
Supplementary Data: Enhanced Methods for
Normal Mode Analysis with Bio3D

Lars Skjaerven, Xin-Qiu Yao & Barry J. Grant

Background:

Bio3D1 is an R package that provides interactive tools for structural bioinfor-
matics. The primary focus of Bio3D is the analysis of bimolecular structure,
sequence and simulation data.
Normal mode analysis (NMA) is one of the major simulation techniques used
to probe large-scale motions in biomolecules. Typical application is for the
prediction of functional motions in proteins. Version 2.0 of the Bio3D package now
includes extensive NMA facilities. These include a unique collection of multiple
elastic network model force-fields (see Example 1 below), automated ensemble
analysis methods (Example 2) and variance weighted NMA (Example 3).
Here we demonstrate the use of these new features with working code that
comprise complete executable examples2.

Requirements: Detailed instructions for obtaining and installing the Bio3D
package on various platforms can be found in the Installing Bio3D Vignette
available both on-line and from within the Bio3D package. In addition to
Bio3D the MUSCLE multiple sequence alignment program (available from the
muscle home page) must be installed on your system and in the search path for
executables. Please see the installation vignette for further details.

Example 1: Basic Normal Mode Analysis

Example 1A: Normal mode calculation

Normal mode analysis (NMA) of a single protein structure can be carried out by
providing a PDB object to the function nma(). In the code below we first load
the Bio3D package and then download an example structure of hen egg white
lysozyme (PDB id 1hel) with the function read.pdb(). Finally the function
nma() is used perform the normal mode calculation:

library(bio3d)
pdb <- read.pdb("1hel")
modes <- nma(pdb)

1The latest version of the package, full documentation and further vignettes (including
detailed installation instructions) can be obtained from the main Bio3D website: http://
thegrantlab.org/bio3d/

2This document contains executable code that generates all figures contained within this
document. See help(vignette) within R for full details.

1

http://thegrantlab.org/bio3d/download/download.html
http://www.drive5.com/muscle/
http://thegrantlab.org/bio3d/
http://thegrantlab.org/bio3d/

A short summary of the returned nma object contained within the new variable
modes can be obtained by simply calling the function print():

print(modes)

##
Call:
nma(pdb = pdb)
##
Class:
VibrationalModes (nma)
##
Number of modes:
387 (6 trivial)
##
Frequencies:
Mode 7: 0.018
Mode 8: 0.019
Mode 9: 0.024
Mode 10: 0.025
Mode 11: 0.028
Mode 12: 0.029
##
+ attr: modes, frequencies, force.constants, fluctuations,
U, L, xyz, mass, temp, triv.modes, natoms, call

This reveals the function call resulting in the nma object along with the total
number of stored normal modes. For PDB id 1hel there are 129 amino acid
residues, and thus 387 modes (3 ∗ 129 = 387) in this object. The first six modes
are so-called trivial modes with zero frequency and correspond to rigid-body
rotation and translation. The frequency of the next six lowest-frequency modes
is also printed.

Note that the returned nma object consists of a number of attributes listed on
the +attr: line. These attributes contain the detailed results of the calculation
and their complete description can be found on the nma() functions help page
accessible with the command: help(nma). To get a quick overview of the results
one can simply call the plot() function on the returned nma object. This will
produce a summary plot of (1) the eigenvalues, (2) the mode frequencies, and
(3) the atomic fluctuations (See Figure 1).

plot(modes, sse = pdb)

2

Figure 1: Summary plot of NMA results for hen egg white lysozyme (PDB
id 1hel). The optional sse=pdb argument provided to plot.nma() results in a
secondary structure schematic being added to the top and bottom margins of
the fluctuation plot (helices black and strands gray). Note the larger fluctuations
predicted for loop regions.

