeup(&runtime·sched.sysmonnote);
		}
		runtime·unlock(&runtime·sched);
		save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
	}

	m->mcache = nil;
	m->p->m = nil;
	runtime·atomicstore(&m->p->status, Psyscall);
	if(runtime·sched.gcwaiting) {
		runtime·lock(&runtime·sched);
		if (runtime·sched.stopwait > 0 && runtime·cas(&m->p->status, Psyscall, Pgcstop)) {
			if(--runtime·sched.stopwait == 0)
				runtime·notewakeup(&runtime·sched.stopnote);
		}
		runtime·unlock(&runtime·sched);
		save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
	}

	// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
	// We set stackguard to StackPreempt so that first split stack check calls morestack.
	// Morestack detects this case and throws.
	g->stackguard0 = StackPreempt;
	m->locks--;
}

// The same as runtime·entersyscall(), but with a hint that the syscall is blocking.
#pragma textflag NOSPLIT
void
·entersyscallblock(int32 dummy)
{
	P *p;

	m->locks++;  // see comment in entersyscall

	// Leave SP around for GC and traceback.
	save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
	g->syscallsp = g->sched.sp;
	g->syscallpc = g->sched.pc;
	g->syscallstack = g->stackbase;
	g->syscallguard = g->stackguard;
	g->status = Gsyscall;
	if(g->syscallsp < g->syscallguard-StackGuard || g->syscallstack < g->syscallsp) {
		// runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
		//	g->syscallsp, g->syscallguard-StackGuard, g->syscallstack);
		runtime·throw("entersyscallblock");
	}

	p = releasep();
	handoffp(p);
	if(g->isbackground)  // do not consider blocked scavenger for deadlock detection
		incidlelocked(1);

	// Resave for traceback during blocked call.
	save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));

	g->stackguard0 = StackPreempt;  // see comment in entersyscall
	m->locks--;
}

// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
#pragma textflag NOSPLIT
void
runtime·exitsyscall(void)
{
	m->locks++;  // see comment in entersyscall

	if(g->isbackground)  // do not consider blocked scavenger for deadlock detection
		incidlelocked(-1);

	if(exitsyscallfast()) {
		// There's a cpu for us, so we can run.
		m->p->syscalltick++;
		g->status = Grunning;
		// Garbage collector isn't running (since we are),
		// so okay to clear gcstack and gcsp.
		g->syscallstack = (uintptr)nil;
		g->syscallsp = (uintptr)nil;
		m->locks--;
		if(g->preempt) {
			// restore the preemption request in case we've cleared it in newstack
			g->stackguard0 = StackPreempt;
		} else {
			// otherwise restore the real stackguard, we've spoiled it in entersyscall/entersyscallblock
			g->stackguard0 = g->stackguard;
		}
		return;
	}

	m->locks--;

	// Call the scheduler.
	runtime·mcall(exitsyscall0);

	// Scheduler returned, so we're allowed to run now.
	// Delete the gcstack information that we left for
	// the garbage collector during the system call.
	// Must wait until now because until gosched returns
	// we don't know for sure that the garbage collector
	// is not running.
	g->syscallstack = (uintptr)nil;
	g->syscallsp = (uintptr)nil;
	m->p->syscalltick++;
}

#pragma textflag NOSPLIT
static bool
exitsyscallfast(void)
{
	P *p;

	// Freezetheworld sets stopwait but does not retake P's.
	if(runtime·sched.stopwait) {
		m->p = nil;
		return false;
	}

	// Try to re-acquire the last P.
	if(m->p && m->p->status == Psyscall && runtime·cas(&m->p->status, Psyscall, Prunning)) {
		// There's a cpu for us, so we can run.
		m->mcache = m->p->mcache;
		m->p->m = m;
		return true;
	}
	// Try to get any other idle P.
	m->p = nil;
	if(runtime·sched.pidle) {
		runtime·lock(&runtime·sched);
		p = pidleget();
		if(p && runtime·atomicload(&runtime·sched.sysmonwait)) {
			runtime·atomicstore(&runtime·sched.sysmonwait, 0);
			runtime·notewakeup(&runtime·sched.sysmonnote);
		}
		runtime·unlock(&runtime·sched);
		if(p) {
			acquirep(p);
			return true;
		}
	}
	return false;
}

// runtime·exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
static void
exitsyscall0(G *gp)
{
	P *p;

	gp->status = Grunnable;
	gp->m = nil;
	m->curg = nil;
	runtime·lock(&runtime·sched);
	p = pidleget();
	if(p == nil)
		globrunqput(gp);
	else if(runtime·atomicload(&runtime·sched.sysmonwait)) {
		runtime·atomicstore(&runtime·sched.sysmonwait, 0);
		runtime·notewakeup(&runtime·sched.sysmonnote);
	}
	runtime·unlock(&runtime·sched);
	if(p) {
		acquirep(p);
		execute(gp);  // Never returns.
	}
	if(m->lockedg) {
		// Wait until another thread schedules gp and so m again.
		stoplockedm();
		execute(gp);  // Never returns.
	}
	stopm();
	schedule();  // Never returns.
}

// Called from syscall package before fork.
void
syscall·runtime_BeforeFork(void)
{
	// Fork can hang if preempted with signals frequently enough (see issue 5517).
	// Ensure that we stay on the same M where we disable profiling.
	m->locks++;
	if(m->profilehz != 0)
		runtime·resetcpuprofiler(0);
}

// Called from syscall package after fork in parent.
void
syscall·runtime_AfterFork(void)
{
	int32 hz;

	hz = runtime·sched.profilehz;
	if(hz != 0)
		runtime·resetcpuprofiler(hz);
	m->locks--;
}

