
Comparative Protein Structure Analysis with Bio3D

Xin-Qiu Yao, Lars Skjaerven and Barry J. Grant
University of Michigan, Ann Arbor

November 13, 2013

1 Background

Bio3D1 is an R package that provides interactive tools for the analysis of bimolecular structure, sequence
and simulation data. The aim of this document, termed a vignette2 in R parlance, is to provide a brief
task-oriented introduction to facilities for analyzing protein structure data with Bio3D (Grant et al., 2006).

Requirements: Detailed instructions for obtaining and installing the Bio3D package on various platforms
can be found in the Installing Bio3D vignette available both online and from within the Bio3D package. To
see available vignettes use the command:

vignette(package = "bio3d")

Note that to follow along with this vignette the MUSCLE multiple sequence alignment program and the
DSSP secondary structure assignment program must be installed on your system and in the search path for
executables. Please see the installation vignette for full details.

2 Getting Started

Start R, load the Bio3D package and use the command demo("pdb") and then demo("pca") to get a quick
feel for some of the tasks that we will be introducing in the following sections.

library(bio3d)

demo("pdb")

demo("pca")

Side-note: You will be prompted to hit the RETURN key at each step of the demos as this will allow you
to see the particular functions being called. Also note that detailed documentation and example code for
each function can be accessed via the help() and example() commands (e.g. help(read.pdb)). You can
also copy and paste any of the example code from the documentation of a particular function, or indeed this
vignette, directly into your R session to see how things work. You can also find this documentation online.

2.1 Working with single PDB structures

The code snippet below calls the read.pdb() with a single input argument, the four letter Protein Data
Bank (PDB) identifier code "1tag". This will cause the read.pdb() function to read directly from the
online RCSB PDB database and return a new object pdb for further manipulation.

1The latest version of the package, full documentation and further vignettes (including detailed installation instructions) can
be obtained from the main Bio3D website: http://thegrantlab.org/bio3d/

2This vignette contains executable examples, see help(vignette) for further details.

1

http://thegrantlab.org/bio3d/
http://www.drive5.com/muscle/
http://swift.cmbi.ru.nl/gv/dssp/
http://thegrantlab.org/bio3d/html/index.html
http://thegrantlab.org/bio3d/

pdb <- read.pdb("1tag")

Note: Accessing online PDB file

HEADER GTP-BINDING PROTEIN 23-NOV-94 1TAG

Alternatively, you can read a PDB file directly from your local file system using the file name (or the full
path to the file) as an argument to read.pdb():

pdb <- read.pdb("myfile.pdb")

pdb <- read.pdb("/path/to/my/data/myfile.pdb")

A short summary of the pdb object can be obtained by simply calling the function print():

print(pdb)

##

Call: read.pdb(file = "1tag")

##

Atom Count: 2890

##

Total ATOMs#: 2521

Protein ATOMs#: 2521 (Calpha ATOMs#: 314)

Non-protein ATOMs#: 0 (residues:)

Chains#: 1 (values: A)

##

Total HETATOMs: 369

Residues HETATOMs#: 342 (residues: MG GDP HOH)

Chains#: 1 (values: A)

##

Sequence:

ARTVKLLLLGAGESGKSTIVKQMKIIHQDGYSLEECLEFIAIIYGNTLQSILAIVRAMTT

LNIQYGDSARQDDARKLMHMADTIEEGTMPKEMSDIIQRLWKDSGIQACFDRASEYQLND

SAGYYLSDLERLVTPGYVPTEQDVLRSRVKTTGIIETQFSFKDLNFRMFDVGGQRSERKK

WIHCFEGVTCIIFIAALSAYDMVLVEDDEVNRMHESLHLFNSICN...<cut>...DIII

##

+ attr: atom, het, helix, sheet, seqres,

xyz, xyz.models, calpha, call

To examine the contents of the pdb object in more detail we can use the attributes function:

attributes(pdb)

$names

[1] "atom" "het" "helix" "sheet" "seqres"

[6] "xyz" "xyz.models" "calpha" "call"

##

$class

[1] "pdb"

These attributes describe the list components that comprise the pdb object, and each individual com-
ponent can be accessed using the $ symbol (e.g. pdb$atom). Their complete description can be found on
the read.pdb() functions help page accessible with the command: help(read.pdb). Note that the atom

component is a matrix consisting of all atomic coordinate ATOM data, with a row per ATOM and a column
per record type. The column names can be used as a convenient means of data access, for example to access
coordinate data for the first three atoms in our newly created pdb object:

