Source

Coin / src / vrml97 / Extrusion.cpp

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
/**************************************************************************\
 * Copyright (c) Kongsberg Oil & Gas Technologies AS
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * 
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 
 * Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\**************************************************************************/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif // HAVE_CONFIG_H

#ifdef HAVE_VRML97

/*!
  \class SoVRMLExtrusion SoVRMLExtrusion.h Inventor/VRMLnodes/SoVRMLExtrusion.h
  \brief The SoVRMLExtrusion class is a a geometry node for extruding a cross section along a spine.
  \ingroup VRMLnodes

  \WEB3DCOPYRIGHT

  \verbatim
  Extrusion {
    eventIn MFVec2f    set_crossSection
    eventIn MFRotation set_orientation
    eventIn MFVec2f    set_scale
    eventIn MFVec3f    set_spine
    field   SFBool     beginCap         TRUE
    field   SFBool     ccw              TRUE
    field   SFBool     convex           TRUE
    field   SFFloat    creaseAngle      0                # [0,inf)
    field   MFVec2f    crossSection     [ 1 1, 1 -1, -1 -1, -1 1, 1  1 ]    # (-inf,inf)
    field   SFBool     endCap           TRUE
    field   MFRotation orientation      0 0 1 0          # [-1,1],(-inf,inf)
    field   MFVec2f    scale            1 1              # (0,inf)
    field   SFBool     solid            TRUE
    field   MFVec3f    spine            [ 0 0 0, 0 1 0 ] # (-inf,inf)
  }
  \endverbatim

  \e Introduction

  The Extrusion node specifies geometric shapes based on a two
  dimensional cross-section extruded along a three dimensional spine
  in the local coordinate system. The cross-section can be scaled and
  rotated at each spine point to produce a wide variety of shapes.  An
  Extrusion node is defined by:

  \li a 2D crossSection piecewise linear curve (described as a series
  of connected vertices);

  \li a 3D spine piecewise linear curve (also described as a series
  of connected vertices);

  \li a list of 2D scale parameters;

  \li a list of 3D orientation parameters.

  \e Algorithmic \e description

  Shapes are constructed as follows. The cross-section curve, which
  starts as a curve in the Y=0 plane, is first scaled about the origin
  by the first scale parameter (first value scales in X, second value
  scales in Z). It is then translated by the first spine point and
  oriented using the first orientation parameter (as explained
  later). The same procedure is followed to place a cross- section at
  the second spine point, using the second scale and orientation
  values. Corresponding vertices of the first and second
  cross-sections are then connected, forming a quadrilateral polygon
  between each pair of vertices. This same procedure is then repeated
  for the rest of the spine points, resulting in a surface extrusion
  along the spine.

  The final orientation of each cross-section is computed by first
  orienting it relative to the spine segments on either side of point
  at which the cross-section is placed. This is known as the
  spine-aligned cross-section plane (SCP), and is designed to provide
  a smooth transition from one spine segment to the next (see Figure
  6.6). The SCP is then rotated by the corresponding orientation
  value. This rotation is performed relative to the SCP. For example,
  to impart twist in the cross- section, a rotation about the Y-axis
  (0 1 0) would be used. Other orientations are valid and rotate the
  cross-section out of the SCP.

  <center>
  <img src="http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/Images/Extrusion.gif">
  Figure 6.6
  </center>

  The SCP is computed by first computing its Y-axis and Z-axis, then
  taking the cross product of these to determine the X-axis. These
  three axes are then used to determine the rotation value needed to
  rotate the Y=0 plane to the SCP. This results in a plane that is the
  approximate tangent of the spine at each point, as shown in Figure
  6.6. First the Y-axis is determined, as follows:

  Let n be the number of spines and let i be the index variable
  satisfying 0 <= i < n:

  \li For all points other than the first or last: The Y-axis for
  spine[i] is found by normalizing the vector defined by (spine[i+1]
  - spine[i-1]).

  \li If the spine curve is closed: The SCP for the first and last
  points is the same and is found using (spine[1] - spine[n-2])
  to compute the Y-axis.

  \li If the spine curve is not closed: The Y-axis used for the
  first point is the vector from spine[0] to spine[1], and for the
  last it is the vector from spine[n-2] to spine[n-1].

  The Z-axis is determined as follows:

  \li For all points other than the first or last: Take the following
  cross-product:

  \verbatim
  Z = (spine[i+1] - spine[i]) � (spine[i-1] - spine[i])
  \endverbatim

  \li If the spine curve is closed: The SCP for the first and last
  points is the same and is found by taking the following cross- product:

  \verbatim
  Z = (spine[1] - spine[0]) � (spine[n-2] - spine[0])
  \endverbatim

  \li If the spine curve is not closed: The Z-axis used for the first
  spine point is the same as the Z-axis for spine[1]. The Z- axis used for
  the last spine point is the same as the Z-axis for spine[n-2].

  \li After determining the Z-axis, its dot product with the Z-axis of the
  previous spine point is computed. If this value is negative, the
  Z-axis is flipped (multiplied by -1). In most cases, this prevents
  small changes in the spine segment angles from flipping the
  cross-section 180 degrees.

  Once the Y- and Z-axes have been computed, the X-axis can be
  calculated as their cross-product.

  \e Special \e Cases

  If the number of scale or orientation values is greater than the
  number of spine points, the excess values are ignored. If they
  contain one value, it is applied at all spine points. The results
  are undefined if the number of scale or orientation values is
  greater than one but less than the number of spine points. The scale
  values shall be positive.

  If the three points used in computing the Z-axis are collinear, the
  cross-product is zero so the value from the previous point is used
  instead.  If the Z-axis of the first point is undefined (because the
  spine is not closed and the first two spine segments are collinear)
  then the Z-axis for the first spine point with a defined Z-axis is
  used.

  If the entire spine is collinear, the SCP is computed by finding the
  rotation of a vector along the positive Y-axis (v1) to the vector
  formed by the spine points (v2). The Y=0 plane is then rotated by
  this value.  If two points are coincident, they both have the same
  SCP. If each point has a different orientation value, then the
  surface is constructed by connecting edges of the cross-sections as
  normal. This is useful in creating revolved surfaces.