// Hook used by runtime·malg to call runtime·stackalloc on the
// scheduler stack.  This exists because runtime·stackalloc insists
// on being called on the scheduler stack, to avoid trying to grow
// the stack while allocating a new stack segment.
static void
mstackalloc(G *gp)
{
	gp->param = runtime·stackalloc((uintptr)gp->param);
	runtime·gogo(&gp->sched);
}

// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime·malg(int32 stacksize)
{
	G *newg;
	byte *stk;

	if(StackTop < sizeof(Stktop)) {
		runtime·printf("runtime: SizeofStktop=%d, should be >=%d\n", (int32)StackTop, (int32)sizeof(Stktop));
		runtime·throw("runtime: bad stack.h");
	}

	newg = runtime·malloc(sizeof(G));
	if(stacksize >= 0) {
		if(g == m->g0) {
			// running on scheduler stack already.
			stk = runtime·stackalloc(StackSystem + stacksize);
		} else {
			// have to call stackalloc on scheduler stack.
			g->param = (void*)(StackSystem + stacksize);
			runtime·mcall(mstackalloc);
			stk = g->param;
			g->param = nil;
		}
		newg->stacksize = StackSystem + stacksize;
		newg->stack0 = (uintptr)stk;
		newg->stackguard = (uintptr)stk + StackGuard;
		newg->stackguard0 = newg->stackguard;
		newg->stackbase = (uintptr)stk + StackSystem + stacksize - sizeof(Stktop);
		runtime·memclr((byte*)newg->stackbase, sizeof(Stktop));
	}
	return newg;
}

// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.  It's OK for this to call
// functions that split the stack.
#pragma textflag NOSPLIT
void
runtime·newproc(int32 siz, FuncVal* fn, ...)
{
	byte *argp;

	if(thechar == '5')
		argp = (byte*)(&fn+2);  // skip caller's saved LR
	else
		argp = (byte*)(&fn+1);
	runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz));
}

// Create a new g running fn with narg bytes of arguments starting
// at argp and returning nret bytes of results.  callerpc is the
// address of the go statement that created this.  The new g is put
// on the queue of g's waiting to run.
G*
runtime·newproc1(FuncVal *fn, byte *argp, int32 narg, int32 nret, void *callerpc)
{
	byte *sp;
	G *newg;
	int32 siz;

//runtime·printf("newproc1 %p %p narg=%d nret=%d\n", fn->fn, argp, narg, nret);
	m->locks++;  // disable preemption because it can be holding p in a local var
	siz = narg + nret;
	siz = (siz+7) & ~7;

	// We could instead create a secondary stack frame
	// and make it look like goexit was on the original but
	// the call to the actual goroutine function was split.
	// Not worth it: this is almost always an error.
	if(siz > StackMin - 1024)
		runtime·throw("runtime.newproc: function arguments too large for new goroutine");

	if((newg = gfget(m->p)) != nil) {
		if(newg->stackguard - StackGuard != newg->stack0)
			runtime·throw("invalid stack in newg");
	} else {
		newg = runtime·malg(StackMin);
		runtime·lock(&runtime·sched);
		if(runtime·lastg == nil)
			runtime·allg = newg;
		else
			runtime·lastg->alllink = newg;
		runtime·lastg = newg;
		runtime·unlock(&runtime·sched);
	}

	sp = (byte*)newg->stackbase;
	sp -= siz;
	runtime·memmove(sp, argp, narg);
	if(thechar == '5') {
		// caller's LR
		sp -= sizeof(void*);
		*(void**)sp = nil;
	}

	runtime·memclr((byte*)&newg->sched, sizeof newg->sched);
	newg->sched.sp = (uintptr)sp;
	newg->sched.pc = (uintptr)runtime·goexit;
	newg->sched.g = newg;
	runtime·gostartcallfn(&newg->sched, fn);
	newg->gopc = (uintptr)callerpc;
	newg->status = Grunnable;
	newg->goid = runtime·xadd64(&runtime·sched.goidgen, 1);
	newg->panicwrap = 0;
	if(raceenabled)
		newg->racectx = runtime·racegostart((void*)callerpc);
	runqput(m->p, newg);

	if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0 && fn->fn != runtime·main)  // TODO: fast atomic
		wakep();
	m->locks--;
	if(m->locks == 0 && g->preempt)  // restore the preemption request in case we've cleared it in newstack
		g->stackguard0 = StackPreempt;
	return newg;
}

// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
static void
gfput(P *p, G *gp)
{
	if(gp->stackguard - StackGuard != gp->stack0)
		runtime·throw("invalid stack in gfput");
	gp->schedlink = p->gfree;
	p->gfree = gp;
	p->gfreecnt++;
	if(p->gfreecnt >= 64) {
		runtime·lock(&runtime·sched.gflock);
		while(p->gfreecnt >= 32) {
			p->gfreecnt--;
			gp = p->gfree;
			p->gfree = gp->schedlink;
			gp->schedlink = runtime·sched.gfree;
			runtime·sched.gfree = gp;
		}
		runtime·unlock(&runtime·sched.gflock);
	}
}

// Get from gfree list.
// If local list is empty, grab a batch from global list.
static G*
gfget(P *p)
{
	G *gp;

retry:
	gp = p->gfree;
	if(gp == nil && runtime·sched.gfree) {
		runtime·lock(&runtime·sched.gflock);
		while(p->gfreecnt < 32 && runtime·sched.gfree) {
			p->gfreecnt++;
			gp = runtime·sched.gfree;
			runtime·sched.gfree = gp->schedlink;
			gp->schedlink = p->gfree;
			p->gfree = gp;
		}
		runtime·unlock(&runtime·sched.gflock);
		goto retry;
	}
	if(gp) {
		p->gfree = gp->schedlink;
		p->gfreecnt--;
	}
	return gp;
}