2

pdb$atom[1:3, c("resno", "resid", "elety", "x", "y", "z")]

resno resid elety x y z

[1,] "27" "ALA" "N" "38.238" "18.018" "61.225"

[2,] "27" "ALA" "CA" "38.552" "16.715" "60.576"

[3,] "27" "ALA" "C" "40.042" "16.687" "60.253"

In the example above we used numeric indices to access atoms 1 to 3, and a character vector of column
names to access the specific record types. In a similar fashion the atom.select() function returns numeric
indices that can be used for accessing desired subsets of the pdb data. For example:

ca.inds <- atom.select(pdb, "calpha")

The returned ca.inds object is a list containing atom and xyz numeric indices corresponding to the
selection (all C-alpha atoms in this particular case). The indices can be used to access e.g. the Cartesian
coordinates of the selected atoms (pdb$xyz[ca.inds$xyz]), or residue numbers and B-factor data for the
selected atoms. For example:

resnos <- pdb$atom[ca.inds$atom, "resno"]

bfacts <- pdb$atom[ca.inds$atom, "b"]

plot.bio3d(resnos, bfacts, sse = pdb, ylab = "B-factor", xlab = "Residue", typ = "l")

In the above example we use these indices to plot residue number vs B-factor along with a basic secondary
structure schematic (provided with the argument sse=pdb; Figure 1). As a further example of data access
lets extract the sequence for the loop region (P-loop) between strand 3 (beta 1) and helix 1 in our pdb object.

loop <- pdb$sheet$end[3]:pdb$helix$start[1]

loop.inds <- atom.select(pdb, resno = loop, elety = "CA")

##

Build selection from input components

##

segid chain resno resid eleno elety

Stest "" "" "35,36,37,38,39,40,41,42" "" "" "CA"

Natom "2521" "2521" "49" "2521" "2521" "314"

* Selected a total of: 8 intersecting atoms *

pdb$atom[loop.inds$atom, "resid"]

[1] "LEU" "GLY" "ALA" "GLY" "GLU" "SER" "GLY" "LYS"

In the above example the residue numbers in the sheet and helix components of pdb are accessed and
used in a subsequent atom selection, the output of which is used as indices to extract residue names.

Question: How would you extract the one-letter amino acid sequence for the loop region mentioned above?
HINT The aa321() function converts between three-letter and one-letter IUPAC amino acid codes.

Question: How would select all backbone or sidechain atoms? HINT: see the example section of help(atom.select)
and the string option.

Side-note: Consider using the help(combine.sel) function when dealing with more complicated selec-
tions.

3

50 100 150 200 250 300 350

0
10

20
30

40
50

60

Residue

B
−

fa
ct

or

Figure 1: Residue B-factor data for PDB id 1TAG. Grey boxes depict secondary structure elements in the
structure (dark grey: alpha helices; light grey: beta sheets).

4

2.2 Working with multiple PDB structures

The Bio3D package was designed to specifically facilitate the analysis of multiple structures from both ex-
periment and simulation. The challenge with working with these structures is that they are usually different
in their composition (i.e. contain differing number of atoms, sequences, chains, ligands, structures, confor-
mations etc. even for the same protein as we will see below) and it is these differences that are frequently of
most interest.

For this reason Bio3D contains extensive utilities to enable the reading and writing of sequence and struc-
ture data, sequence and structure alignment, performing homologous protein searches, structure annotation,
atom selection, re-orientation, superposition, rigid core identification, clustering, torsion analysis, distance
matrix analysis, structure and sequence conservation analysis, normal mode analysis across related struc-
tures, and principal component analysis of structural ensembles. We will demonstrate some of these utilities
in the following sections and in other package vignettes. However, before delving into more advanced analysis
lets examine how we can read multiple PDB structures from the RCSB PDB for a particular protein and
perform some basic analysis:

Download some example PDB files

ids <- c("1TND_B", "1AGR_A", "1FQJ_A", "1TAG_A", "1GG2_A", "1KJY_A")

raw.files <- get.pdb(ids)

The get.pdb() function will download the requested files, below we extract the particular chains we
are most interested in with the function pdbsplit() (note these ids could come from the results of a
blast.pdb() search as described in subsequent sections). The requested chains are then aligned and their
structural data stored in a new object pdbs that can be used for further analysis and manipulation.