3

Example 1B: Specifying a force field

The main Bio3D normal mode analysis function, nma(), requires a set of
coordinates, as obtained from the read.pdb() function, and the specification
of a force field describing the interactions between constituent atoms. By
default the calpha force field originally developed by Konrad Hinsen is utilized 3.
This employs a spring force constant differentiating between nearest-neighbor
pairs along the backbone and all other pairs. The force constant function
was parameterized by fitting to a local minimum of a crambin model using
the AMBER94 force field. However, a number of additional force fields are
also available, as well as functionality for providing customized force constant
functions. Full details of available force fields can be obtained with the command
help(load.enmff). With the code below we briefly demonstrate their usage
along with a simple comparison of the modes obtained from two of the most
commonly used force fields:

help(load.enmff)

Calculate modes with various force fields
modes.a <- nma(pdb, ff = "calpha")
modes.b <- nma(pdb, ff = "anm")
modes.c <- nma(pdb, ff = "pfanm")
modes.d <- nma(pdb, ff = "reach")
modes.e <- nma(pdb, ff = "sdenm")

Root mean square inner product (RMSIP)
r <- rmsip(modes.a, modes.b)

Plot the RMSIP
plot(r, xlab = "ANM", ylab = "C-alpha FF")

Example 1C: Normal mode analysis of the GroEL subunit

Bio3D includes a number of functions for analyzing and visualizing the normal
modes. In the example below we illustrate this functionality on the GroEL sub-
unit. GroEL is a multimeric protein consisting of 14 identical subunits organized
in three distinct domains inter-connected by two hinge regions facilitating large
conformational changes.
We will investigate the normal modes through (1) mode visualization to illustrate
the nature of the motions; (2) cross-correlation analysis to determine correlated
regions; (3) deformation analysis to measure the local flexibility of the struc-
ture; and (4) overlap analysis to determine which modes contribute to a given
conformational change.

3Hinsen, K., Petrescu, A., Dellerue, S., Bellissent-Funel, M., and Kneller, G. (2000).
Harmonicity in slow protein dynamics. Chemical Physics, 261(1-2), 25–37.

4

Figure 2: Analysis of mode similarity between modes obtained from the ANM
and calpha force fields by calculating mode overlap and root mean square inner
product (RMSIP) with function rmsip(). An RMSIP value of 1 depicts identical
directionality of the two mode subspaces.

5

Calculate the normal modes In the code below we download a structure of
GroEL (PDB-id 1sx4) and use atom.select() to select one of the 14 subunits
prior to the call to nma():

Download PDB, calcualte normal modes of the open subunit
pdb.full <- read.pdb("1sx4")
pdb.open <- trim.pdb(pdb.full, atom.select(pdb.full, chain = "A"))
modes <- nma(pdb.open)

Mode visualization With Bio3D you can visualize the normal modes either by
generating a trajectory file which can be loaded into a molecular viewer program
(e.g. VMD or PyMOL), or through a vector field representation in PyMOL. Both
functions, mktrj.nma() and view.modes(), takes an nma object as input in
addition to the mode index specifying which mode to visualize:

Make a PDB trajectory
a <- mktrj.nma(modes, mode = 7)

Vector field representation (see Figure 3.)
view.modes(modes, mode = 7)

Cross-correlation analysis Function dccm.nma() calculates the cross-
correlation matrix of the nma object. Function plot.dccm() will draw a
correlation map, and 3D visualization of correlations is provided through
function view.dccm():

Calculate the cross-correlation matrix
cm <- dccm(modes)

Plot a correlation map with plot.dccm(cm)
plot(cm, sse = pdb.open, contour = F, col.regions = bwr.colors(20), at = seq(-1,

1, 0.1))

View the correlations in the structure (see Figure 5.)
view.dccm(cm, pdb.open)

6

Figure 3: Visualization of the first non-trivial mode of the GroEL subunit. Visu-
alization is provided through a trajectory file (left), or vector field representation
(right).

Fluctuation and Deformation analysis Deformation analysis provides a
measure for the amount of local flexibility in the protein structure - i.e. atomic
motion relative to neighboring atoms. It differs from fluctuations (e.g. RMSF
values) which provide amplitudes of the absolute atomic motion. Below we calcu-
late deformation energies (with deformation.nma()) and atomic fluctuations
(with fluct.nma()) of the first three modes and visualize the results in PyMOL:

Deformation energies
defe <- deformation.nma(modes)
defsums <- rowSums(defe$ei[, 1:3])

Fluctuations
flucts <- fluct.nma(modes, mode.inds = seq(7, 9))

Write to PDB files (see Figure 6.)
write.pdb(pdb = NULL, xyz = modes$xyz, file = "R-defor.pdb", b = defsums)
write.pdb(pdb = NULL, xyz = modes$xyz, file = "R-fluct.pdb", b = flucts)

Overlap analysis Finally, we illustrate overlap analysis to compare a con-
formational difference vector with the normal modes to identify which modes

7

Figure 4: Correlation map revealing correlated and anti-correlated regions in
the protein structure.