// Purge all cached G's from gfree list to the global list.
static void
gfpurge(P *p)
{
	G *gp;

	runtime·lock(&runtime·sched.gflock);
	while(p->gfreecnt) {
		p->gfreecnt--;
		gp = p->gfree;
		p->gfree = gp->schedlink;
		gp->schedlink = runtime·sched.gfree;
		runtime·sched.gfree = gp;
	}
	runtime·unlock(&runtime·sched.gflock);
}

void
runtime·Breakpoint(void)
{
	runtime·breakpoint();
}

void
runtime·Gosched(void)
{
	runtime·gosched();
}

// Implementation of runtime.GOMAXPROCS.
// delete when scheduler is even stronger
int32
runtime·gomaxprocsfunc(int32 n)
{
	int32 ret;

	if(n > MaxGomaxprocs)
		n = MaxGomaxprocs;
	runtime·lock(&runtime·sched);
	ret = runtime·gomaxprocs;
	if(n <= 0 || n == ret) {
		runtime·unlock(&runtime·sched);
		return ret;
	}
	runtime·unlock(&runtime·sched);

	runtime·semacquire(&runtime·worldsema, false);
	m->gcing = 1;
	runtime·stoptheworld();
	newprocs = n;
	m->gcing = 0;
	runtime·semrelease(&runtime·worldsema);
	runtime·starttheworld();

	return ret;
}

// lockOSThread is called by runtime.LockOSThread and runtime.lockOSThread below
// after they modify m->locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
#pragma textflag NOSPLIT
static void
lockOSThread(void)
{
	m->lockedg = g;
	g->lockedm = m;
}

void
runtime·LockOSThread(void)
{
	m->locked |= LockExternal;
	lockOSThread();
}

void
runtime·lockOSThread(void)
{
	m->locked += LockInternal;
	lockOSThread();
}


// unlockOSThread is called by runtime.UnlockOSThread and runtime.unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
#pragma textflag NOSPLIT
static void
unlockOSThread(void)
{
	if(m->locked != 0)
		return;
	m->lockedg = nil;
	g->lockedm = nil;
}

void
runtime·UnlockOSThread(void)
{
	m->locked &= ~LockExternal;
	unlockOSThread();
}

void
runtime·unlockOSThread(void)
{
	if(m->locked < LockInternal)
		runtime·throw("runtime: internal error: misuse of lockOSThread/unlockOSThread");
	m->locked -= LockInternal;
	unlockOSThread();
}

bool
runtime·lockedOSThread(void)
{
	return g->lockedm != nil && m->lockedg != nil;
}

// for testing of callbacks
void
runtime·golockedOSThread(bool ret)
{
	ret = runtime·lockedOSThread();
	FLUSH(&ret);
}

void
runtime·NumGoroutine(intgo ret)
{
	ret = runtime·gcount();
	FLUSH(&ret);
}

int32
runtime·gcount(void)
{
	G *gp;
	int32 n, s;

	n = 0;
	runtime·lock(&runtime·sched);
	// TODO(dvyukov): runtime.NumGoroutine() is O(N).
	// We do not want to increment/decrement centralized counter in newproc/goexit,
	// just to make runtime.NumGoroutine() faster.
	// Compromise solution is to introduce per-P counters of active goroutines.
	for(gp = runtime·allg; gp; gp = gp->alllink) {
		s = gp->status;
		if(s == Grunnable || s == Grunning || s == Gsyscall || s == Gwaiting)
			n++;
	}
	runtime·unlock(&runtime·sched);
	return n;
}

int32
runtime·mcount(void)
{
	return runtime·sched.mcount;
}

void
runtime·badmcall(void (*fn)(G*))  // called from assembly
{
	USED(fn); // TODO: print fn?
	runtime·throw("runtime: mcall called on m->g0 stack");
}

void
runtime·badmcall2(void (*fn)(G*))  // called from assembly
{
	USED(fn);
	runtime·throw("runtime: mcall function returned");
}

void
runtime·badreflectcall(void) // called from assembly
{
	runtime·panicstring("runtime: arg size to reflect.call more than 1GB");
}

static struct {
	Lock;
	void (*fn)(uintptr*, int32);
	int32 hz;
	uintptr pcbuf[100];
} prof;

static void
System(void)
{
}

// Called if we receive a SIGPROF signal.
void
runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp)
{
	int32 n;
	bool traceback;

	if(prof.fn == nil || prof.hz == 0)
		return;
	traceback = true;
	// Windows does profiling in a dedicated thread w/o m.
	if(!Windows && (m == nil || m->mcache == nil))
		traceback = false;
	
