Source

Coin / src / base / SbVec3d.cpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/**************************************************************************\
 * Copyright (c) Kongsberg Oil & Gas Technologies AS
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * 
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 
 * Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\**************************************************************************/

#include <Inventor/SbVec3d.h>

#include <limits>
#include <cassert>

#include <Inventor/SbVec3f.h>
#include <Inventor/SbVec3b.h>
#include <Inventor/SbVec3s.h>
#include <Inventor/SbVec3i32.h>
#include <Inventor/SbDPPlane.h>
#include <Inventor/fields/SoSFVec3d.h>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG

#include "tidbitsp.h" // coin_debug_normalize()
#include "coinString.h"

/*!
  \class SbVec3d SbLinear.h Inventor/SbLinear.h
  \brief The SbVec3d class is a 3 dimensional vector with double precision floating point coordinates.
  \ingroup base

  This vector class provides storage for a 3 dimensional double
  precision floating point vector aswell as simple floating point
  arithmetic operations.

  \sa SbVec2s, SbVec2f, SbVec2d, SbVec3s, SbVec3f, SbVec4f, SbVec4d.
  \since Coin 2.0
  \since TGS Inventor 2.6
*/

/*!
  \fn SbVec3d::SbVec3d(void)

  The default constructor does nothing. The vector coordinates will be
  uninitialized until you do a setValue() call.
*/

/*!
  \fn SbVec3d::SbVec3d(const double v[3])

  Constructs an SbVec3d instance with initial values from \a v.
*/

/*!
  \fn SbVec3d::SbVec3d(double x, double y, double z)

  Constructs an SbVec3d instance with the initial vector endpoint set to
  \a <x,y,z>.
*/

/*!
  \fn SbVec3d::SbVec3d(const SbVec3f & v)

  Constructs an SbVec3d instance from an SbVec3f instance.
*/

/*!
  \fn SbVec3d::SbVec3d(const SbVec3b & v)

  Constructs an SbVec3d instance from an SbVec3b instance.

  \Coin 2.5
*/

/*!
  \fn SbVec3d::SbVec3d(const SbVec3s & v)

  Constructs an SbVec3d instance from an SbVec3s instance.

  \Coin 2.5
*/

/*!
  \fn SbVec3d::SbVec3d(const SbVec3i32 & v)

  Constructs an SbVec3d instance from an SbVec3i32 instance.

  \Coin 2.5
*/

/*!
  Constructs an SbVec3d instance by combining the three given planes.
  None of the planes should be parallel to any of the other two, otherwise
  a divide by zero error will occur.
*/

SbVec3d::SbVec3d(const SbDPPlane & p0, const SbDPPlane & p1, const SbDPPlane & p2)
{
  SbVec3d n0 = p0.getNormal();
  SbVec3d n1 = p1.getNormal();
  SbVec3d n2 = p2.getNormal();

#if COIN_DEBUG
  if (!((fabs(n0.dot(n1)) != 1.0) &&
       (fabs(n0.dot(n2)) != 1.0) &&
       (fabs(n1.dot(n2)) != 1.0)))
    SoDebugError::postWarning("SbVec3d::SbVec3d",
                              "Two or more of the given planes are parallel"
                              " => Can't create intersection point.");
#endif // COIN_DEBUG

  // The equation for a point in a plane can be:
  //
  //                N�(P - P0) = 0    , N is the plane's normal vectors,
  //                                    P is the point and P0 is the "root
  //                                    point" of the plane (i.e. the point
  //                                    in the plane closest to the coordinate
  //                                    system origin)
  //
  // Simplifying and substituting, we get this:
  //
  //                N�P = d           , d is the distance from the origin to
  //                                    the closest point on the plane
  //
  // Using this for all three given planes:
  //                N0�P = d0
  //                N1�P = d1
  //                N2�P = d2
  //
  // Taking the dot products we get a set of linear equations:
  //
  //   n0x*px + n0y*py + n0z*pz = d0
  //   n1x*px + n1y*py + n1z*pz = d1
  //   n2x*px + n2y*py + n2z*pz = d2   , where [px, py, pz] are the unknowns.
  //
  // This can be solved by applying the Gauss elimination method. See
  // for instance "Advanced Engineering Mathemathics", Kreyszig, 6th edition,
  // chapter 19.
  //                                                        19980817 mortene.