Extract and align the chains we are interested in

files <- pdbsplit(raw.files, ids)

pdbs <- pdbaln(files)

Below we examine the sequence and structural similarity.

Calculate sequence identity

seqidentity(pdbs)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.000 0.693 0.914 1.000 0.690 0.696

[2,] 0.693 1.000 0.779 0.694 0.997 0.994

[3,] 0.914 0.779 1.000 0.914 0.776 0.782

[4,] 1.000 0.694 0.914 1.000 0.691 0.697

[5,] 0.690 0.997 0.776 0.691 1.000 0.991

[6,] 0.696 0.994 0.782 0.697 0.991 1.000

Calculate RMSD

rmsd(pdbs, fit = TRUE)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000 0.965 0.609 1.283 1.612 2.100

[2,] 0.965 0.000 0.873 1.575 1.777 1.914

[3,] 0.609 0.873 0.000 1.265 1.737 2.042

[4,] 1.283 1.575 1.265 0.000 1.687 1.841

[5,] 1.612 1.777 1.737 1.687 0.000 1.879

[6,] 2.100 1.914 2.042 1.841 1.879 0.000

5

Question: What effect does setting the fit=TRUE option have in the RMSD calculation? What would the
results indicate if you set fit=FALSE or disparaged this option? HINT Bio3D functions have various default
options that will be used if the option is not explicitly specified by the user, see help(rmsd) for an example
and note that the input options with an equals sign (e.g. fit=FALSE) have default values.

2.3 Exploring example data for the transducin heterotrimeric G Protein

A number of example datasets are included with the Bio3D package. The main purpose of including this data
(which may be generated by the user by following the extended examples documented within the various
Bio3D functions) is to allow users to more quickly appreciate the capabilities of functions that would otherwise
require extensive data downloads before execution.

For a number of the examples in the current vignette we will utilize the included transducin dataset
that contains over 50 publicly available structures. This dataset formed the basis of the work described
in (Yao and Grant, 2013) and we refer the motivated reader to this publication and references therein for
extensive background information. Briefly, heterotrimeric G proteins are molecular switches that turn on
and off intracellular signaling cascades in response to the activation of G protein coupled receptors (GPCRs).
Receptor activation by extracellular stimuli promotes a cycle of GTP binding and hydrolysis on the G protein
alpha subunit that leads to conformational rearrangements (i.e. internal structural changes) that activate
multiple downstream effectors. The current dataset consists of transducin (including Gt and Gi/o) alpha
subunit sequence and structural data and can be loaded with the command data(transducin):

data(transducin)

attach(transducin)

Side-note: This dataset can be assembled from scratch with commands similar to those detailed in the next
section and those listed in section 2.2. Also see help(example.data) for a full description of this datasets
contents.

3 Constructing Experimental Structure Ensembles for a Protein
Family

Comparing multiple structures of homologous proteins and carefully analyzing large multiple sequence align-
ments can help identify patterns of sequence and structural conservation and highlight conserved interactions
that are crucial for protein stability and function (Grant et al., 2007). Bio3D provides a useful framework
for such studies and can facilitate the integration of sequence, structure and dynamics data in the analysis
of protein evolution.

3.1 Finding Available Sets of Similar Structures

In this tutorial, to collect available transducin crystal structures, we first use BLAST to query the PDB
database to find similar sequences (and hence structures) to our chosen representative (PDB ID ”1tag”):

pdb <- read.pdb("1tag")

seq <- pdbseq(pdb)

blast <- blast.pdb(seq)

Examining the alignment scores and their associated E-values (with the function plot.blast()) indicates
a sensible normalized score (-log(E-Value)) cutoff of 240 bits (Figure 2).

hits <- plot.blast(blast, cutoff = 240)

6

* Possible cutoff values include:

709 239 -2

Yielding Nhits:

15 97 240

We can then list a subset of our top hits, for example:

head(hits$hits)

pdb.id gi.id group

1 "1TND_A" "576308" "1"

2 "1TND_B" "576309" "1"

3 "1TND_C" "576310" "1"

4 "1TAD_A" "1065261" "1"

5 "1TAD_B" "1065262" "1"

6 "1TAD_C" "1065263" "1"

head(hits$pdb.id)