	// Define that a "user g" is a user-created goroutine, and a "system g"
	// is one that is m->g0 or m->gsignal. We've only made sure that we
	// can unwind user g's, so exclude the system g's.
	//
	// It is not quite as easy as testing gp == m->curg (the current user g)
	// because we might be interrupted for profiling halfway through a
	// goroutine switch. The switch involves updating three (or four) values:
	// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
	// because once it gets updated the new g is running.
	//
	// When switching from a user g to a system g, LR is not considered live,
	// so the update only affects g, SP, and PC. Since PC must be last, there
	// the possible partial transitions in ordinary execution are (1) g alone is updated,
	// (2) both g and SP are updated, and (3) SP alone is updated.
	// If g is updated, we'll see a system g and not look closer.
	// If SP alone is updated, we can detect the partial transition by checking
	// whether the SP is within g's stack bounds. (We could also require that SP
	// be changed only after g, but the stack bounds check is needed by other
	// cases, so there is no need to impose an additional requirement.)
	//
	// There is one exceptional transition to a system g, not in ordinary execution.
	// When a signal arrives, the operating system starts the signal handler running
	// with an updated PC and SP. The g is updated last, at the beginning of the
	// handler. There are two reasons this is okay. First, until g is updated the
	// g and SP do not match, so the stack bounds check detects the partial transition.
	// Second, signal handlers currently run with signals disabled, so a profiling
	// signal cannot arrive during the handler.
	//
	// When switching from a system g to a user g, there are three possibilities.
	//
	// First, it may be that the g switch has no PC update, because the SP
	// either corresponds to a user g throughout (as in runtime.asmcgocall)
	// or because it has been arranged to look like a user g frame
	// (as in runtime.cgocallback_gofunc). In this case, since the entire
	// transition is a g+SP update, a partial transition updating just one of 
	// those will be detected by the stack bounds check.
	//
	// Second, when returning from a signal handler, the PC and SP updates
	// are performed by the operating system in an atomic update, so the g
	// update must be done before them. The stack bounds check detects
	// the partial transition here, and (again) signal handlers run with signals
	// disabled, so a profiling signal cannot arrive then anyway.
	//
	// Third, the common case: it may be that the switch updates g, SP, and PC
	// separately, as in runtime.gogo.
	//
	// Because runtime.gogo is the only instance, we check whether the PC lies
	// within that function, and if so, not ask for a traceback. This approach
	// requires knowing the size of the runtime.gogo function, which we
	// record in arch_*.h and check in runtime_test.go.
	//
	// There is another apparently viable approach, recorded here in case
	// the "PC within runtime.gogo" check turns out not to be usable.
	// It would be possible to delay the update of either g or SP until immediately
	// before the PC update instruction. Then, because of the stack bounds check,
	// the only problematic interrupt point is just before that PC update instruction,
	// and the sigprof handler can detect that instruction and simulate stepping past
	// it in order to reach a consistent state. On ARM, the update of g must be made
	// in two places (in R10 and also in a TLS slot), so the delayed update would
	// need to be the SP update. The sigprof handler must read the instruction at
	// the current PC and if it was the known instruction (for example, JMP BX or 
	// MOV R2, PC), use that other register in place of the PC value.
	// The biggest drawback to this solution is that it requires that we can tell
	// whether it's safe to read from the memory pointed at by PC.
	// In a correct program, we can test PC == nil and otherwise read,
	// but if a profiling signal happens at the instant that a program executes
	// a bad jump (before the program manages to handle the resulting fault)
	// the profiling handler could fault trying to read nonexistent memory.
	//
	// To recap, there are no constraints on the assembly being used for the
	// transition. We simply require that g and SP match and that the PC is not
	// in runtime.gogo.
	//
	// On Windows, one m is sending reports about all the g's, so gp == m->curg
	// is not a useful comparison. The profilem function in os_windows.c has
	// already checked that gp is a user g.
	if(gp == nil ||
	   (!Windows && gp != m->curg) ||
	   (uintptr)sp < gp->stackguard - StackGuard || gp->stackbase < (uintptr)sp ||
	   ((uint8*)runtime·gogo <= pc && pc < (uint8*)runtime·gogo + RuntimeGogoBytes))
		traceback = false;

	// Race detector calls asmcgocall w/o entersyscall/exitsyscall,
	// we can not currently unwind through asmcgocall.
	if(m != nil && m->racecall)
		traceback = false;

	runtime·lock(&prof);
	if(prof.fn == nil) {
		runtime·unlock(&prof);
		return;
	}
	n = 0;
	if(traceback)
		n = runtime·gentraceback((uintptr)pc, (uintptr)sp, (uintptr)lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf), nil, nil, false);
	if(!traceback || n <= 0) {
		n = 2;
		prof.pcbuf[0] = (uintptr)pc;
		prof.pcbuf[1] = (uintptr)System + 1;
	}
	prof.fn(prof.pcbuf, n);
	runtime·unlock(&prof);
}

// Arrange to call fn with a traceback hz times a second.
void
runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
{
	// Force sane arguments.
	if(hz < 0)
		hz = 0;
	if(hz == 0)
		fn = nil;
	if(fn == nil)
		hz = 0;

	// Disable preemption, otherwise we can be rescheduled to another thread
	// that has profiling enabled.
	m->locks++;

	// Stop profiler on this thread so that it is safe to lock prof.
	// if a profiling signal came in while we had prof locked,
	// it would deadlock.
	runtime·resetcpuprofiler(0);

	runtime·lock(&prof);
	prof.fn = fn;
	prof.hz = hz;
	runtime·unlock(&prof);
	runtime·lock(&runtime·sched);
	runtime·sched.profilehz = hz;
	runtime·unlock(&runtime·sched);

	if(hz != 0)
		runtime·resetcpuprofiler(hz);

	m->locks--;
}

// Change number of processors.  The world is stopped, sched is locked.
static void
procresize(int32 new)
{
	int32 i, old;
	G *gp;
	P *p;

	old = runtime·gomaxprocs;
	if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs)
		runtime·throw("procresize: invalid arg");
	// initialize new P's
	for(i = 0; i < new; i++) {
		p = runtime·allp[i];
		if(p == nil) {
			p = (P*)runtime·mallocgc(sizeof(*p), 0, FlagNoInvokeGC);
			p->id = i;
			p->status = Pgcstop;
			runtime·atomicstorep(&runtime·allp[i], p);
		}
		if(p->mcache == nil) {
			if(old==0 && i==0)
				p->mcache = m->mcache;  // bootstrap
			else
				p->mcache = runtime·allocmcache();
		}
	}