8

Figure 5: Correlated (left) and anti-correlated (right) residues depicted with
red and blue lines, respectively. The figures demonstrate the output of function
view.dccm().

9

Figure 6: Atomic fluctuations (left) and deformation energies (right) visualized
in PyMOL.

contribute to a given conformational change (i.e. the difference between the open
and closed state of the GroEL subunit).

Closed state of the subunit
pdb.closed <- trim.pdb(pdb.full, atom.select(pdb.full, chain = "H"))

Align closed and open PDBs
aln <- struct.aln(pdb.open, pdb.closed, max.cycles = 0)
pdb.closed$xyz <- aln$xyz

Caclulate a difference vector
xyz <- rbind(pdb.open$xyz[aln$a.inds$xyz], pdb.closed$xyz[aln$a.inds$xyz])
diff <- difference.vector(xyz)

Calculate overlap
oa <- overlap(modes, diff)

plot(oa$overlap, type = "h", xlab = "Mode index", ylab = "Squared overlap",
ylim = c(0, 1))

points(oa$overlap, col = 1)

10

lines(oa$overlap.cum, type = "b", col = 2, cex = 0.5)
text(c(1, 5) + 0.5, oa$overlap[c(1, 5)], c("Mode 1", "Mode 5"), adj = 0)

Figure 7: Overlap analysis between the modes of the open subunit and the
conformational difference vector between the closed-open state.

Example 2: Ensemble normal mode analysis

The analysis of multiple protein structures (e.g. a protein family) can be accom-
plished with the nma.pdbs() function. This will take aligned input structures,
as generated by the pdbaln() function for example, and perform NMA on each
structure collecting the results in manner that facilitates the interpretation of
similarity and dissimilarity trends in the structure set. Here we will analyze
a collection of protein kinase structures with low sequence identity (Example
2A) and large set of closely related transducin heterotrimeric G protein family
members (Example 2B).

Example 2A: Protein kinases

In the following code we collect 9 kinase structures from the protein databank
(using get.pdb()) with sequence identity down to 14% (see the call to function
seqidentity() below), and align these with pdbaln():

11

Select Protein Kinase PDB IDs
ids <- c("4b7t_A", "2exm_A", "1opj_A", "4jaj_A", "1a9u_A", "1tki_A", "1phk_A",

"1csn_A", "1lp4_A")

Download and split by chain ID
raw.files <- get.pdb(ids, path = "raw_pdbs")
files <- pdbsplit(raw.files, ids)

Alignment of structures
pdbs <- pdbaln(files)

Sequence identity
summary(c(seqidentity(pdbs)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.141 0.205 0.266 0.334 0.311 1.000

The pdbs object now contains aligned C-alpha atom data, including Cartesian
coordinates, residue numbers, residue types, and B-factors. The sequence
alignment is also stored by default to the FASTA format file ‘aln.fa’ (to view this
you can use an alignment viewer such as SEAVIEW, see Requirements section
above). Function nma.pdbs() will calculate the normal modes of each protein
structures stored in the pdbs object. The normal modes are calculated on the full
structures as provided by object pdbs. With the default argument rm.gaps=TRUE
unaligned atoms are omitted from output in accordance with common practice
4.

NMA on all structures
modes <- nma.pdbs(pdbs, full = TRUE)

The modes object of class enma contains aligned normal mode data including
fluctuations, RMSIP data, and aligned eigenvectors. A short summary of the
modes object can be obtain by calling the function print(), and the aligned
fluctuations can be plotted with function plot():

print(modes)

##
Call:
nma.pdbs(pdbs = pdbs, full = TRUE)
##

4Fuglebakk, E., Echave, J., and Reuter, N. (2012). Measuring and comparing structural
fluctuation patterns in large protein datasets. Bioinformatics, 28(19), 2431–40.