[1] "1TND_A" "1TND_B" "1TND_C" "1TAD_A" "1TAD_B" "1TAD_C"

Sidenote : The function pdb.annotate() can fetch detailed information about the corresponding struc-
tures (e.g. title, experimental method, resolution, ligand name(s), citation, etc.). For example:

anno <- pdb.annotate(hits$pdb.id)

head(anno[, c("resolution", "ligandId", "citation")])

resolution ligandId citation

1AGR 2.8 ALF, CIT, GDP, MG, null Tesmer et al. Cell (1997)

1AS0 2.0 GSP, MG, SO4 Raw et al. Biochemistry (1997)

1AS2 2.8 GDP, PO4 Raw et al. Biochemistry (1997)

1AS3 2.4 GDP, SO4 Raw et al. Biochemistry (1997)

1BH2 2.1 GSP, MG Posner et al. J.Biol.Chem. (1998)

1BOF 2.2 GDP, MG, SO4 Coleman et al. Biochemistry (1998)

3.2 Multiple Sequence Alignment

Next we download the complete list of structures from the PDB (with function get.pdb()), and use function
pdbsplit() to split the structures into separate chains and store them for subsequent access. Finally,
function pdbaln() will extract the sequence of each structure and perform a multiple sequence alignment to
determine residue-residue correspondences (NOTE: requires external program MUSCLE be in search path
for executables):

unq.ids <- unique(substr(hits$pdb.id, 1, 4))

- Download and chain split PDBs

raw.files <- get.pdb(unq.ids, path = "raw_pdbs")

files <- pdbsplit(raw.files, ids = hits$pdb.id, path = "raw_pdbs/split_chain")

- Extract and align sequences

pdbs <- pdbaln(files)

You can now inspect the alignment (the automatically generated “aln.fa” file) with your favorite alignment
viewer (we recommend SEAVIEW, available from: http://pbil.univ-lyon1.fr/software/seaview.html).

7

http://pbil.univ-lyon1.fr/software/seaview.html

●●●●●●●●●●●●●●●

●●
●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

0 50 100 150 200

0
20

0
40

0
60

0

Hit No

−
lo

g(
E

va
lu

e)

709

239

−2

●●●●●●●
●●●●●●●

●

●●
●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●

0 50 100 150 200

10
0

30
0

50
0

Hit No

B
its

co
re

●●●●●●●

●●●●●●●
●

●●
●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●
●●●

●●●●●●●●
●●●●●●●●

●●●
●●●●●

●
●
●
●●

●●●●●

0 50 100 150 200

20
40

60
80

10
0

Hit No

Id
en

tit
y

●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●●●

●●
●●●

●●

●
●●●

●●

●●
●●●●●

●

●●●

●

●●●●
●

●
●

●●

●●●●●

0 50 100 150 200

50
15

0
25

0
35

0

Hit No

Le
ng

th

Figure 2: Summary of BLAST results for query 1tag against the PDB chain database

8

Side-note: You may find a number of structures with missing residues (i.e. gaps in the alignment) at sites
of particular interest to you. If this is the case you may consider removing these structures from your hit list
and generating a smaller, but potentially higher quality, dataset for further exploration.

Question: How could you automatically identify gap positions in your alignment? HINT: try the command
help.search("gap", package="bio3d").

4 Comparative Structure Analysis

The detailed comparison of homologous protein structures can be used to infer pathways for evolutionary
adaptation and, at closer evolutionary distances, mechanisms for conformational change. The Bio3D package
employs both conventional methods for structural analysis (alignment, RMSD, difference distance matrix
analysis, etc.) as well as refined structural superposition and principal component analysis (PCA) to facilitate
comparative structure analysis.

4.1 Structure Superposition

Conventional structural superposition of proteins minimizes the root mean square difference between their full
set of equivalent residues. This can be performed with Bio3D functions pdbfit() and fit.xyz as outlined
previously. However, for certain applications such a superposition procedure can be inappropriate. For
example, in the comparison of a multi-domain protein that has undergone a hinge-like rearrangement of its
domains, standard all atom superposition would result in an underestimate of the true atomic displacement
by attempting superposition over all domains (whole structure superposition). A more appropriate and
insightful superposition would be anchored at the most invariant region and hence more clearly highlight the
domain rearrangement (sub-structure superposition).