  Note: combining coincident and non-coincident spine segments, as
  well as other combinations, can lead to interpenetrating surfaces
  which the extrusion algorithm makes no attempt to avoid.

  \e Common \e Cases

  The following common cases are among the effects which are supported
  by the Extrusion node:

  \li Surfaces of revolution: If the cross-section is an approximation
  of a circle and the spine is straight, the Extrusion is equivalent
  to a surface of revolution, where the scale parameters define the
  size of the cross-section along the spine.

  \li Uniform extrusions: If the scale is (1, 1) and the spine is
  straight, the cross-section is extruded uniformly without twisting
  or scaling along the spine. The result is a cylindrical shape with a
  uniform cross section.

  \li Bend/twist/taper objects: These shapes are the result of using
  all fields. The spine curve bends the extruded shape defined by the
  cross-section, the orientation parameters (given as rotations about
  the Y-axis) twist it around the spine, and the scale parameters
  taper it (by scaling about the spine).

  \e Other \e Fields

  Extrusion has three parts: the sides, the beginCap (the
  surface at the initial end of the spine) and the endCap (the surface
  at the final end of the spine). The caps have an associated SFBool field
  that indicates whether each exists (TRUE) or doesn't exist (FALSE).

  When the beginCap or endCap fields are specified as TRUE, planar cap
  surfaces will be generated regardless of whether the crossSection is
  a closed curve. If crossSection is not a closed curve, the caps are
  generated by adding a final point to crossSection that is equal to
  the initial point. An open surface can still have a cap, resulting
  (for a simple case) in a shape analogous to a soda can sliced in
  half vertically.  These surfaces are generated even if spine is also
  a closed curve.  If a field value is FALSE, the corresponding cap is
  not generated.

  Texture coordinates are automatically generated by Extrusion
  nodes. Textures are mapped so that the coordinates range in the U
  direction from 0 to 1 along the crossSection curve (with 0
  corresponding to the first point in crossSection and 1 to the last)
  and in the V direction from 0 to 1 along the spine curve (with 0
  corresponding to the first listed spine point and 1 to the last). If
  either the endCap or beginCap exists, the crossSection curve is
  uniformly scaled and translated so that the larger dimension of the
  cross-section (X or Z) produces texture coordinates that range from
  0.0 to 1.0. The beginCap and endCap textures' S and T directions
  correspond to the X and Z directions in which the crossSection
  coordinates are defined.

  The browser shall automatically generate normals for the Extrusion
  node,using the creaseAngle field to determine if and how normals are
  smoothed across the surface. Normals for the caps are generated
  along the Y-axis of the SCP, with the ordering determined by viewing
  the cross-section from above (looking along the negative Y-axis of
  the SCP). By default, a beginCap with a counterclockwise ordering
  shall have a normal along the negative Y-axis. An endCap with a
  counterclockwise ordering shall have a normal along the positive
  Y-axis.

  Each quadrilateral making up the sides of the extrusion are ordered
  from the bottom cross-section (the one at the earlier spine point)
  to the top.  So, one quadrilateral has the points:

  \verbatim
  spine[0](crossSection[0], crossSection[1])
  spine[1](crossSection[1], crossSection[0])
  \endverbatim

  in that order. By default, normals for the sides are generated as
  described in 4.6.3, Shapes and geometry
  (<http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.6.3>).

  For instance, a circular crossSection with counter-clockwise
  ordering and the default spine form a cylinder. With solid TRUE and
  ccw TRUE, the cylinder is visible from the outside. Changing ccw to
  FALSE makes it visible from the inside.  The ccw, solid, convex, and
  creaseAngle fields are described in 4.6.3, Shapes and geometry
  (<http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.6.3>).

*/

/*!
  SoSFBool SoVRMLExtrusion::beginCap
  Used to enable/disable begin cap. Default value is TRUE.
*/

/*!
  SoSFBool SoVRMLExtrusion::ccw
  Specifies counterclockwise vertex ordering. Default value is TRUE.
*/

/*!
  SoSFBool SoVRMLExtrusion::convex
  Specifies if cross sections is convex. Default value is TRUE.
*/

/*!
  SoSFFloat SoVRMLExtrusion::creaseAngle
  Specifies the crease angle for the generated normals. Default value is 0.0.
*/

/*!
  SoMFVec2f SoVRMLExtrusion::crossSection
  The cross section.
*/

/*!
  SoSFBool SoVRMLExtrusion::endCap
  Used to enable/disable end cap. Default value is TRUE.

*/

/*!
  SoMFRotation SoVRMLExtrusion::orientation
  Orientation for the cross section at each spine point.
*/

/*!
  SoMFVec2f SoVRMLExtrusion::scale
  Scaling for the cross section at each spine point.
*/

/*!
  SoSFBool SoVRMLExtrusion::solid
  When TRUE, backface culling will be enabled. Default value is TRUE.
*/

/*!
  SoMFVec3f SoVRMLExtrusion::spine
  The spine points.
*/

#include <Inventor/VRMLnodes/SoVRMLExtrusion.h>

#include <float.h>
#include <math.h>
#include <string.h>

#include <Inventor/VRMLnodes/SoVRMLMacros.h>
#include <Inventor/lists/SbList.h>
#include <Inventor/misc/SoNormalGenerator.h>
#include <Inventor/bundles/SoMaterialBundle.h>
#include <Inventor/bundles/SoTextureCoordinateBundle.h>
#include <Inventor/bundles/SoVertexAttributeBundle.h>
#include <Inventor/elements/SoCoordinateElement.h>
#include <Inventor/elements/SoVertexAttributeBindingElement.h>
#include <Inventor/elements/SoGLCacheContextElement.h>
#include <Inventor/elements/SoShapeHintsElement.h>
#include <Inventor/elements/SoCacheElement.h>
#include <Inventor/SbTesselator.h>
#include <Inventor/actions/SoGLRenderAction.h>
#include <Inventor/actions/SoGetPrimitiveCountAction.h>
#include <Inventor/misc/SoState.h>
#include <Inventor/misc/SoGLDriverDatabase.h>
#include <Inventor/nodes/SoIndexedFaceSet.h>
#include <Inventor/SoPrimitiveVertex.h>
#include <Inventor/errors/SoDebugError.h>
#include <Inventor/elements/SoMultiTextureEnabledElement.h>
#include <Inventor/elements/SoMultiTextureCoordinateElement.h>
#include <Inventor/SbBox2f.h>
#ifdef HAVE_THREADS
#include <Inventor/threads/SbRWMutex.h>
#endif // HAVE_THREADS