12

Class:
enma
##
Number of structures:
9
##
Attributes stored:
- Full 'nma' objects
- Root mean square inner product (RMSIP)
- Aligned atomic fluctuations
- Aligned eigenvectors (gaps removed)
- Dimensions of x$U.subspace: 714x20x9
##
Coordinates were aligned prior to NMA calculations
##
+ attr: fluctuations, rmsip, U.subspace, full.nma, call

Plot fluctuation data
plot(modes, pdbs, type = "h")
legend("topleft", legend = ids, col = seq(1, nrow(modes$fluctuations)), lty = 1)

Figure 8: Results of ensemble NMA on selected protein kinase superfamily
members.

Alternatively, one can use 'rm.gaps=FALSE' to keep the gap containing
columns
modes <- nma.pdbs(pdbs, rm.gaps = FALSE)

Cross-correlation analysis can be easily performed and the results contrasted for
each member of the input ensemble. Below we calculate and plot the correlation

13

matrices for each structure and then output correlations present only in all input
structures.

Calculate correlation matrices for each structure
cij <- dccm(modes)

Set DCCM plot panel names for combined figure
dimnames(cij$all.dccm) = list(NULL, NULL, ids)
plot.dccm(cij$all.dccm)

Figure 9: Residue cross-correlations for each kinase structures analyzed.

Determine correlations present only in all 9 input structures
cij.all <- dccm.mean(cij$all.dccm, cutoff.sims = 9, cutoff.cij = 0)
plot.dccm(cij.all, main = "Consensus Residue Cross Correlation")

14

Figure 10: Residue cross-correlations present in all kinase structures analyzed.

15

Example 2B: Transducin

In this section we will demonstrate the use of nma.pdbs() on the example
transducin family data that ships with the Bio3D package. This can be loaded
with the command data(transducin) and contains an object pdbs consisting of
aligned C-alpha coordinates for 53 transducin structures from the PDB as well
their annotation (in the object annotation) as obtained from the pdb.annotate()
function. Note that this data can be generated from scratch by following the
Comparative Structure Analysis with Bio3D Vignette available both on-line and
from within the Bio3D package.

Load data
data(transducin)
pdbs <- transducin$pdbs
annotation <- transducin$annotation

Find gap positions
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect(pdbs$xyz)

Calculate normal modes of the 53 structures
modes <- nma.pdbs(pdbs)

Make fluctuation plot
plot(modes, col = annotation[, "color"], pdbs = pdbs)

Note: Accessing online PDB file
HEADER BINDING PROTEIN(GTP) 31-MAR-94 1TND

legend("left", lty = c(1, 1), lwd = c(2, 2), col = c("red", "green"), legend = c("GTP",
"GDP"))

The similarity of structural dynamics is calculated by RMSIP based on the 10
lowest frequency normal modes. The rmsip values are pre-calculated in the
modes object and can be accessed through the attribute modes$rmsip. As a
comparison, we also calculate the root mean square deviation (RMSD) of all
pair-wise structures:

Plot a heat map with clustering dendogram
ids <- substr(basename(pdbs$id), 1, 6)
heatmap((1 - modes$rmsip), labRow = annotation[, "state"], labCol = ids, symm = TRUE)

Calculate pair-wise RMSD values
rmsd.map <- rmsd(pdbs$xyz, a.inds = gaps.pos$f.inds, fit = TRUE)
heatmap(rmsd.map, labRow = annotation[, "state"], labCol = ids, symm = TRUE)

16

Figure 11: Structural dynamics of transducin. The calculation is based on NMA
of 53 structures: 28 GTP-bound (red), and 25 GDP-bound (green).

Example 3: Variance weighted normal mode analysis

In this example we illustrate an approach of weighting the pair force constants
based on the variance of the inter atomic distances obtained from an ensemble
of structures (e.g. available X-ray structures). The motivation for such variance-
weighting is to reduce the well known dependence of the force constants on the
one structure upon which they are derived 5.