The Bio3D core.find() function implements an iterated superposition procedure, where residues dis-
playing the largest positional differences are identified and excluded at each round. The function returns
an ordered list of excluded residues, from which the user can select a subset of ’core’ residues upon which
superposition can be based.

core <- core.find(pdbs)

The plot.core() and print.core() functions allow one to further examine the output of the core.find()
procedure (see below and Figure 3).

col = rep("black", length(core$volume))

col[core$volume < 2] = "pink"

col[core$volume < 1] = "red"

plot(core, col = col)

The print.core() function also returns atom and xyz indices similar to those returned from the atom.select()
function. Below we use these indices for core superposition and to write a quick PDB file for viewing in a
molecular graphics program such as VMD (Figure 4).

core.inds <- print(core, vol = 1)

88 positions (cumulative volume <= 1 Angstrom^3)

start end length

1 32 52 21

2 195 195 1

3 216 226 11

4 239 239 1

9

304 275 245 215 185 155 125 95 75

0
50

10
0

15
0

20
0

25
0

Core Size (Number of Residues)

To
ta

l E
lli

ps
oi

d
V

ol
um

e
(A

ng
st

ro
m

^3
)

Figure 3: Identification of core residues

10

5 242 247 6

6 260 274 15

7 279 279 1

8 282 283 2

9 295 304 10

10 317 336 20

write.pdb(xyz = pdbs$xyz[1, core.inds$xyz], file = "quick_core.pdb")

Figure 4: The most structural invariant core positions in the transducin family

We can now superpose all structures on the selected core indices with the fit.xyz() or pdbfit() function.

xyz <- pdbfit(pdbs, core.inds)

The above command performs the actual superposition and stores the new coordinates in the matrix
object xyz.

Side-note: By providing an extra outpath="somedir" argument to pdbfit the superposed structures can
be output for viewing (in this case to the local directory somedir which you can obviously change). These
fitted structures can then be viewed in your favorite molecular graphics program (Figure 5).

4.2 Standard Structural Analysis

Bio3D contains functions to perform standard structural analysis, such as root mean-square deviation (RMSD),
root mean-square fluctuation (RMSF), secondary structure, dihedral angles, difference distance matrices etc.
The current section provides a brief exposure to using Bio3D in this vein. However, do feel free to skip ahead
to the arguably more interesting section on PCA analysis.

Root mean square deviation (RMSD): RMSD is a standard measure of structural distance between
coordinate sets. Here we examine the pairwise RMSD values and cluster our structures based on these values:

rd <- rmsd(xyz)

hist(rd, breaks = 40, xlab = "RMSD ()")

11

Figure 5: Structure ensemble of transducin family superposed based on core positions

RMSD clustering

hc.rd <- hclust(as.dist(rd))

plot(hc.rd, labels = pdbs$id, ylab = "RMSD", main = "RMSD Cluster Dendrogram")

Question: How many structure groups/clusters do we have according to this clustering? How would
determine which structures are assigned to which cluster? HINT: See help(cutree).

Question: What kind of plot would the command heatmap(rd) produce? How would you label this plot
with PDB codes? HINT: labCol and labRow.

Root mean squared fluctuations (RMSF): RMSF is another often used measure of conformational
variance. The Bio3D rmsf() function will return a vector of atom-wise (or residue-wise) variance instead of
a single numeric value. For example:

rf <- rmsf(xyz[, gaps.pos$f.inds])

plot.bio3d(res.ind, rf, sse = sse, ylab = "RMSF (A)", xlab = "Position", typ = "l")

Torsion/Dihedral analysis: The conformation of a polypeptide or nucleotide chain can be usefully de-
scribed in terms of angles of internal rotation around its constituent bonds.