#include "nodes/SoSubNodeP.h"
#include "rendering/SoVBO.h"
#include "rendering/SoVertexArrayIndexer.h"
#include "rendering/SoGL.h"
#include "misc/SbHash.h"
#include "caches/SoVBOCache.h"

// *************************************************************************

//
// needed to avoid warnings generated by SbVec3f::normalize
//
static float
my_normalize(SbVec3f & vec)
{
  float len = vec.length();
  if (len > FLT_EPSILON) {
    vec /= len;
  }
  return len;
}

// set this to TRUE to create triangles, even if convex == TRUE just
// testing this feature. Will consider an environment variable or
// something later. pederb, 2005-01-25
static const SbBool ALWAYS_CREATE_TRIANGLES = FALSE;

class SoVRMLExtrusionVertex {
public:
  SbVec3f coord;
  SbVec3f normal;
  SbVec2f texcoord;

  // needed for SbHash
  operator unsigned long(void) const {
    unsigned long key = 0;
    // create an xor key based on coordinates, normal and texcoords
    const unsigned char * ptr = (const unsigned char *) this;
    const ptrdiff_t size = sizeof(SoVRMLExtrusionVertex);

    for (int i = 0; i < size; i++) {
      int shift = (i%4) * 8;
      key ^= (ptr[i]<<shift);
    }
    return key;
  }
  // needed, since if we don't add this the unsigned long operator
  // will be used when comparing two vertices.
  int operator==(const SoVRMLExtrusionVertex & v) {
    return
      (this->coord == v.coord) &&
      (this->normal == v.normal) &&
      (this->texcoord == v.texcoord);
  }
};

class SoVRMLExtrusionP {
public:

  SoVRMLExtrusionP(SoVRMLExtrusion * master)
    :master(master),
     coord(32),
     tcoord(32),
     idx(32),
     gen(TRUE),
     dirty(TRUE),
     vbocache(NULL)
#ifdef COIN_THREADSAFE
     , rwmutex(SbRWMutex::READ_PRECEDENCE)
#endif // COIN_THREADSAFE
  {
    this->tess.setCallback(tess_callback, this);
  }
  ~SoVRMLExtrusionP() {
    if (this->vbocache) this->vbocache->unref();
  }

  SoVRMLExtrusion * master;
  SbList <SbVec3f> coord;
  SbList <SbVec2f> tcoord;
  SbList <int32_t> idx;
  SoNormalGenerator gen;
  SbTesselator tess;
  static void tess_callback(void *, void *, void *, void *);
  void generateCoords(void);
  void generateNormals(void);
  SbBool dirty;
  SoVBOCache * vbocache;

  SbHash<SoVRMLExtrusionVertex, int32_t> vbohash;

  SbList <SbVec3f> vbocoord;
  SbList <SbVec3f> vbonormal;
  SbList <SbVec2f> vbotexcoord;

  void updateVBO(SoAction * action);
  void generateVBO(SoAction * action, SoTextureCoordinateBundle & tb);

#ifdef COIN_THREADSAFE
  SbRWMutex rwmutex;
  void readLock(void) { this->rwmutex.readLock(); }
  void readUnlock(void) { this->rwmutex.readUnlock(); }
  void writeLock(void) { this->rwmutex.writeLock(); }
  void writeUnlock(void) { this->rwmutex.writeUnlock(); }
#else // !COIN_THREADSAFE
  void readLock(void) { }
  void readUnlock(void) { }
  void writeLock(void) { }
  void writeUnlock(void) { }
#endif // !COIN_THREADSAFE
};

#define PRIVATE(obj) (obj)->pimpl
#define PUBLIC(obj) obj->master

// *************************************************************************

SO_NODE_SOURCE(SoVRMLExtrusion);

// *************************************************************************

// Doc in parent
void
SoVRMLExtrusion::initClass(void) // static
{
  SO_NODE_INTERNAL_INIT_CLASS(SoVRMLExtrusion, SO_VRML97_NODE_TYPE);
}

/*!
  Constructor.
*/
SoVRMLExtrusion::SoVRMLExtrusion(void)
{
  PRIVATE(this) = new SoVRMLExtrusionP(this);

  SO_VRMLNODE_INTERNAL_CONSTRUCTOR(SoVRMLExtrusion);

  SO_VRMLNODE_ADD_FIELD(beginCap, (TRUE));
  SO_VRMLNODE_ADD_FIELD(endCap, (TRUE));
  SO_VRMLNODE_ADD_FIELD(solid, (TRUE));
  SO_VRMLNODE_ADD_FIELD(ccw, (TRUE));
  SO_VRMLNODE_ADD_FIELD(convex, (TRUE));
  SO_VRMLNODE_ADD_FIELD(creaseAngle, (0.0f));

  SO_NODE_ADD_FIELD(crossSection, (0.0f, 0.0f));
  this->crossSection.setNum(5);
  SbVec2f * cs = this->crossSection.startEditing();
  cs[0] = SbVec2f(1.0f, 1.0f);
  cs[1] = SbVec2f(1.0f, -1.0f);
  cs[2] = SbVec2f(-1.0f, -1.0f);
  cs[3] = SbVec2f(-1.0f, 1.0f);
  cs[4] = SbVec2f(1.0f, 1.0f);
  this->crossSection.finishEditing();
  this->crossSection.setDefault(TRUE);

