Source

Coin / src / base / SbPlane.cpp

Full commit
Morten Eriksen bee50a5 
Marius Kintel 3ba6b41 




























Morten Eriksen bee50a5 


Lars J. Aas 306a378 
Morten Eriksen bee50a5 







Tom Fredrik Blen… 9244e9d 

Morten Eriksen bee50a5 

Peder Blekken b5fa19c 
Morten Eriksen bee50a5 
Tom Fredrik Blen… 9244e9d 
Morten Eriksen bee50a5 






Morten Eriksen 2288888 


Morten Eriksen bee50a5 









Morten Eriksen 2288888 
Peder Blekken 519d4a9 
Morten Eriksen bee50a5 

Peder Blekken 519d4a9 
Morten Eriksen bee50a5 
Morten Eriksen c548bb9 
Lars J. Aas 78edc59 
Morten Eriksen bee50a5 

Peder Blekken 519d4a9 
Peder Blekken 813862e 

Morten Eriksen bee50a5 



Morten Eriksen 2288888 
Lars J. Aas 78edc59 

Morten Eriksen 2288888 
Morten Eriksen bee50a5 




Morten Eriksen c548bb9 

Morten Eriksen bee50a5 


Lars J. Aas 78edc59 







Peder Blekken 813862e 

Morten Eriksen bee50a5 







Morten Eriksen 2288888 
Morten Eriksen bee50a5 

Morten Eriksen 2288888 
Peder Blekken 519d4a9 
Morten Eriksen bee50a5 

Peder Blekken 519d4a9 
Morten Eriksen bee50a5 
Morten Eriksen c548bb9 
Morten Eriksen bee50a5 

Peder Blekken 519d4a9 
Peder Blekken 813862e 


Morten Eriksen bee50a5 










Morten Eriksen 2288888 
Morten Eriksen bee50a5 








Morten Eriksen 2288888 
Morten Eriksen c548bb9 
Morten Eriksen bee50a5 

Morten Eriksen 2288888 
Morten Eriksen bee50a5 



Lars J. Aas 78edc59 
Morten Eriksen ca6feb6 



Lars J. Aas 78edc59 
Morten Eriksen bee50a5 
Morten Eriksen c548bb9 
Morten Eriksen ca6feb6 
Morten Eriksen bee50a5 




































Morten Eriksen 2288888 
Morten Eriksen bee50a5 




Peder Blekken c95aebf 
Peder Blekken 98f335d 
Peder Blekken c95aebf 

Peder Blekken 98f335d 


Peder Blekken b5fa19c 
Peder Blekken 813862e 





Morten Eriksen ad35c05 
Morten Eriksen bee50a5 




Morten Eriksen 2288888 
Morten Eriksen bee50a5 


Morten Eriksen b1a788d 
Morten Eriksen 8d6ed44 




Marius Kintel b1b988e 
Morten Eriksen 4ea6bd0 

Morten Eriksen 8d6ed44 



Peder Blekken b5fa19c 



Morten Eriksen bee50a5 






Morten Eriksen 2288888 
Morten Eriksen bee50a5 










Morten Eriksen 2288888 
Morten Eriksen bee50a5 





Peder Blekken 1e2319b 

Morten Eriksen 2288888 
Peder Blekken 1e2319b 

Øystein Handegar… 337d2df 



Morten Eriksen c176f9a 
Peder Blekken 6fb5eb3 
Morten Eriksen c176f9a 
Peder Blekken 1e2319b 

Lars J. Aas 7d31763 
Peder Blekken 9d2f6a9 
















Øystein Handegar… 6d97674 

Peder Blekken 1e2319b 
Øystein Handegar… 6d97674 
Peder Blekken 9d2f6a9 




Øystein Handegar… 6d97674 
Peder Blekken 9d2f6a9 
Øystein Handegar… 6d97674 
Peder Blekken 9d2f6a9 










Peder Blekken 1e2319b 
Peder Blekken 9d2f6a9 
Tom Fredrik Blen… 9244e9d 
Peder Blekken 1e2319b 
Peder Blekken 9d2f6a9 
Tom Fredrik Blen… 469a505 
Peder Blekken 9d2f6a9 