	// redistribute runnable G's evenly
	// collect all runnable goroutines in global queue
	for(i = 0; i < old; i++) {
		p = runtime·allp[i];
		while(gp = runqget(p))
			globrunqput(gp);
	}
	// fill local queues with at most nelem(p->runq)/2 goroutines
	// start at 1 because current M already executes some G and will acquire allp[0] below,
	// so if we have a spare G we want to put it into allp[1].
	for(i = 1; i < new * nelem(p->runq)/2 && runtime·sched.runqsize > 0; i++) {
		gp = runtime·sched.runqhead;
		runtime·sched.runqhead = gp->schedlink;
		if(runtime·sched.runqhead == nil)
			runtime·sched.runqtail = nil;
		runtime·sched.runqsize--;
		runqput(runtime·allp[i%new], gp);
	}

	// free unused P's
	for(i = new; i < old; i++) {
		p = runtime·allp[i];
		runtime·freemcache(p->mcache);
		p->mcache = nil;
		gfpurge(p);
		p->status = Pdead;
		// can't free P itself because it can be referenced by an M in syscall
	}

	if(m->p)
		m->p->m = nil;
	m->p = nil;
	m->mcache = nil;
	p = runtime·allp[0];
	p->m = nil;
	p->status = Pidle;
	acquirep(p);
	for(i = new-1; i > 0; i--) {
		p = runtime·allp[i];
		p->status = Pidle;
		pidleput(p);
	}
	runtime·atomicstore((uint32*)&runtime·gomaxprocs, new);
}

// Associate p and the current m.
static void
acquirep(P *p)
{
	if(m->p || m->mcache)
		runtime·throw("acquirep: already in go");
	if(p->m || p->status != Pidle) {
		runtime·printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status);
		runtime·throw("acquirep: invalid p state");
	}
	m->mcache = p->mcache;
	m->p = p;
	p->m = m;
	p->status = Prunning;
}

// Disassociate p and the current m.
static P*
releasep(void)
{
	P *p;

	if(m->p == nil || m->mcache == nil)
		runtime·throw("releasep: invalid arg");
	p = m->p;
	if(p->m != m || p->mcache != m->mcache || p->status != Prunning) {
		runtime·printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n",
			m, m->p, p->m, m->mcache, p->mcache, p->status);
		runtime·throw("releasep: invalid p state");
	}
	m->p = nil;
	m->mcache = nil;
	p->m = nil;
	p->status = Pidle;
	return p;
}

static void
incidlelocked(int32 v)
{
	runtime·lock(&runtime·sched);
	runtime·sched.nmidlelocked += v;
	if(v > 0)
		checkdead();
	runtime·unlock(&runtime·sched);
}

// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
static void
checkdead(void)
{
	G *gp;
	int32 run, grunning, s;

	// -1 for sysmon
	run = runtime·sched.mcount - runtime·sched.nmidle - runtime·sched.nmidlelocked - 1;
	if(run > 0)
		return;
	if(run < 0) {
		runtime·printf("checkdead: nmidle=%d nmidlelocked=%d mcount=%d\n",
			runtime·sched.nmidle, runtime·sched.nmidlelocked, runtime·sched.mcount);
		runtime·throw("checkdead: inconsistent counts");
	}
	grunning = 0;
	for(gp = runtime·allg; gp; gp = gp->alllink) {
		if(gp->isbackground)
			continue;
		s = gp->status;
		if(s == Gwaiting)
			grunning++;
		else if(s == Grunnable || s == Grunning || s == Gsyscall) {
			runtime·printf("checkdead: find g %D in status %d\n", gp->goid, s);
			runtime·throw("checkdead: runnable g");
		}
	}
	if(grunning == 0)  // possible if main goroutine calls runtime·Goexit()
		runtime·exit(0);
	m->throwing = -1;  // do not dump full stacks
	runtime·throw("all goroutines are asleep - deadlock!");
}

static void
sysmon(void)
{
	uint32 idle, delay;
	int64 now, lastpoll, lasttrace;
	G *gp;

	lasttrace = 0;
	idle = 0;  // how many cycles in succession we had not wokeup somebody
	delay = 0;
	for(;;) {
		if(idle == 0)  // start with 20us sleep...
			delay = 20;
		else if(idle > 50)  // start doubling the sleep after 1ms...
			delay *= 2;
		if(delay > 10*1000)  // up to 10ms
			delay = 10*1000;
		runtime·usleep(delay);
		if(runtime·debug.schedtrace <= 0 &&
			(runtime·sched.gcwaiting || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs)) {  // TODO: fast atomic
			runtime·lock(&runtime·sched);
			if(runtime·atomicload(&runtime·sched.gcwaiting) || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs) {
				runtime·atomicstore(&runtime·sched.sysmonwait, 1);
				runtime·unlock(&runtime·sched);
				runtime·notesleep(&runtime·sched.sysmonnote);
				runtime·noteclear(&runtime·sched.sysmonnote);
				idle = 0;
				delay = 20;
			} else
				runtime·unlock(&runtime·sched);
		}
		// poll network if not polled for more than 10ms
		lastpoll = runtime·atomicload64(&runtime·sched.lastpoll);
		now = runtime·nanotime();
		if(lastpoll != 0 && lastpoll + 10*1000*1000 < now) {
			runtime·cas64(&runtime·sched.lastpoll, lastpoll, now);
			gp = runtime·netpoll(false);  // non-blocking
			if(gp) {
				// Need to decrement number of idle locked M's
				// (pretending that one more is running) before injectglist.
				// Otherwise it can lead to the following situation:
				// injectglist grabs all P's but before it starts M's to run the P's,
				// another M returns from syscall, finishes running its G,
				// observes that there is no work to do and no other running M's
				// and reports deadlock.
				incidlelocked(-1);
				injectglist(gp);
				incidlelocked(1);
			}
		}
		// retake P's blocked in syscalls
		// and preempt long running G's
		if(retake(now))
			idle = 0;
		else
			idle++;