Example 3A: GroEL

We first calculate the normal modes of both the closed and open state of the
GroEL subunit, and we illustrate the difference in the agreement towards the
observed conformational changes (characterized by X-ray and EM studies). We
will then use an ensemble of X-ray/EM structures as weights to the pair-force
constants.

Define the ensemble PDB-ids
ids <- c("1sx4_[A,B,H,I]", "1xck_[A-B]", "1sx3_[A-B]", "4ab3_[A-B]")

Download and split PDBs by chain ID
raw.files <- get.pdb(ids, path = "raw_pdbs", gzip = TRUE)
files <- pdbsplit(raw.files, ids, path = "raw_pdbs/split_chain/")

5Tama, F. and Sanejouand, Y. H. (2001). Conformational change of proteins arising from
normal mode calculations. Protein Eng, 14(1), 1–6.

17

Figure 12: RMSIP matrix of the transducin family.

18

Figure 13: RMSD matrix of the transducin family.

19

Align and superimpose coordinates
pdbs <- pdbaln(files, fit = TRUE)

Calculate normal modes Next we will calculate the normal modes of the
open and closed conformational state. They are stored at indices 1 and 5,
respectively, in our pdbs object. Use the pdbs2pdb() to fetch the pdb objects
which is needed for the input to nma().

Inspect gaps
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect(pdbs$xyz)

Access PDB objects
pdb.list <- pdbs2pdb(pdbs, inds = c(1, 5, 9), rm.gaps = TRUE)

Note that we are here using the argument rm.gaps=TRUE to omit residues in
gap containing columns of the alignment. Consequently, the resulting three pdb
objects we obtain will have the same lengths (523 residues), which is convenient
for subsequent analysis.

pdb.open <- pdb.list[["1sx4_A"]]
pdb.closed <- pdb.list[["1xck_A"]]
pdb.rstate <- pdb.list[["4ab3_A"]]

Calaculate normal modes
modes.open <- nma(pdb.open)
modes.closed <- nma(pdb.closed)
modes.rstate <- nma(pdb.rstate)

Overlap analysis Use overlap analysis to determine the agreement between
the normal mode vectors and the conformational difference vector:

Difference vector 1: closed - open
diff.vec.1 <- difference.vector(pdbs$xyz[c(1, 5), gaps.pos$f.inds])
Difference vector 2: closed - rstate
diff.vec.2 <- difference.vector(pdbs$xyz[c(5, 9), gaps.pos$f.inds])

Calculate overlap
oa <- overlap(modes.open, diff.vec.1)
ob <- overlap(modes.closed, diff.vec.1)
oc <- overlap(modes.closed, diff.vec.2)

20

plot(oa$overlap.cum[1:10], type = "b", ylim = c(0, 1), ylab = "Squared overlap",
xlab = "Mode index", cex.lab = 1.4, cex.axis = 1.2, lwd = 2)

lines(ob$overlap.cum[1:10], type = "b", lty = 2, col = 2, lwd = 2)
lines(oc$overlap.cum[1:10], type = "b", lty = 3, col = 4, lwd = 1)

legend("bottomright", c("Open to closed", "Closed to open", "Closed to r-state"),
col = c(1, 2, 4), lty = c(1, 2, 3))

Figure 14: Overlap anlaysis with function overlap(). The modes calculated on
the open state of the GroEL subunit shows a high similarity to the conformational
difference vector (black), while the agreement is lower when the normal modes
are calculated on the closed state (red). Blue line correspond to the overlap
between the closed state and the r-state (a semi-open state characterized by a
rotation of the apical domain in the opposite direction as compared to the open
state.