  // a is the input matrix, x is the solution vector, m is a matrix
  // used for temporary storage.
  double a[3][4], x[3], m[3][4];

  a[0][0] = n0[0];
  a[0][1] = n0[1];
  a[0][2] = n0[2];
  a[0][3] = p0.getDistanceFromOrigin();
  a[1][0] = n1[0];
  a[1][1] = n1[1];
  a[1][2] = n1[2];
  a[1][3] = p1.getDistanceFromOrigin();
  a[2][0] = n2[0];
  a[2][1] = n2[1];
  a[2][2] = n2[2];
  a[2][3] = p2.getDistanceFromOrigin();


  int i, j;
  const int n = 3; // Input matrix dimensions are n � (n+1).

  for (int k=0; k < n-1; k++) {
    j=k;

    while (a[j][k] == 0.0f) j++;
    if (j != k) for (i=0; i < n+1; i++) SbSwap(a[j][i], a[k][i]);

    for (j = k+1; j < n; j++) {
      m[j][k] = a[j][k]/a[k][k];

      for (int p=k+1; p < n+1; p++) a[j][p] -= m[j][k]*a[k][p];
    }
  }

  // Back substitution.
  x[n-1] = a[n-1][n]/a[n-1][n-1];
  for (i=n-2; i >= 0; i--) {
    double sum = 0.0;
    for (j=i+1; j < n; j++) sum += a[i][j]*x[j];

    x[i] = (a[i][n] - sum)/a[i][i];
  }

  this->vec[0] = x[0];
  this->vec[1] = x[1];
  this->vec[2] = x[2];
}

/*!
  Returns the result of taking the cross product of this vector and \a v.
*/
SbVec3d
SbVec3d::cross(const SbVec3d & v) const
{
  return SbVec3d(this->vec[1]*v.vec[2] - this->vec[2]*v.vec[1],
                 this->vec[2]*v.vec[0] - this->vec[0]*v.vec[2],
                 this->vec[0]*v.vec[1] - this->vec[1]*v.vec[0]);
}

/*!
  \fn double SbVec3d::dot(const SbVec3d & v) const

  Calculates and returns the result of taking the dot product of this
  vector and \a v.
*/

/*!
  Compares the vector with \a v and returns \c TRUE if the distance
  between the vectors is smaller or equal to the square root of
  \a tolerance.
*/
SbBool
SbVec3d::equals(const SbVec3d & v, double tolerance) const
{
#if COIN_DEBUG
  if (!(tolerance >= 0.0))
    SoDebugError::postWarning("SbVec3d::equals",
                              "Tolerance should be >= 0.0");
#endif // COIN_DEBUG

  double xdist = this->vec[0] - v[0];
  double ydist = this->vec[1] - v[1];
  double zdist = this->vec[2] - v[2];

  return ((xdist*xdist + ydist*ydist + zdist*zdist) <= tolerance);
}

/*!
  Return the vector representing the principal axis closest to this
  vector.
*/

SbVec3d
SbVec3d::getClosestAxis(void) const
{
  SbVec3d closest(0.0, 0.0, 0.0);
  double xabs = static_cast<double>(fabs(this->vec[0]));
  double yabs = static_cast<double>(fabs(this->vec[1]));
  double zabs = static_cast<double>(fabs(this->vec[2]));

  if (xabs>=yabs && xabs>=zabs) closest[0] = (this->vec[0] > 0.0) ? 1.0 : -1.0;
  else if (yabs>=zabs) closest[1] = (this->vec[1] > 0.0) ? 1.0 : -1.0;
  else closest[2] = (this->vec[2] > 0.0) ? 1.0 : -1.0;

  return closest;
}

/*!
  \fn const double * SbVec3d::getValue(void) const

  Returns a pointer to an array of three doubles containing the x, y
  and z coordinates of the vector.