		if(runtime·debug.schedtrace > 0 && lasttrace + runtime·debug.schedtrace*1000000ll <= now) {
			lasttrace = now;
			runtime·schedtrace(runtime·debug.scheddetail);
		}
	}
}

typedef struct Pdesc Pdesc;
struct Pdesc
{
	uint32	schedtick;
	int64	schedwhen;
	uint32	syscalltick;
	int64	syscallwhen;
};
static Pdesc pdesc[MaxGomaxprocs];

static uint32
retake(int64 now)
{
	uint32 i, s, n;
	int64 t;
	P *p;
	Pdesc *pd;

	n = 0;
	for(i = 0; i < runtime·gomaxprocs; i++) {
		p = runtime·allp[i];
		if(p==nil)
			continue;
		pd = &pdesc[i];
		s = p->status;
		if(s == Psyscall) {
			// Retake P from syscall if it's there for more than 1 sysmon tick (20us).
			// But only if there is other work to do.
			t = p->syscalltick;
			if(pd->syscalltick != t) {
				pd->syscalltick = t;
				pd->syscallwhen = now;
				continue;
			}
			if(p->runqhead == p->runqtail &&
				runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) > 0)
				continue;
			// Need to decrement number of idle locked M's
			// (pretending that one more is running) before the CAS.
			// Otherwise the M from which we retake can exit the syscall,
			// increment nmidle and report deadlock.
			incidlelocked(-1);
			if(runtime·cas(&p->status, s, Pidle)) {
				n++;
				handoffp(p);
			}
			incidlelocked(1);
		} else if(s == Prunning) {
			// Preempt G if it's running for more than 10ms.
			t = p->schedtick;
			if(pd->schedtick != t) {
				pd->schedtick = t;
				pd->schedwhen = now;
				continue;
			}
			if(pd->schedwhen + 10*1000*1000 > now)
				continue;
			preemptone(p);
		}
	}
	return n;
}

// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort.  It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
static bool
preemptall(void)
{
	P *p;
	int32 i;
	bool res;

	res = false;
	for(i = 0; i < runtime·gomaxprocs; i++) {
		p = runtime·allp[i];
		if(p == nil || p->status != Prunning)
			continue;
		res |= preemptone(p);
	}
	return res;
}

// Tell the goroutine running on processor P to stop.
// This function is purely best-effort.  It can incorrectly fail to inform the
// goroutine.  It can send inform the wrong goroutine.  Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing runtime·newstack.
// No lock needs to be held.
// Returns true if preemption request was issued.
static bool
preemptone(P *p)
{
	M *mp;
	G *gp;

	mp = p->m;
	if(mp == nil || mp == m)
		return false;
	gp = mp->curg;
	if(gp == nil || gp == mp->g0)
		return false;
	gp->preempt = true;
	gp->stackguard0 = StackPreempt;
	return true;
}

void
runtime·schedtrace(bool detailed)
{
	static int64 starttime;
	int64 now;
	int64 id1, id2, id3;
	int32 i, t, h;
	int8 *fmt;
	M *mp, *lockedm;
	G *gp, *lockedg;
	P *p;

	now = runtime·nanotime();
	if(starttime == 0)
		starttime = now;

	runtime·lock(&runtime·sched);
	runtime·printf("SCHED %Dms: gomaxprocs=%d idleprocs=%d threads=%d idlethreads=%d runqueue=%d",
		(now-starttime)/1000000, runtime·gomaxprocs, runtime·sched.npidle, runtime·sched.mcount,
		runtime·sched.nmidle, runtime·sched.runqsize);
	if(detailed) {
		runtime·printf(" gcwaiting=%d nmidlelocked=%d nmspinning=%d stopwait=%d sysmonwait=%d\n",
			runtime·sched.gcwaiting, runtime·sched.nmidlelocked, runtime·sched.nmspinning,
			runtime·sched.stopwait, runtime·sched.sysmonwait);
	}
	// We must be careful while reading data from P's, M's and G's.
	// Even if we hold schedlock, most data can be changed concurrently.
	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
	for(i = 0; i < runtime·gomaxprocs; i++) {
		p = runtime·allp[i];
		if(p == nil)
			continue;
		mp = p->m;
		h = runtime·atomicload(&p->runqhead);
		t = runtime·atomicload(&p->runqtail);
		if(detailed)
			runtime·printf("  P%d: status=%d schedtick=%d syscalltick=%d m=%d runqsize=%d gfreecnt=%d\n",
				i, p->status, p->schedtick, p->syscalltick, mp ? mp->id : -1, t-h, p->gfreecnt);
		else {
			// In non-detailed mode format lengths of per-P run queues as:
			// [len1 len2 len3 len4]
			fmt = " %d";
			if(runtime·gomaxprocs == 1)
				fmt = " [%d]\n";
			else if(i == 0)
				fmt = " [%d";
			else if(i == runtime·gomaxprocs-1)
				fmt = " %d]\n";
			runtime·printf(fmt, t-h);
		}
	}
	if(!detailed) {
		runtime·unlock(&runtime·sched);
		return;
	}
	for(mp = runtime·allm; mp; mp = mp->alllink) {
		p = mp->p;
		gp = mp->curg;
		lockedg = mp->lockedg;
		id1 = -1;
		if(p)
			id1 = p->id;
		id2 = -1;
		if(gp)
			id2 = gp->goid;
		id3 = -1;
		if(lockedg)
			id3 = lockedg->goid;
		runtime·printf("  M%d: p=%D curg=%D mallocing=%d throwing=%d gcing=%d"
			" locks=%d dying=%d helpgc=%d spinning=%d lockedg=%D\n",
			mp->id, id1, id2,
			mp->mallocing, mp->throwing, mp->gcing, mp->locks, mp->dying, mp->helpgc,
			mp->spinning, id3);
	}
	for(gp = runtime·allg; gp; gp = gp->alllink) {
		mp = gp->m;
		lockedm = gp->lockedm;
		runtime·printf("  G%D: status=%d(%s) m=%d lockedm=%d\n",
			gp->goid, gp->status, gp->waitreason, mp ? mp->id : -1,
			lockedm ? lockedm->id : -1);
	}
	runtime·unlock(&runtime·sched);
}