Variance weighting From the overlap analysis above we see the good agree-
ment (high overlap value) between the conformational difference vector and the

21

normal modes calculated on the open structures. Contrary, the lowest frequency
modes of the closed structures does not show the same behavior. We will thus
proceed with the weighting of the force constants. First we’ll define a quick
function for calculating the weights which takes a matrix of Cartesian coordinates
as input:

"make.weights" <- function(xyz) {
Calculate pairwise distances
natoms <- ncol(xyz)/3
all <- array(0, dim = c(natoms, natoms, nrow(xyz)))
for (i in 1:nrow(xyz)) {

dists <- dist.xyz(xyz[i,])
all[, , i] <- dists

}

Calculate variance of pairwise distances
all.vars <- apply(all, 1:2, var)

Make the final weights
weights <- 1 - (all.vars/max(all.vars))
return(weights)

}

Calcualte the weights
wts <- make.weights(pdbs$xyz[, gaps.pos$f.inds])

Weights to the force constants can be included by the argument ‘fc.weights’ to
function nma(). This needs be a matrix with dimensions NxN (where N is the
number of C-alpha atoms). Here we will run a small for-loop with increasing
the strength of the weighting at each step and store the new overlap values in
the variable ‘ob.wtd’:

ob.wtd <- NULL
for (i in 1:10) {

modes.wtd <- nma(pdb.closed, fc.weights = wts^i)
ob.tmp <- overlap(modes.wtd, diff.vec.1)
ob.wtd <- rbind(ob.wtd, ob.tmp$overlap.cum)

}

plot(oa$overlap.cum[1:10], type = "b", ylim = c(0, 1), ylab = "Squared overlap",
xlab = "Mode index", cex.lab = 1.4, cex.axis = 1.2, axes = T, lwd = 2)

lines(ob$overlap.cum[1:10], type = "b", lty = 2, col = 1, lwd = 2)

cols <- rainbow(10)
for (i in 1:nrow(ob.wtd)) {

22

lines(ob.wtd[i, 1:10], type = "b", lty = 1, col = cols[i])
}

legend("bottomright", c("Open state", "Closed state", "Closed state (weighted)"),
col = c("black", "black", "green"), lty = c(1, 2, 1))

Figure 15: Overlap plot with increasing strength on the weighting. The final
weighted normal modes of the closed subunit shows as high overlap values as
the modes for the open state.

RMSIP calculation RMSIP can be used to compare the mode subspaces:

ra <- rmsip(modes.open, modes.wtd)
rb <- rmsip(modes.open, modes.closed)

par(mfrow = c(1, 2))
plot(ra, ylab = "NMA(open)", xlab = "NMA(weighted)")
plot(rb, ylab = "NMA(open)", xlab = "NMA(closed)")

23

Figure 16: RMSIP maps between (un)weighted normal modes obtained from
the open and closed subunits.

Match with PCA Finally, we compare the calculated normal modes with
principal components obtained from the ensemble of X-ray structures using
function pca.xyz():

Calculate the PCs
pc.xray <- pca.xyz(pdbs$xyz[, gaps.pos$f.inds])

Calculate RMSIP values
rmsip(pc.xray, modes.open)$rmsip

[1] 0.6226

rmsip(pc.xray, modes.closed)$rmsip

[1] 0.632

rmsip(pc.xray, modes.rstate)$rmsip

[1] 0.589

rmsip(pc.xray, modes.wtd)$rmsip

[1] 0.6617

24

Example 3B: Transducin

This example will run nma() on transducin with variance weighted force con-
stants. The modes predicted by NMA will be compared with principal component
analysis (PCA) results over the transducin family. We load the transducin data
via the command data(transducin) and calculate the normal modes for two struc-
tures corresponding to two nucleotide states, respectively: GDP (PDB id 1TAG)
and GTP (PDB id 1TND). Again we use function pdbs2pdb() to build the pdb
objects from the pdbs object (containing aligned structure/sequence information).
The coordinates of the data set were fitted to all non-gap containing C-alpha
positions.

data(transducin)
pdbs <- transducin$pdbs

gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect(pdbs$xyz)

Fit coordinates based on all non-gap positions and do PCA
xyz <- pdbfit(pdbs)
pc.xray <- pca.xyz(xyz[, gaps.pos$f.inds])

Fetch PDB objects
npdbs <- pdbs
npdbs$xyz <- xyz
pdb.list <- pdbs2pdb(npdbs, inds = c(2, 7), rm.gaps = TRUE)
pdb.gdp <- pdb.list[[grep("1TAG_A", names(pdb.list))]]
pdb.gtp <- pdb.list[[grep("1TND_B", names(pdb.list))]]

Calculate normal modes
modes.gdp <- nma(pdb.gdp)
modes.gtp <- nma(pdb.gtp)

Now, we calculate the pairwise distance variance based on the structural ensemble
with the function make.weights() defined above. This will be used to weight
the force constants in the elastic network model.