Morten Eriksen bee50a5 



Morten Eriksen 2288888 
Morten Eriksen bee50a5 











Morten Eriksen 2288888 
Morten Eriksen bee50a5 







Morten Eriksen 2288888 

Morten Eriksen bee50a5 
Morten Eriksen dfb3833 
Morten Eriksen bee50a5 

Morten Eriksen dfb3833 
Morten Eriksen 2288888 
Morten Eriksen bee50a5 

Tom Fredrik Blen… 1e1cdc6 




Tom Fredrik Blen… b231b7e 

Tom Fredrik Blen… 1e1cdc6 









Tom Fredrik Blen… b231b7e 
Tom Fredrik Blen… 1e1cdc6 


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/**************************************************************************\
 * Copyright (c) Kongsberg Oil & Gas Technologies AS
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * 
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 
 * Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\**************************************************************************/

/*!
  \class SbPlane SbPlane.h Inventor/SbLinear.h
  \brief The SbPlane class represents a plane in 3D space.
  \ingroup base

  SbPlane is used by many other classes in Coin.  It provides a way of
  representing a plane, specified by a plane normal vector and a
  distance from the origin of the coordinate system.
*/

#include <cassert>
#include <cstdio>
#include <Inventor/SbPlane.h>
#include <Inventor/SbLine.h>
#include <Inventor/SbVec3d.h>
#include <Inventor/SbMatrix.h>
#include <cfloat>

#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG


/*!
  An SbPlane instantiated with the default constructor will be
  uninitialized.
*/
SbPlane::SbPlane(void)
{
}

/*!
  Construct an SbPlane instance with a normal pointing in the given
  direction and the given shortest distance from the origin of the
  coordinate system to a point in the plane.

  \a normal must not be a null vector.
*/
SbPlane::SbPlane(const SbVec3f& normalref, const float D)
{
#if COIN_DEBUG
  if (normalref.sqrLength() == 0.0f) {
    SoDebugError::postWarning("SbPlane::SbPlane",
                              "Plane normal vector is a null vector.");
  }
#endif // COIN_DEBUG

  this->normal = normalref;
  // we test for a null vector above, just normalize
  (void) this->normal.normalize();
  this->distance = D;
}

/*!
  Construct an SbPlane with three points laying in the plane.  Make
  sure \a p0, \a p1 and \a p2 are actually three distinct points,
  not on a line, when using this constructor.
*/
SbPlane::SbPlane(const SbVec3f& p0, const SbVec3f& p1, const SbVec3f& p2)
{
#if COIN_DEBUG
  if(!(p0 != p1 && p1 != p2 && p0 != p2))
    SoDebugError::postWarning("SbPlane::SbPlane",
                              "The three points defining the plane cannot "
                              "be coincident.");
#endif // COIN_DEBUG

  this->normal = (p1 - p0).cross(p2 - p0);
#if COIN_DEBUG
  if (this->normal.sqrLength() == 0.0f) {
    SoDebugError::postWarning("SbPlane::SbPlane",
                              "The three points defining the plane cannot "
                              "be on line.");
  }
#endif // COIN_DEBUG

  // we test and warn about a null vector above
  (void) this->normal.normalize();
  //     N�point
  // d = -------, |N| == 1
  //       |N|�

  this->distance = this->normal.dot(p0);
}

/*!
  Construct an SbPlane from a normal and a point laying in the plane.

  \a normal must not be a null vector.
*/
SbPlane::SbPlane(const SbVec3f& normalref, const SbVec3f& point)
{
#if COIN_DEBUG
  if(normalref.sqrLength() == 0.0f)
    SoDebugError::postWarning("SbPlane::SbPlane",
                              "Plane normal vector is a null vector.");
#endif // COIN_DEBUG

  this->normal = normalref;

  // we test and warn about a null vector above
  (void) this->normal.normalize();

  //     N�point
  // d = -------, |N| == 1
  //       |N|�

  this->distance = this->normal.dot(point);
}


/*!
  Add the given offset \a d to the plane distance from the origin.
*/
void
SbPlane::offset(const float d)
{
  this->distance += d;
}

/*!
  Find the point on given line \a l intersecting the plane and return
  it in \a intersection. If the line is parallel to the plane,
  we return \c FALSE, otherwise \c TRUE.