  SO_NODE_ADD_FIELD(orientation, (SbRotation::identity()));
  SO_NODE_ADD_FIELD(scale, (1.0f, 1.0f));

  SO_NODE_ADD_FIELD(spine, (0.0f, 0.0f, 0.0f));
  this->spine.setNum(2);
  this->spine.set1Value(1, 0.0f, 1.0f, 0.0f);
  this->spine.setDefault(TRUE);
}

/*!
  Destructor.
*/
SoVRMLExtrusion::~SoVRMLExtrusion()
{
  delete PRIVATE(this);
}


// Doc in parent
void
SoVRMLExtrusion::GLRender(SoGLRenderAction * action)
{
  if (!this->shouldGLRender(action)) return;

  SoState * state = action->getState();
  state->push();

  this->setupShapeHints(state, this->ccw.getValue(), this->solid.getValue());

  PRIVATE(this)->readLock();

  this->updateCache();

  if ((SoMultiTextureCoordinateElement::getType(state) !=
       SoMultiTextureCoordinateElement::FUNCTION) &&
      (SoMultiTextureCoordinateElement::getType(state) !=
       SoMultiTextureCoordinateElement::TEXGEN)) {
    SoGLMultiTextureCoordinateElement::setTexGen(state, this, NULL);
    SoMultiTextureCoordinateElement::set2(state, this, PRIVATE(this)->tcoord.getLength(),
                                          PRIVATE(this)->tcoord.getArrayPtr());
  }
  const uint32_t contextid = SoGLCacheContextElement::get(state);
  const cc_glglue * glue = cc_glglue_instance(contextid);
  SbBool vbo = SoVBO::shouldCreateVBO(state, contextid, PRIVATE(this)->coord.getLength());

  if (vbo) PRIVATE(this)->updateVBO(action);

  SoMaterialBundle mb(action);
  mb.sendFirst();

  SbBool doTextures = SoMultiTextureEnabledElement::get(state);

  if (vbo) {
    if (!SoGLDriverDatabase::isSupported(glue, SO_GL_VBO_IN_DISPLAYLIST)) {
      SoCacheElement::invalidate(state);
      SoGLCacheContextElement::shouldAutoCache(state,
                                               SoGLCacheContextElement::DONT_AUTO_CACHE);
    }
    int i;
    int lastenabled = -1;
    const SbBool * enabled = SoMultiTextureEnabledElement::getEnabledUnits(state, lastenabled);

    if (doTextures) {
      PRIVATE(this)->vbocache->getTexCoordVBO(0)->bindBuffer(contextid);
      cc_glglue_glTexCoordPointer(glue, 2, GL_FLOAT, 0, NULL);
      cc_glglue_glEnableClientState(glue, GL_TEXTURE_COORD_ARRAY);

      for (i = 1; i <= lastenabled; i++) {
        if (enabled[i]) {
          cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0 + i);
          cc_glglue_glTexCoordPointer(glue, 2, GL_FLOAT, 0, NULL);
          cc_glglue_glEnableClientState(glue, GL_TEXTURE_COORD_ARRAY);
        }
      }
      cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0);
    }

    PRIVATE(this)->vbocache->getNormalVBO()->bindBuffer(contextid);
    cc_glglue_glNormalPointer(glue, GL_FLOAT, 0, NULL);
    cc_glglue_glEnableClientState(glue, GL_NORMAL_ARRAY);

    PRIVATE(this)->vbocache->getCoordVBO()->bindBuffer(contextid);
    cc_glglue_glVertexPointer(glue, 3, GL_FLOAT, 0, NULL);
    cc_glglue_glEnableClientState(glue, GL_VERTEX_ARRAY);

    SoGLVertexAttributeElement::getInstance(state)->enableVBO(action);

    PRIVATE(this)->vbocache->getVertexArrayIndexer()->render(glue, TRUE, contextid);

    cc_glglue_glBindBuffer(glue, GL_ARRAY_BUFFER, 0); // Reset VBO binding
    cc_glglue_glDisableClientState(glue, GL_NORMAL_ARRAY);
    cc_glglue_glDisableClientState(glue, GL_VERTEX_ARRAY);

    SoGLVertexAttributeElement::getInstance(state)->disableVBO(action);

    if (doTextures) {
      for (i = 1; i <= lastenabled; i++) {
        if (enabled[i]) {
          cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0 + i);
          cc_glglue_glDisableClientState(glue, GL_TEXTURE_COORD_ARRAY);
        }
      }
      cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0);
      cc_glglue_glDisableClientState(glue, GL_TEXTURE_COORD_ARRAY);
    }
  }
  else {
    const SbVec3f * normals = PRIVATE(this)->gen.getNormals();

    SoCoordinateElement::set3(state, this, PRIVATE(this)->coord.getLength(), PRIVATE(this)->coord.getArrayPtr());
    const SoCoordinateElement * coords = SoCoordinateElement::getInstance(state);

    if (doTextures) {
      int lastenabled = -1;
      const SbBool * enabled = SoMultiTextureEnabledElement::getEnabledUnits(state, lastenabled);
      for (int i = 1; i <= lastenabled; i++) {
        if (enabled[i] && (SoMultiTextureCoordinateElement::getType(state, i) !=
                           SoMultiTextureCoordinateElement::FUNCTION)) {
          SoMultiTextureCoordinateElement::set2(state, this, i,
                                                PRIVATE(this)->tcoord.getLength(),
                                                PRIVATE(this)->tcoord.getArrayPtr());
        }
      }
    }

    SoTextureCoordinateBundle tb(action, TRUE, FALSE);
    doTextures = tb.needCoordinates();

    SoVertexAttributeBundle vab(action, TRUE);
    SbBool doattribs = vab.doAttributes();