Calculate weights
weights <- make.weights(xyz[, gaps.pos$f.inds])

Calculate normal modes with weighted pair force constants
modes.gdp.b <- nma(pdb.gdp, fc.weights = weights^100)
modes.gtp.b <- nma(pdb.gtp, fc.weights = weights^100)

25

To evaluate the results, we calculate the overlap (square dot product) between
modes predicted by variance weighted or non-weighted NMA and the first
principal component from PCA.

oa <- overlap(modes.gdp, pc.xray$U[, 1])
ob <- overlap(modes.gtp, pc.xray$U[, 1])
oc <- overlap(modes.gdp.b, pc.xray$U[, 1])
od <- overlap(modes.gtp.b, pc.xray$U[, 1])

plot(oa$overlap.cum, type = "o", ylim = c(0, 1), col = "darkgreen", lwd = 2,
xlab = "Mode", ylab = "Cummulative overlap")

lines(ob$overlap.cum, type = "o", ylim = c(0, 1), col = "red", lwd = 2)
lines(oc$overlap.cum, type = "b", ylim = c(0, 1), col = "darkgreen", lwd = 2,

lty = 2)
lines(od$overlap.cum, type = "b", ylim = c(0, 1), col = "red", lwd = 2, lty = 2)
text(20, oa$overlap.cum[20], label = round(oa$overlap.cum[20], 2), pos = 3)
text(20, ob$overlap.cum[20], label = round(ob$overlap.cum[20], 2), pos = 3)
text(20, oc$overlap.cum[20], label = round(oc$overlap.cum[20], 2), pos = 3)
text(20, od$overlap.cum[20], label = round(od$overlap.cum[20], 2), pos = 3)
legend("topleft", pch = 1, lty = c(1, 1, 2, 2), col = c("darkgreen", "red",

"darkgreen", "red"), legend = c("GDP", "GTP", "Weighted GDP", "Weighted GTP"))

Example 4: User-defined pair force constant functions

In this example we demonstrate the interface for defining custom functions for
the pair spring force constants. A custom function can be obtained through
simple scripting as shown below.

Example 4A: Specifying a simple function

We first show how to define a simple force constant function by building a revised
version of the parameter-free ANM force field. The function my.ff() below takes
as input r which is a vector of inter-atomic (calpha) distances (i.e. distances
from atom i, to all other atoms in the system; this function will thus be called
N times, where N is the number of calpha atoms). It will in this case return 0
for the pairs with a distance larger than 10 Å, and r−2 for all other pairs. Our
simple function will thus look like:

Define function for spring force constants
"my.ff" <- function(r, ...) {

ifelse(r > 10, 0, r^(-2))
}

26

Figure 17: Variance weighted force constants improve NMA prediction

27

Once the function is in place we can feed it to function nma() to calculate
the normal modes based on the particular force constants built with our new
function. Below we apply it to the lysozyme structure (PDB id 1hel) from
Example 1:

Download PDB and calculate normal modes
pdb <- read.pdb("1hel")
modes <- nma(pdb, pfc.fun = my.ff)

Alternatively we can take a more manual approach by calling build.hessian()
if we want to investigate the Hessian matrix further (note that build.hessian is
called from within function nma() which will diagonalize the hessian to obtain
the normal modes and thus not return it to the user). In the code below we first
build the hessian and illustrate how to obtain the normal modes through calls
to either eigen() or nma() (which can also take a Hessian matrix as input):

Indices for CA atoms
ca.inds <- atom.select(pdb, "calpha")

Build hessian matrix
h <- build.hessian(pdb$xyz[ca.inds$xyz], pfc.fun = my.ff)

Diagonalize and obtain eigenvectors and eigenvalues
modes <- eigen(h, symmetric = TRUE)

... or feed the Hessian to function 'nma()'
modes <- nma(pdb, hessian = h, mass = FALSE)

Note that function nma() assumes the Hessian to be mass-weighted and we
therefore have to specify mass=FALSE in this particular case. To obtain a
mass-weighted Hessian pass the amino acid masses through argument aa.mass
to function build.hessian().