  \sa setValue().
*/

/*!
  \fn void SbVec3d::getValue(double & x, double & y, double & z) const

  Returns the x, y and z coordinates of the vector.

  \sa setValue().
*/

/*!
  Return length of vector.
*/
double
SbVec3d::length(void) const
{
  return static_cast<double>(sqrt(this->sqrLength()));
}

/*!
  \fn double SbVec3d::sqrLength(void) const

  Returns the squared length of the vector.
*/

/*!
  \fn void SbVec3d::negate(void)

  Negate the vector (i.e. point it in the opposite direction).
*/

/*!
  Normalize the vector to unit length. Return value is the original
  length of the vector before normalization.

  If the vector is the null vector, no attempt at normalization will
  be done.
*/
double
SbVec3d::normalize(void)
{
  double len = this->length();
  if (len > 0.0) {
    operator/=(len);
  }
#if COIN_DEBUG
  else if (coin_debug_normalize()) {
    SoDebugError::postWarning("SbVec3d::normalize",
                              "The length of the vector should be > 0.0 "
                              "to be able to normalize.");
  }
#endif // COIN_DEBUG
  return len;
}

/*!
  \fn SbVec3d & SbVec3d::setValue(const double v[3])

  Set new coordinates for the vector from \a v. Returns reference to
  self.

  \sa getValue().
*/

/*!
  \fn SbVec3d & SbVec3d::setValue(double x, double y, double z)

  Set new coordinates for the vector. Returns reference to self.

  \sa getValue().
*/

/*!
  Set this vector to be the average of \a v0, \a v1 and \a v2.
  The vector components are weighted by the \a barycentric vector.

  \sa getValue().
*/
SbVec3d &
SbVec3d::setValue(const SbVec3d & barycentric,
                  const SbVec3d & v0, const SbVec3d & v1, const SbVec3d & v2)
{
  this->vec[0] = barycentric[0]*v0[0]+barycentric[1]*v1[0]+barycentric[2]*v2[0];
  this->vec[1] = barycentric[0]*v0[1]+barycentric[1]*v1[1]+barycentric[2]*v2[1];
  this->vec[2] = barycentric[0]*v0[2]+barycentric[1]*v1[2]+barycentric[2]*v2[2];
  return *this;
}

/*!
  Sets this vector to the single precision vector \a v, converting
  the vector to a double precision vector.
*/
SbVec3d &
SbVec3d::setValue(const SbVec3f & v)
{
  vec[0] = static_cast<double>(v[0]);
  vec[1] = static_cast<double>(v[1]);
  vec[2] = static_cast<double>(v[2]);
  return *this;
}

/*!
  Sets this vector to the vector \a v.

  \Coin 2.5
*/

SbVec3d &
SbVec3d::setValue(const SbVec3b & v)
{
  vec[0] = static_cast<double>(v[0]);
  vec[1] = static_cast<double>(v[1]);
  vec[2] = static_cast<double>(v[2]);
  return *this;
}

/*!
  Sets this vector to the vector \a v.

  \Coin 2.5
*/

SbVec3d &
SbVec3d::setValue(const SbVec3s & v)
{
  vec[0] = static_cast<double>(v[0]);
  vec[1] = static_cast<double>(v[1]);
  vec[2] = static_cast<double>(v[2]);
  return *this;
}

/*!
  Sets this vector to the vector \a v.

  \Coin 2.5
*/

SbVec3d &
SbVec3d::setValue(const SbVec3i32 & v)
{
  vec[0] = static_cast<double>(v[0]);
  vec[1] = static_cast<double>(v[1]);
  vec[2] = static_cast<double>(v[2]);
  return *this;
}

/*!
  \fn double & SbVec3d::operator[](const int i)

  Index operator. Returns modifiable x, y or z coordinate of vector.

  \sa getValue() and setValue().
*/

/*!
  \fn double SbVec3d::operator[](const int i) const
  Index operator. Returns x, y or z coordinate of vector.