    SoVertexAttributeBindingElement::Binding attribbind =
      SoVertexAttributeBindingElement::get(state);

    if (!doattribs) {
      // for overall attribute binding we check for doattribs before
      // sending anything in SoGL::FaceSet::GLRender
      attribbind = SoVertexAttributeBindingElement::OVERALL;
    }

    sogl_render_faceset((SoGLCoordinateElement *) coords,
                        PRIVATE(this)->idx.getArrayPtr(),
                        PRIVATE(this)->idx.getLength(),
                        normals,
                        NULL,
                        &mb,
                        NULL,
                        &tb,
                        PRIVATE(this)->idx.getArrayPtr(),
                        &vab,
                        3, /* SoIndexedFaceSet::PER_VERTEX */
                        0,
                        (int) attribbind,
                        doTextures ? 1 : 0,
                        doattribs ? 1 : 0);

  }
  PRIVATE(this)->readUnlock();

  state->pop();

  // send approx number of triangles for autocache handling
  sogl_autocache_update(state, PRIVATE(this)->idx.getLength() / 4,
                        vbo);
}

// Doc in parent
void
SoVRMLExtrusion::getPrimitiveCount(SoGetPrimitiveCountAction * action)
{
  PRIVATE(this)->readLock();
  this->updateCache();
  action->addNumTriangles(PRIVATE(this)->idx.getLength() / 4);
  PRIVATE(this)->readUnlock();
}

// Doc in parent
void
SoVRMLExtrusion::computeBBox(SoAction * COIN_UNUSED_ARG(action),
                             SbBox3f & box,
                             SbVec3f & center)
{
  PRIVATE(this)->readLock();

  this->updateCache();

  int num = PRIVATE(this)->coord.getLength();
  const SbVec3f * coords = PRIVATE(this)->coord.getArrayPtr();

  box.makeEmpty();
  while (num--) {
    box.extendBy(*coords++);
  }
  if (!box.isEmpty()) center = box.getCenter();
  PRIVATE(this)->readUnlock();
}

// Doc in parent
void
SoVRMLExtrusion::generatePrimitives(SoAction * action)
{
  PRIVATE(this)->readLock();
  this->updateCache();

  const SbVec3f * normals = PRIVATE(this)->gen.getNormals();
  const SbVec2f * tcoords = PRIVATE(this)->tcoord.getArrayPtr();
  const SbVec3f * coords = PRIVATE(this)->coord.getArrayPtr();
  const int32_t * iptr = PRIVATE(this)->idx.getArrayPtr();
  const int32_t * endptr = iptr + PRIVATE(this)->idx.getLength();

  SoState * state = action->getState();
  state->push();

  int lastenabled = -1;
  const SbBool * enabled = SoMultiTextureEnabledElement::getEnabledUnits(state, lastenabled);
  for (int i = 1; i <= lastenabled; i++) {
    if (enabled[i] && (SoMultiTextureCoordinateElement::getType(state, i) !=
                       SoMultiTextureCoordinateElement::FUNCTION)) {
      SoMultiTextureCoordinateElement::set2(state, this, i,
                                            PRIVATE(this)->tcoord.getLength(),
                                            PRIVATE(this)->tcoord.getArrayPtr());
    }
  }
  SoShapeHintsElement::set(state, this,
                           this->ccw.getValue() ?
                           SoShapeHintsElement::COUNTERCLOCKWISE :
                           SoShapeHintsElement::CLOCKWISE,
                           this->solid.getValue() ?
                           SoShapeHintsElement::SOLID :
                           SoShapeHintsElement::UNKNOWN_SHAPE_TYPE,
                           this->convex.getValue() ?
                           SoShapeHintsElement::CONVEX :
                           SoShapeHintsElement::UNKNOWN_FACE_TYPE);

  SoTextureCoordinateBundle tb(action, FALSE, FALSE);
  SbBool istexfunc = tb.isFunction();
  SoPrimitiveVertex vertex;

  this->beginShape(action, TRIANGLES);
  TriangleShape shapetype = LINES; // set it to some impossible value

  int idx;
  while (iptr < endptr) {

    // we generate either triangles or quads, so this test is safe
    SbBool isquad = iptr[3] >= 0;
    if (isquad && (shapetype != QUADS)) {
      if (shapetype == TRIANGLES) this->endShape();
      this->beginShape(action, QUADS);
      shapetype = QUADS;
    }
    if (!isquad && (shapetype != TRIANGLES)) {
      if (shapetype == QUADS) this->endShape();
      this->beginShape(action, TRIANGLES);
      shapetype = TRIANGLES;
    }
    idx = *iptr++;
    while (idx >= 0) {
      vertex.setNormal(*normals);
      vertex.setPoint(coords[idx]);
      if (istexfunc) {
        vertex.setTextureCoords(tb.get(coords[idx], *normals));
      }
      else {
        vertex.setTextureCoords(tcoords[idx]);
      }
      this->shapeVertex(&vertex);
      idx = *iptr++;
      normals++;
    }
  }
  if ((shapetype == TRIANGLES) || (shapetype == QUADS)) this->endShape();

  state->pop();
  PRIVATE(this)->readUnlock();
}

// private method that updates the coordinate and normal cache.
// cache must be read-locked when entering here!
void
SoVRMLExtrusion::updateCache(void)
{
  if (PRIVATE(this)->dirty) {
    PRIVATE(this)->readUnlock();
    PRIVATE(this)->writeLock();
    PRIVATE(this)->generateCoords();
    PRIVATE(this)->generateNormals();
    PRIVATE(this)->dirty = FALSE;
    PRIVATE(this)->writeUnlock();
    PRIVATE(this)->readLock();
  }
}

void
SoVRMLExtrusionP::updateVBO(SoAction * action)
{
  if (this->vbocache == NULL || !this->vbocache->isValid(action->getState())) {
    this->readUnlock();
    SoTextureCoordinateBundle tb(action, FALSE, FALSE);
    SbBool istexfunc = tb.isFunction();
    if (istexfunc) {
      // trigger a texture coordinate function callback to update (for
      // instance) bounding box caches in texture function nodes. It's
      // important that this is done before we writeLock() the node.
      (void) tb.get(SbVec3f(0.0f, 0.0f, 0.0f), SbVec3f(0.0f, 0.0f, 1.0f));
    }
    this->writeLock();
    this->generateVBO(action, tb);
    this->writeUnlock();
    this->readLock();
  }
}

void
SoVRMLExtrusionP::generateVBO(SoAction * action, SoTextureCoordinateBundle & tb)
{
  SbBool storedinvalid = SoCacheElement::setInvalid(FALSE);