Example 4B: Specific force constants for disulfide bridges

In the following code we illustrate a more advanced force constant function
making use of arguments atom.id and ssdat which is passed from function
build.hessian() by default. This allows users to access the protein se-
quence (ssdat$seq), secondary structure data (ssdat$sse), beta bridges
(ssdat$beta.bridges), helix 1-4 (ssdat$helix14), and disulfide bridges (ss
bonds; ssdat$ss.bonds) when building the force constants.

First we define our new function (ff.custom()) and specify the force constants
which should be applied to bonded and non-bonded interactions (k.bonded
and k.nonbonded, respectively). Next we define the the force constant for the
disulfide bridges (k.ssbond):

28

"ff.custom" <- function(r, atom.id, ssdat = NULL, ...) {
Default force constants (Hinsen et al 2000)
k.bonded <- (r * 8.6 * 10^2) - (2.39 * 10^3)
k.nonbonded <- (128 * 10^4) * r^(-6)

Special force constant for SS-bonds
k.ssbond <- 143

Calculate default values (equivalent to the calpha ff)
ks <- ifelse(r < 4, k.bonded, k.nonbonded)

if (!is.null(ssdat$ss.bonds)) {
If atom.id is part off a ssbond..
inds <- ssdat$ss.bonds[, 1] == atom.id

if (any(inds)) {
Find ss-bond pair
inds.paired <- ssdat$ss.bonds[which(inds), 2]

and change the spring force constant
ks[inds.paired] <- k.ssbond

}
}
return(ks)

}

The disulfide bridges can be supplied as input to nma() function via a simple
two-column matrix:

Define SS-bonds in a two-column matrix
ss.bonds <- matrix(c(76, 94, 64, 80, 30, 115, 6, 127), ncol = 2, byrow = TRUE)

Calculate modes with custom force field
modes <- nma(pdb, pfc.fun = ff.custom, ss.bonds = ss.bonds)

Note that we can also use force field calphax to account for stronger interactions
for beta bridges and helix 1-4 interactions:

Use ff='calphax' to account for stronger beta-bridges and helix 1-4
interactions
sse <- dssp(pdb, resno = FALSE, full = TRUE)
modes <- nma(pdb, ff = "calphax", ss.bonds = ss.bonds, sse = sse)

29

Document Details

This document is shipped with the Bio3D package in both R and PDF formats.
All code can be extracted and automatically executed to generate Figures and/or
the PDF with the following commands:

library(knitr)
spin("Bio3D_nma.r")
system("pandoc -o Bio3D_nma.pdf Bio3D_nma.md")

Information About the Current Bio3D Session

print(sessionInfo(), FALSE)

R version 3.0.2 (2013-09-25)
Platform: x86_64-apple-darwin10.8.0 (64-bit)
##
attached base packages:
[1] grid stats graphics utils datasets grDevices methods
[8] base
##
other attached packages:
[1] multicore_0.1-7 lattice_0.20-24 bio3d_2.0 knitr_1.5
##
loaded via a namespace (and not attached):
[1] digest_0.6.3 evaluate_0.5.1 formatR_0.9 stringr_0.6.2
[5] tools_3.0.2

30

	Supplementary Data: Enhanced Methods for Normal Mode Analysis with Bio3D
	Lars Skjaerven, Xin-Qiu Yao & Barry J. Grant
	Background:
	Example 1: Basic Normal Mode Analysis
	Example 1A: Normal mode calculation
	Example 1B: Specifying a force field
	Example 1C: Normal mode analysis of the GroEL subunit

	Example 2: Ensemble normal mode analysis
	Example 2A: Protein kinases
	Example 2B: Transducin

	Example 3: Variance weighted normal mode analysis
	Example 3A: GroEL
	Example 3B: Transducin

	Example 4: User-defined pair force constant functions
	Example 4A: Specifying a simple function
	Example 4B: Specific force constants for disulfide bridges

	Document Details
	Information About the Current Bio3D Session