// Put mp on midle list.
// Sched must be locked.
static void
mput(M *mp)
{
	mp->schedlink = runtime·sched.midle;
	runtime·sched.midle = mp;
	runtime·sched.nmidle++;
	checkdead();
}

// Try to get an m from midle list.
// Sched must be locked.
static M*
mget(void)
{
	M *mp;

	if((mp = runtime·sched.midle) != nil){
		runtime·sched.midle = mp->schedlink;
		runtime·sched.nmidle--;
	}
	return mp;
}

// Put gp on the global runnable queue.
// Sched must be locked.
static void
globrunqput(G *gp)
{
	gp->schedlink = nil;
	if(runtime·sched.runqtail)
		runtime·sched.runqtail->schedlink = gp;
	else
		runtime·sched.runqhead = gp;
	runtime·sched.runqtail = gp;
	runtime·sched.runqsize++;
}

// Put a batch of runnable goroutines on the global runnable queue.
// Sched must be locked.
static void
globrunqputbatch(G *ghead, G *gtail, int32 n)
{
	gtail->schedlink = nil;
	if(runtime·sched.runqtail)
		runtime·sched.runqtail->schedlink = ghead;
	else
		runtime·sched.runqhead = ghead;
	runtime·sched.runqtail = gtail;
	runtime·sched.runqsize += n;
}

// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
static G*
globrunqget(P *p, int32 max)
{
	G *gp, *gp1;
	int32 n;

	if(runtime·sched.runqsize == 0)
		return nil;
	n = runtime·sched.runqsize/runtime·gomaxprocs+1;
	if(n > runtime·sched.runqsize)
		n = runtime·sched.runqsize;
	if(max > 0 && n > max)
		n = max;
	if(n > nelem(p->runq)/2)
		n = nelem(p->runq)/2;
	runtime·sched.runqsize -= n;
	if(runtime·sched.runqsize == 0)
		runtime·sched.runqtail = nil;
	gp = runtime·sched.runqhead;
	runtime·sched.runqhead = gp->schedlink;
	n--;
	while(n--) {
		gp1 = runtime·sched.runqhead;
		runtime·sched.runqhead = gp1->schedlink;
		runqput(p, gp1);
	}
	return gp;
}

// Put p to on pidle list.
// Sched must be locked.
static void
pidleput(P *p)
{
	p->link = runtime·sched.pidle;
	runtime·sched.pidle = p;
	runtime·xadd(&runtime·sched.npidle, 1);  // TODO: fast atomic
}

// Try get a p from pidle list.
// Sched must be locked.
static P*
pidleget(void)
{
	P *p;

	p = runtime·sched.pidle;
	if(p) {
		runtime·sched.pidle = p->link;
		runtime·xadd(&runtime·sched.npidle, -1);  // TODO: fast atomic
	}
	return p;
}

// Try to put g on local runnable queue.
// If it's full, put onto global queue.
// Executed only by the owner P.
static void
runqput(P *p, G *gp)
{
	uint32 h, t;

retry:
	h = runtime·atomicload(&p->runqhead);  // load-acquire, synchronize with consumers
	t = p->runqtail;
	if(t - h < nelem(p->runq)) {
		p->runq[t%nelem(p->runq)] = gp;
		runtime·atomicstore(&p->runqtail, t+1);  // store-release, makes the item available for consumption
		return;
	}
	if(runqputslow(p, gp, h, t))
		return;
	// the queue is not full, now the put above must suceed
	goto retry;
}

// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
static bool
runqputslow(P *p, G *gp, uint32 h, uint32 t)
{
	G *batch[nelem(p->runq)/2+1];
	uint32 n, i;

	// First, grab a batch from local queue.
	n = t-h;
	n = n/2;
	if(n != nelem(p->runq)/2)
		runtime·throw("runqputslow: queue is not full");
	for(i=0; i<n; i++)
		batch[i] = p->runq[(h+i)%nelem(p->runq)];
	if(!runtime·cas(&p->runqhead, h, h+n))  // cas-release, commits consume
		return false;
	batch[n] = gp;
	// Link the goroutines.
	for(i=0; i<n; i++)
		batch[i]->schedlink = batch[i+1];
	// Now put the batch on global queue.
	runtime·lock(&runtime·sched);
	globrunqputbatch(batch[0], batch[n], n+1);
	runtime·unlock(&runtime·sched);
	return true;
}