  Do not pass an invalid line for the \a l parameter (i.e. with a
  null direction vector).
*/
SbBool
SbPlane::intersect(const SbLine& l, SbVec3f& intersection) const
{
#if COIN_DEBUG
  if (this->normal.sqrLength() == 0.0f) {
    SoDebugError::postWarning("SbPlane::intersect",
                              "Normal vector for plane is null vector");

  }
  if (l.getDirection().sqrLength() == 0.0f) {
    SoDebugError::postWarning("SbPlane::intersect",
                              "Intersecting line doesn't have a direction.");
  }
#endif // COIN_DEBUG

  // Check if the line is parallel to the plane.
  if((l.getDirection()).dot(this->normal) == 0.0f) return FALSE;

  // From the discussion on SbLine::getClosestPoint() we know that
  // any point on the line can be expressed as:
  //                    Q = P + t*D    (1)
  //
  // We can also easily see that a point must satisfy this equation to lie
  // in the plane:
  //                    N�(Q - d*N) = 0, where N is the normal vector,
  //                                     Q is the point and d the offset
  //                                     from the origin.
  //
  // Combining these two equations and simplifying we get:
  //
  //                          d*|N|� - N�P
  //                    t = ----------------, |N| == 1
  //                               N�D
  //
  // Substituting t back in (1), we've solved the problem.
  //                                                         19980816 mortene.

  float t =
    (this->distance - this->normal.dot(l.getPosition()))
    / this->normal.dot(l.getDirection());

  intersection = l.getPosition() + t * l.getDirection();

  return TRUE;
}

/*!
  Transform the plane by \a matrix.

  \sa offset()
*/
void
SbPlane::transform(const SbMatrix& matrix)
{
  SbVec3f ptInPlane = this->normal * this->distance;

  // according to discussions on comp.graphics.algorithms, the inverse
  // transpose matrix should be used to rotate the plane normal.
  SbMatrix invtransp = matrix.inverse().transpose();
  invtransp.multDirMatrix(this->normal, this->normal);

  // the point should be transformed using the original matrix
  matrix.multVecMatrix(ptInPlane, ptInPlane);

  if (this->normal.normalize() == 0.0f) {
#if COIN_DEBUG
    SoDebugError::postWarning("SbPlane::transform",
                              "The transformation invalidated the plane.");
#endif // COIN_DEBUG
  }
  this->distance = this->normal.dot(ptInPlane);
}

/*!
  Check if the given point lies in the halfspace of the plane which the
  plane normal vector is pointing.
*/
SbBool
SbPlane::isInHalfSpace(const SbVec3f& point) const
{
  return this->getDistance(point) >= 0.0f;
}

/*!
  Return the distance from \a point to plane. Positive distance means
  the point is in the plane's half space.

  This method is an extension specific to Coin versus the original SGI
  Inventor API.
*/
float
SbPlane::getDistance(const SbVec3f &point) const
{
  // convert to double before doing the dot product to increase precision of the result
  SbVec3d dp(point);
  SbVec3d dn(this->normal);
  return static_cast<float> (dp.dot(dn)) - this->distance;
}

/*!
  Return the plane's normal vector, which indicates which direction the plane
  is oriented.

  \sa getDistanceFromOrigin().
*/
const SbVec3f&
SbPlane::getNormal(void) const
{
  return this->normal;
}

/*!
  Return distance from origin of coordinate system to the point in the plane
  which is closest to the origin.

  \sa getNormal().
*/
float
SbPlane::getDistanceFromOrigin(void) const
{
  return this->distance;
}

/*!
  Intersect this plane with \a pl, and return the resulting line in \a
  line. Returns \c TRUE if an intersection line can be found, and \c
  FALSE if the planes are parallel.