  SoState * state = action->getState();

  state->push();

  if (this->vbocache) {
    this->vbocache->unref();
  }
  this->vbocache = new SoVBOCache(state);
  this->vbocache->ref();

  // set active cache to record cache dependencies
  SoCacheElement::set(state, this->vbocache);

  // create a dependency on the texture coordinate element
  (void) SoMultiTextureCoordinateElement::getType(state);

  SbBool istexfunc = tb.isFunction();

  const SbVec3f * normals = this->gen.getNormals();
  const SbVec2f * tcoords = this->tcoord.getArrayPtr();
  const SbVec3f * coords = this->coord.getArrayPtr();
  const int32_t * iptr = this->idx.getArrayPtr();
  const int32_t * endptr = iptr + this->idx.getLength();

  this->vbohash.clear();
  this->vbocoord.truncate(0);
  this->vbonormal.truncate(0);
  this->vbotexcoord.truncate(0);

  SoVRMLExtrusionVertex v;
  int32_t vidx[4];
  int curridx = 0;

  SoVertexArrayIndexer * vboindexer = this->vbocache->getVertexArrayIndexer(TRUE);

  while (iptr < endptr) {
    // we generate either triangles or quads, so this test is safe
    SbBool isquad = iptr[3] >= 0;

    for (int i = 0; i < (isquad ? 4 : 3); i++) {
      int idx = *iptr++;
      v.normal = *normals;
      if (istexfunc) {
        SbVec4f tmp = tb.get(coords[idx], *normals);
        v.texcoord = SbVec2f(tmp[0]/tmp[3], tmp[1]/tmp[3]);
      }
      else {
        v.texcoord = tcoords[idx];
      }
      v.coord = coords[idx];
      normals++;

      if (!this->vbohash.get(v, vidx[i])) {
        vidx[i] = curridx++;
        this->vbohash.put(v, vidx[i]);
        this->vbocoord.append(v.coord);
        this->vbonormal.append(v.normal);
        this->vbotexcoord.append(v.texcoord);
      }
    }
    iptr++;
    if (isquad) {
      vboindexer->addQuad(vidx[0], vidx[1], vidx[2], vidx[3]);
    }
    else {
      vboindexer->addTriangle(vidx[0], vidx[1], vidx[2]);
    }
  }
  state->pop();
  SoCacheElement::setInvalid(storedinvalid);

  this->vbohash.clear();
  vboindexer->close();

  this->vbocache->getCoordVBO()->setBufferData(this->vbocoord.getArrayPtr(),
                                               this->vbocoord.getLength()*sizeof(SbVec3f), 1);

  this->vbocache->getNormalVBO()->setBufferData(this->vbonormal.getArrayPtr(),
                                                this->vbonormal.getLength()*sizeof(SbVec3f), 1);
  this->vbocache->getTexCoordVBO(0)->setBufferData(this->vbotexcoord.getArrayPtr(),
                                                   this->vbotexcoord.getLength()*sizeof(SbVec2f), 1);
}


// Doc in parent
void
SoVRMLExtrusion::notify(SoNotList * list)
{
  if (PRIVATE(this)->vbocache) PRIVATE(this)->vbocache->invalidate();
  PRIVATE(this)->dirty = TRUE;
  inherited::notify(list);
}


// Doc in parent
SoDetail *
SoVRMLExtrusion::createTriangleDetail(SoRayPickAction * COIN_UNUSED_ARG(action),
                                      const SoPrimitiveVertex * COIN_UNUSED_ARG(v1),
                                      const SoPrimitiveVertex * COIN_UNUSED_ARG(v2),
                                      const SoPrimitiveVertex * COIN_UNUSED_ARG(v3),
                                      SoPickedPoint * COIN_UNUSED_ARG(pp))
{
  // no triangle detail for Extrusion
  return NULL;
}

static SbVec3f
calculate_y_axis(const SbVec3f * spine, const int i,
                 const int numspine, const SbBool closed)
{
  SbVec3f Y;
  if (closed) {
    if (i > 0) {
      if (i == numspine-1) {
        Y = spine[1] - spine[i-1];
      }
      else {
        Y = spine[i+1] - spine[i-1];
      }
    }
    else {
      // use numspine-2, since for closed spines, the last spine point == the first point
      Y = spine[1] - spine[numspine >= 2 ? numspine-2 : numspine-1];
    }
  }
  else {
    if (i == 0) Y = spine[1] - spine[0];
    else if (i == numspine-1) Y = spine[numspine-1] - spine[numspine-2];
    else Y = spine[i+1] - spine[i-1];
  }
  my_normalize(Y);
  return Y;
}

static SbVec3f
calculate_z_axis(const SbVec3f * spine, const int i,
                 const int numspine, const SbBool closed)
{
  SbVec3f z0, z1;

  if (closed) {
    if (i > 0) {
      if (i == numspine-1) {
        z0 = spine[1] - spine[i];
        z1 = spine[i-1] - spine[i];
      }
      else {
        z0 = spine[i+1] - spine[i];
        z1 = spine[i-1] - spine[i];
      }
    }
    else {
      z0 = spine[1] - spine[0];
      z1 = spine[numspine >= 2 ? numspine-2 : numspine-1] - spine[0];
    }
  }
  else {
    if (numspine == 2) return SbVec3f(0.0f, 0.0f, 0.0f);
    else if (i == 0) {
      z0 = spine[2] - spine[1];
      z1 = spine[0] - spine[1];
    }
    else if (i == numspine-1) {
      z0 = spine[numspine-1] - spine[numspine-2];
      z1 = spine[numspine-3] - spine[numspine-2];
    }
    else {
      z0 = spine[i+1] - spine[i];
      z1 = spine[i-1] - spine[i];
    }
  }

  my_normalize(z0);
  my_normalize(z1);