  \sa getValue() and setValue().
*/

/*!
  \fn SbVec3d & SbVec3d::operator *= (double d)

  Multiply components of vector with value \a d. Returns reference to self.
*/

/*!
  \fn SbVec3d & SbVec3d::operator /= (const double d)

  Divides components of vector with value \a d. Returns reference to self.
*/

/*!
  \fn SbVec3d & SbVec3d::operator += (const SbVec3d & v)

  Adds this vector and vector \a v. Returns reference to self.
*/

/*!
  \fn SbVec3d & SbVec3d::operator -=(const SbVec3d & v)

  Subtracts vector \a v from this vector. Returns reference to self.
*/

/*!
  \fn SbVec3d SbVec3d::operator - (void) const
  Non-destructive negation operator. Returns a new SbVec3d instance
  which points in the opposite direction of this vector.

  \sa negate().
*/

/*!
  \fn SbVec3d operator *(const SbVec3d & v, double d)
  \relates SbVec3d

  Returns an SbVec3d instance which is the components of vector \a v
  multiplied with \a d.
*/

/*!
  \fn SbVec3d operator * (double d, const SbVec3d & v)
  \relates SbVec3d

  Returns an SbVec3d instance which is the components of vector \a v
  multiplied with \a d.
*/

/*!
  \fn SbVec3d operator / (const SbVec3d & v, double d)
  \relates SbVec3d

  Returns an SbVec3d instance which is the components of vector \a v
  divided on the scalar factor \a d.
*/

/*!
  \fn SbVec3d operator + (const SbVec3d & v1, const SbVec3d & v2)
  \relates SbVec3d

  Returns an SbVec3d instance which is the sum of vectors \a v1 and \a v2.
*/

/*!
  \fn SbVec3d operator - (const SbVec3d & v1, const SbVec3d & v2)
  \relates SbVec3d

  Returns an SbVec3d instance which is vector \a v2 subtracted from
  vector \a v1.
*/

/*!
  \fn int operator == (const SbVec3d & v1, const SbVec3d & v2)
  \relates SbVec3d

  Returns \a 1 if \a v1 and \a v2 are \e exactly equal, \a 0 otherwise.

  \sa equals().
*/

/*!
  \fn int operator != (const SbVec3d & v1, const SbVec3d & v2)
  \relates SbVec3d

  Returns \a 1 if \a v1 and \a v2 are not equal, \a 0 if they are equal.

  \sa equals().
*/

/*!
  Return a string representation of this object
*/
SbString
SbVec3d::toString() const
{
  return CoinInternal::ToString(*this);
}

/*!
  Convert from a string representation, return wether this is a valid conversion
*/
SbBool
SbVec3d::fromString(const SbString & str)
{
  SbBool conversionOk;
  *this = CoinInternal::FromString<SbVec3d>(str,&conversionOk);
  return conversionOk;
}

/*!
  Dump the state of this object to the \a file stream. Only works in
  debug version of library, method does nothing in an optimized
  compile.
*/
void
SbVec3d::print(FILE * fp) const
{
#if COIN_DEBUG
  fputs(this->toString().getString(),fp);
#endif // COIN_DEBUG
}

#ifdef COIN_TEST_SUITE
typedef SbVec3d ToTest;
BOOST_AUTO_TEST_CASE(toString) {
  ToTest val(1.0/3,2,3);
  SbString str("0.3333333333333333 2 3");
  BOOST_CHECK_MESSAGE(str == val.toString(),
                      std::string("Mismatch between ") +  val.toString().getString() + " and control string " + str.getString());

}

BOOST_AUTO_TEST_CASE(fromString) {
  ToTest foo;
  SbString test = "0.3333333333333333 -2 -3.0";
  ToTest trueVal(0.3333333333333333,-2,-3);
  SbBool conversionOk = foo.fromString(test);
  BOOST_CHECK_MESSAGE(conversionOk && trueVal == foo,
                      std::string("Mismatch between ") +  foo.toString().getString() + " and control " + trueVal.toString().getString());
}

#endif //COIN_TEST_SUITE