// Get g from local runnable queue.
// Executed only by the owner P.
static G*
runqget(P *p)
{
	G *gp;
	uint32 t, h;

	for(;;) {
		h = runtime·atomicload(&p->runqhead);  // load-acquire, synchronize with other consumers
		t = p->runqtail;
		if(t == h)
			return nil;
		gp = p->runq[h%nelem(p->runq)];
		if(runtime·cas(&p->runqhead, h, h+1))  // cas-release, commits consume
			return gp;
	}
}

// Grabs a batch of goroutines from local runnable queue.
// batch array must be of size nelem(p->runq)/2. Returns number of grabbed goroutines.
// Can be executed by any P.
static uint32
runqgrab(P *p, G **batch)
{
	uint32 t, h, n, i;

	for(;;) {
		h = runtime·atomicload(&p->runqhead);  // load-acquire, synchronize with other consumers
		t = runtime·atomicload(&p->runqtail);  // load-acquire, synchronize with the producer
		n = t-h;
		n = n - n/2;
		if(n == 0)
			break;
		if(n > nelem(p->runq)/2)  // read inconsistent h and t
			continue;
		for(i=0; i<n; i++)
			batch[i] = p->runq[(h+i)%nelem(p->runq)];
		if(runtime·cas(&p->runqhead, h, h+n))  // cas-release, commits consume
			break;
	}
	return n;
}

// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
static G*
runqsteal(P *p, P *p2)
{
	G *gp;
	G *batch[nelem(p->runq)/2];
	uint32 t, h, n, i;

	n = runqgrab(p2, batch);
	if(n == 0)
		return nil;
	n--;
	gp = batch[n];
	if(n == 0)
		return gp;
	h = runtime·atomicload(&p->runqhead);  // load-acquire, synchronize with consumers
	t = p->runqtail;
	if(t - h + n >= nelem(p->runq))
		runtime·throw("runqsteal: runq overflow");
	for(i=0; i<n; i++, t++)
		p->runq[t%nelem(p->runq)] = batch[i];
	runtime·atomicstore(&p->runqtail, t);  // store-release, makes the item available for consumption
	return gp;
}

void
runtime·testSchedLocalQueue(void)
{
	P p;
	G gs[nelem(p.runq)];
	int32 i, j;

	runtime·memclr((byte*)&p, sizeof(p));

	for(i = 0; i < nelem(gs); i++) {
		if(runqget(&p) != nil)
			runtime·throw("runq is not empty initially");
		for(j = 0; j < i; j++)
			runqput(&p, &gs[i]);
		for(j = 0; j < i; j++) {
			if(runqget(&p) != &gs[i]) {
				runtime·printf("bad element at iter %d/%d\n", i, j);
				runtime·throw("bad element");
			}
		}
		if(runqget(&p) != nil)
			runtime·throw("runq is not empty afterwards");
	}
}

void
runtime·testSchedLocalQueueSteal(void)
{
	P p1, p2;
	G gs[nelem(p1.runq)], *gp;
	int32 i, j, s;

	runtime·memclr((byte*)&p1, sizeof(p1));
	runtime·memclr((byte*)&p2, sizeof(p2));

	for(i = 0; i < nelem(gs); i++) {
		for(j = 0; j < i; j++) {
			gs[j].sig = 0;
			runqput(&p1, &gs[j]);
		}
		gp = runqsteal(&p2, &p1);
		s = 0;
		if(gp) {
			s++;
			gp->sig++;
		}
		while(gp = runqget(&p2)) {
			s++;
			gp->sig++;
		}
		while(gp = runqget(&p1))
			gp->sig++;
		for(j = 0; j < i; j++) {
			if(gs[j].sig != 1) {
				runtime·printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i);
				runtime·throw("bad element");
			}
		}
		if(s != i/2 && s != i/2+1) {
			runtime·printf("bad steal %d, want %d or %d, iter %d\n",
				s, i/2, i/2+1, i);
			runtime·throw("bad steal");
		}
	}
}

extern void runtime·morestack(void);

// Does f mark the top of a goroutine stack?
bool
runtime·topofstack(Func *f)
{
	return f->entry == (uintptr)runtime·goexit ||
		f->entry == (uintptr)runtime·mstart ||
		f->entry == (uintptr)runtime·mcall ||
		f->entry == (uintptr)runtime·morestack ||
		f->entry == (uintptr)runtime·lessstack ||
		f->entry == (uintptr)_rt0_go;
}

void
runtimedebug·setMaxThreads(intgo in, intgo out)
{
	runtime·lock(&runtime·sched);
	out = runtime·sched.maxmcount;
	runtime·sched.maxmcount = in;
	checkmcount();
	runtime·unlock(&runtime·sched);
	FLUSH(&out);
}

static int8 experiment[] = GOEXPERIMENT; // defined in zaexperiment.h

static bool
haveexperiment(int8 *name)
{
	int32 i, j;
	
	for(i=0; i<sizeof(experiment); i++) {
		if((i == 0 || experiment[i-1] == ',') && experiment[i] == name[0]) {
			for(j=0; name[j]; j++)
				if(experiment[i+j] != name[j])
					goto nomatch;
			if(experiment[i+j] != '\0' && experiment[i+j] != ',')
				goto nomatch;
			return 1;
		}
	nomatch:;
	}
	return 0;
}