  // test if spine segments are collinear. If they are, the cross
  // product will not be reliable, and we should just use the previous
  // Z-axis instead.
  if (SbAbs(z0.dot(z1)) > 0.999f) {
    return SbVec3f(0.0f, 0.0f, 0.0f);
  }
  SbVec3f tmp = z0.cross(z1);
  if (my_normalize(tmp) == 0.0f) {
    return SbVec3f(0.0f, 0.0f, 0.0f);
  }
  return tmp;
}

//
// generates extruded coordinates
//
void
SoVRMLExtrusionP::generateCoords(void)
{
  this->coord.truncate(0);
  this->tcoord.truncate(0);
  this->idx.truncate(0);

  if (PUBLIC(this)->crossSection.getNum() == 0 ||
      PUBLIC(this)->spine.getNum() == 0) return;

  SbMatrix matrix = SbMatrix::identity();

  SbBox2f crossbox;
  crossbox.makeEmpty();

  int i, j, numcross;
  SbBool connected = FALSE;   // is cross section closed
  SbBool closed = FALSE;      // is spine closed
  numcross = PUBLIC(this)->crossSection.getNum();
  const SbVec2f * cross = PUBLIC(this)->crossSection.getValues(0);
  if (cross[0] == cross[numcross-1]) {
    connected = TRUE;
  }

  int numspine = PUBLIC(this)->spine.getNum();
  const SbVec3f * spine = PUBLIC(this)->spine.getValues(0);
  if (spine[0] == spine[numspine-1]) {
    closed = TRUE;
  }

  // calculate the length of the spine and cross section. Needed for
  // texture coordinates.
  float spinelen = 0.0f;
  float crosslen = 0.0f;

  for (i = 0; i < numspine-1; i++) {
    spinelen += (spine[i+1]-spine[i]).length();
  }
  if (spinelen == 0.0f) spinelen = 1.0f;

  for (i = 0; i < numcross-1; i++) {
    crosslen += (cross[i+1]-cross[i]).length();
  }
  if (crosslen == 0.0f) crosslen = 1.0f;

  SbVec3f prevY(0.0f, 0.0f, 0.0f);
  SbVec3f prevZ(0.0f, 0.0f, 0.0f);
  const SbVec3f empty(0.0f, 0.0f, 0.0f);

  SbBool colinear = FALSE;
  SbVec3f X, Y, Z;

  // find first non-collinear spine segments and calculate the first
  // valid Y and Z axis
  for (i = 0; i < numspine && (prevY == empty || prevZ == empty); i++) {
    if (prevY == empty) {
      Y = calculate_y_axis(spine, i, numspine, closed);
      if (Y != empty) prevY = Y;
    }
    if (prevZ == empty) {
      Z = calculate_z_axis(spine, i, numspine, closed);
      if (Z != empty) prevZ = Z;
    }
  }

  if (prevY == empty) prevY = SbVec3f(0.0f, 1.0f, 0.0f);
  if (prevZ == empty) { // all spine segments are colinear, calculate constant Z axis
    prevZ = SbVec3f(0.0f, 0.0f, 1.0f);
    if (prevY != SbVec3f(0.0f, 1.0f, 0.0f)) {
      SbRotation rot(SbVec3f(0.0f, 1.0f, 0.0f), prevY);
      rot.multVec(prevZ, prevZ);
    }
    colinear = TRUE;
  }

  int numorient = PUBLIC(this)->orientation.getNum();
  const SbRotation * orient = PUBLIC(this)->orientation.getValues(0);

  int numscale = PUBLIC(this)->scale.getNum();
  const SbVec2f * scale = PUBLIC(this)->scale.getValues(0);

  // calculate cross section bbox
  for (j = 0; j < numcross; j++) {
    crossbox.extendBy(cross[j]);
  }

  float currentspinelen = 0.0f; // for texcoords

  // loop through all spines
  for (i = 0; i < numspine; i++) {
    if (colinear) {
      Y = prevY;
      Z = prevZ;
    }
    else {
      Y = calculate_y_axis(spine, i, numspine, closed);
      Z = calculate_z_axis(spine, i, numspine, closed);
      if (Y == empty) Y = prevY;
      if (Z == empty) Z = prevZ;
      if (Z.dot(prevZ) < 0) Z = -Z;
    }

    X = Y.cross(Z);
    my_normalize(X);

    prevY = Y;
    prevZ = Z;

    matrix[0][0] = X[0];
    matrix[0][1] = X[1];
    matrix[0][2] = X[2];
    matrix[0][3] = 0.0f;

    matrix[1][0] = Y[0];
    matrix[1][1] = Y[1];
    matrix[1][2] = Y[2];
    matrix[1][3] = 0.0f;

    matrix[2][0] = Z[0];
    matrix[2][1] = Z[1];
    matrix[2][2] = Z[2];
    matrix[2][3] = 0.0f;

    matrix[3][0] = spine[i][0];
    matrix[3][1] = spine[i][1];
    matrix[3][2] = spine[i][2];
    matrix[3][3] = 1.0f;

    if (numorient) {
      SbMatrix rmat;
      orient[SbMin(i, numorient-1)].getValue(rmat);
      matrix.multLeft(rmat);
    }

    if (numscale) {
      SbMatrix smat = SbMatrix::identity();
      SbVec2f s = scale[SbMin(i, numscale-1)];
      smat[0][0] = s[0];
      smat[2][2] = s[1];
      matrix.multLeft(smat);
    }

    float currentcrosslen = 0.0f; // for texcoords
    for (j = 0; j < numcross; j++) {
      SbVec3f c;
      SbVec2f tc;
      c[0] = cross[j][0];
      c[1] = 0.0f;
      c[2] = cross[j][1];

      matrix.multVecMatrix(c, c);
      this->coord.append(c);
      tc[0] = currentcrosslen / crosslen;
      tc[1] = currentspinelen / spinelen;
      this->tcoord.append(tc);

      if (j < numcross-1) {
        currentcrosslen += (cross[j+1]-cross[j]).length();
      }
    }
    if (i < numspine-1) {
      currentspinelen += (spine[i+1]-spine[i]).length();
    }
  }