  Please note that the resulting SbLine must be considered as a
  \e line intersecting the SbLine's origin, extending infinitely in both
  directions.

  \COIN_FUNCTION_EXTENSION

  \since Coin 2.0
*/
SbBool
SbPlane::intersect(const SbPlane & pl, SbLine & line) const
{
  // Based on code from Graphics Gems III, Plane-to-Plane Intersection
  // by Priamos Georgiades

  float invdet;  // inverse of 2x2 matrix determinant
  SbVec3f dir2;  // holds the squares of the coordinates of xdir

  SbVec3f xpt;
  SbVec3f xdir;
  xdir = this->normal.cross(pl.normal);

  dir2[0] = xdir[0] * xdir[0];
  dir2[1] = xdir[1] * xdir[1];
  dir2[2] = xdir[2] * xdir[2];

  const SbVec3f & pl1n = this->normal;
  const SbVec3f & pl2n = pl.normal;
  const float pl1w = -this->distance;
  const float pl2w = -pl.distance;

  if ((dir2[2] > dir2[1]) && (dir2[2] > dir2[0]) && (dir2[2] > FLT_EPSILON)) {
    // then get a point on the XY plane
    invdet = 1.0f / xdir[2];
    xpt = SbVec3f(pl1n[1] * pl2w - pl2n[1] * pl1w,
                  pl2n[0] * pl1w - pl1n[0] * pl2w, 0.0f);
  }
  else if ((dir2[1] > dir2[0]) && (dir2[1] > FLT_EPSILON)) {
    // then get a point on the XZ plane
    invdet = - 1.0f / xdir[1];
    xpt = SbVec3f(pl1n[2] * pl2w - pl2n[2] * pl1w, 0.0f,
                  pl2n[0] * pl1w - pl1n[0] * pl2w);
  }
  else if (dir2[0] > FLT_EPSILON) {
    // then get a point on the YZ plane
    invdet = 1.0f / xdir[0];
    xpt = SbVec3f(0.0f, pl1n[2] * pl2w - pl2n[2] * pl1w,
                  pl2n[1] * pl1w - pl1n[1] * pl2w);
  }
  else // xdir is zero, then no point of intersection exists
    return FALSE;

  xpt *= invdet;
  invdet = 1.0f / static_cast<float>(sqrt(dir2[0] + dir2[1] + dir2[2]));

  xdir *= invdet;
  line.setPosDir(xpt, xdir);
  return TRUE;
}

/*!
  \relates SbPlane

  Check the two given planes for equality.
*/
int
operator ==(const SbPlane& p1, const SbPlane& p2)
{
  if(p1.getDistanceFromOrigin() == p2.getDistanceFromOrigin() &&
     p1.getNormal() == p2.getNormal()) return TRUE;
  return FALSE;
}

/*!
  \relates SbPlane

  Check the two given planes for unequality.
*/
int
operator !=(const SbPlane& p1, const SbPlane& p2)
{
  return !(p1 == p2);
}

/*!
  Dump the state of this object to the \a file stream. Only works in
  debug version of library, method does nothing in an optimized build.
*/
void
SbPlane::print(FILE * fp) const
{
#if COIN_DEBUG
  this->getNormal().print(fp);
  (void)fprintf(fp, "  %f", this->getDistanceFromOrigin());
#endif // COIN_DEBUG
}

#ifdef COIN_TEST_SUITE
#include <Inventor/SbPlane.h>
#include <Inventor/SbLine.h>

using namespace SIM::Coin::TestSuite;

BOOST_AUTO_TEST_CASE(signCorrect)
{
  SbPlane plane1(SbVec3f(0.0, 0.0, 1.0), 3.0);
  SbPlane plane2(SbVec3f(1.0, 0.0, 0.0), 21.0);
  SbLine line;
  plane1.intersect(plane2, line); 

  SbVec3f intersect = line.getPosition();
  SbVec3f vec(21, 0, 3);

  check_compare(intersect,vec, "SbPlane SignCorrect", .1f);

}

#endif //COIN_TEST_SUITE