#define ADD_POINT(i0, j0) \
  do { \
    this->idx.append((i0)*numcross+(j0)); \
  } while (0)

  // this macro makes the code below more readable
#define ADD_TRIANGLE(i0, j0, i1, j1, i2, j2) \
  do { \
    this->idx.append((i0)*numcross+(j0)); \
    this->idx.append((i2)*numcross+(j2)); \
    this->idx.append((i1)*numcross+(j1)); \
    this->idx.append(-1); \
  } while (0)

#define ADD_QUAD(i0, j0, i1, j1, i2, j2, i3, j3)   \
  do { \
    this->idx.append((i0)*numcross+(j0)); \
    this->idx.append((i3)*numcross+(j3)); \
    this->idx.append((i2)*numcross+(j2)); \
    this->idx.append((i1)*numcross+(j1)); \
    this->idx.append(-1); \
  } while (0)

  // create walls
  for (i = 0; i < numspine-1; i++) {
    for (j = 0; j < numcross-1; j++) {
      if (PUBLIC(this)->convex.getValue() && !ALWAYS_CREATE_TRIANGLES) {
        ADD_QUAD(i, j, i+1, j, i+1, j+1, i, j+1);
      }
      else {
        ADD_TRIANGLE(i, j, i+1, j, i+1, j+1);
        ADD_TRIANGLE(i, j, i+1, j+1, i, j+1);
      }
    }
  }

  SbVec2f crossboxsize = crossbox.getMax() - crossbox.getMin();

  // create beginCap polygon
  if (PUBLIC(this)->beginCap.getValue() && !closed) {
    // create texcoords
    for (i = 0; i < numcross; i++) {
      SbVec2f c = cross[i];
      c -= crossbox.getMin();
      c[0] /= crossboxsize[0];
      c[1] /= crossboxsize[1];
      this->tcoord.append(c);
    }
    // just duplicated begincap coords to simplify texture coordinate handling
    for (i = 0; i < numcross; i++) {
      this->coord.append(coord[i]);
    }

    if (PUBLIC(this)->convex.getValue()) {
      for (i = 1; i < (connected ? numcross-2 : numcross-1); i++) {
        ADD_TRIANGLE(numspine, 0, numspine, i, numspine, i+1);
      }
    }
    else {
      // let the tesselator create triangles
      this->tess.beginPolygon(FALSE);
      for (i = (connected ? numcross-2 : numcross-1); i >= 0; i--) {
        int theidx = numcross*numspine + i;
        SbVec3f tc;
        tc.setValue(cross[i][0],
                    cross[i][1],
                    0.0f);
        this->tess.addVertex(tc, (void*) ((uintptr_t) theidx));
      }
      this->tess.endPolygon();
    }
  }

  // create endCap polygon
  if (PUBLIC(this)->endCap.getValue() && !closed) {
    // just duplicate endcap coords to simplify texture coordinate handling
    for (i = 0; i < numcross; i++) {
      this->coord.append(coord[(numspine-1)*numcross+i]);
    }
    // create texcoords
    for (i = 0; i < numcross; i++) {
      SbVec2f c = cross[i];
      c -= crossbox.getMin();
      c[0] /= crossboxsize[0];
      c[1] /= crossboxsize[1];
      // the endCap texcoords should be flipped in the T dimension
      c[1] = 1.0f - c[1];
      this->tcoord.append(c);
    }

    if (PUBLIC(this)->convex.getValue()) {
      for (i = 1; i < (connected ? numcross-2 : numcross-1); i++) {
        ADD_TRIANGLE(numspine+1, numcross-1,
                     numspine+1, numcross-1-i,
                     numspine+1, numcross-2-i);
      }
    }
    else {
      // let the tesselator create triangles
      this->tess.beginPolygon(FALSE);
      for (i = (connected ? numcross-2 : numcross-1); i >= 0; i--) {
        int theidx = (numspine+1)*numcross + numcross - 1 - i;
        SbVec3f tc;
        tc.setValue(cross[(numcross-1)-i][0],
                    cross[(numcross-1)-i][1],
                    0.0f);
        this->tess.addVertex(tc, (void*) ((uintptr_t) theidx));
      }
      this->tess.endPolygon();
    }
  }
#undef ADD_TRIANGLE
#undef ADD_QUAD
#undef ADD_POINT
}

//
// generates per-verex normals for the extrusion.
//
void
SoVRMLExtrusionP::generateNormals(void)
{
  this->gen.reset(PUBLIC(this)->ccw.getValue());
  const SbVec3f * c = this->coord.getArrayPtr();
  const int32_t * iptr = this->idx.getArrayPtr();
  const int32_t * endptr = iptr + this->idx.getLength();

  while (iptr < endptr) {
    this->gen.beginPolygon();
    int32_t theidx = *iptr++;
    while (theidx >= 0) {
      this->gen.polygonVertex(c[theidx]);
      theidx = *iptr++;
    }
    this->gen.endPolygon();
  }
  this->gen.generate(PUBLIC(this)->creaseAngle.getValue());
}

//
// callback from the polygon tessellator
//
void
SoVRMLExtrusionP::tess_callback(void * v0, void * v1, void * v2, void * data)
{
  SoVRMLExtrusionP * thisp = (SoVRMLExtrusionP*) data;
  thisp->idx.append((int32_t)((uintptr_t)v0));
  thisp->idx.append((int32_t)((uintptr_t)v1));
  thisp->idx.append((int32_t)((uintptr_t)v2));
  thisp->idx.append(-1);
}

#undef PUBLIC
#undef PRIVATE

#endif // HAVE_VRML97