12

Histogram of rd

RMSD (Å)

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
50

10
0

15
0

20
0

25
0

Figure 6: Histogram of RMSD among transducin structures

13

4G
5Q

_D
4G

5O
_D

4G
5R

_A
4G

5Q
_A

4G
5O

_A
3O

N
W

_B
1K

JY
_C

2O
M

2_
C 3Q

I2
_A

3Q
I2

_B
2X

N
S

_A
2X

N
S

_B 3O
N

W
_A

1K
JY

_A
2O

M
2_

A
3V

00
_B

3V
00

_C
3V

00
_A

1G
IT

_A
1A

S
2_

A
1G

O
T

_A
1G

P
2_

A
1G

G
2_

A
1A

S
0_

A
1S

V
S

_A
2Z

JY
_A

1S
V

K
_A

3F
FA

_A
1G

F
I_

A
1G

IA
_A

1G
IL

_A
1C

IP
_A

1B
H

2_
A

3C
7K

_C
1T

N
D

_A
1T

N
D

_B
1T

N
D

_C
1T

A
D

_A
1T

A
D

_B
1T

A
D

_C
1F

Q
K

_A
1F

Q
K

_C
1F

Q
J_

A
1F

Q
J_

D 2I
H

B
_A

2O
D

E
_A

2O
D

E
_C

2V
4Z

_A
2G

T
P

_B
1A

G
R

_A
1A

G
R

_D
1T

A
G

_A
3Q

E
0_

B

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

RMSD Cluster Dendrogram

hclust (*, "complete")
as.dist(rd)

R
M

S
D

Figure 7: RMSD clustering of transducin structures

14

0 50 100 150 200 250 300

0
1

2
3

4
5

Position

R
M

S
F

 (
A

)

Figure 8: RMSF plot

15

tor <- torsion.pdb(pdb)

basic Ramachandran plot

plot(torphi, torpsi, xlab = "phi", ylab = "psi")

Lets compare the Calpha atom based pseudo-torsion angles between two structures:

a.xyz <- pdbs$xyz["1TAG_A",]

b.xyz <- pdbs$xyz["1TND_B",]

gaps.xyz <- is.gap(pdbs$xyz["1TAG_A",])

gaps.res <- is.gap(pdbs$ali["1TAG_A",])

resno <- pdbs$resno["1TAG_A", !gaps.res]

a <- torsion.xyz(a.xyz[!gaps.xyz], atm.inc = 1)

b <- torsion.xyz(b.xyz[!gaps.xyz], atm.inc = 1)

d.ab <- wrap.tor(a - b)

sse2 <- dssp(read.pdb("1tag"))

Note: Accessing online PDB file

HEADER GTP-BINDING PROTEIN 23-NOV-94 1TAG

plot.bio3d(resno, abs(d.ab), typ = "h", sse = sse2, xlab = "Residue", ylab = "Angle")

Difference distance matrix analysis (DDM) Distance matrices can be calculated with the function
dm() and contact maps with the function cmap(). In the example below we calculate the differe distance
matrix by simply subtracting one distance matrix from another. Note the vectorized nature of the this
calculation (i.e. we do not have to explicitly iterate through each element of the matrix):

a <- dm(a.xyz[!gaps.xyz])

b <- dm(b.xyz[!gaps.xyz])

plot((a - b), nlevels = 10, grid.col = "gray", resnum.1 = resno, resnum.2 = resno,

xlab = "1tag", ylab = "1tnd (positions relative to 1tag)")

Question: Can you think of the pros and cons of these different analysis methods?

5 Principal Component Analysis (PCA)

Following core identification and subsequent superposition, PCA can be employed to examine the relationship
between different structures based on their equivalent residues. The application of PCA to both distributions
of experimental structures and molecular dynamics trajectories, along with its ability to provide considerable
insight into the nature of conformational differences is also discussed in the molecular dynamics trajectory
analysis vignette.

Briefly, the resulting principal components (orthogonal eigenvectors) describe the axes of maximal vari-
ance of the distribution of structures. Projection of the distribution onto the subspace defined by the largest
principal components results in a lower dimensional representation of the structural dataset. The percentage
of the total mean square displacement (or variance) of atom positional fluctuations captured in each dimen-
sion is characterized by their corresponding eigenvalue. Experience suggests that 3–5 dimensions are often
sufficient to capture over 70 percent of the total variance in a given family of structures. Thus, a handful of
principal components are sufficient to provide a useful description while still retaining most of the variance
in the original distribution (Grant et al., 2006).

16

●●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●●●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●●

● ●●●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●●●
●●

●
●

●

●

●

●
●●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

● ●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●● ●●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●● ●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●●●

●

●●●
●

●

● ●

−150 −100 −50 0 50 100 150

−
15

0
−

10
0

−
50

0
50

10
0

15
0

phi

ps
i

Figure 9: Basic Ramachandran plot

17

50 100 150 200 250 300 350

0
20

40
60

80

Residue

A
ng

le

Figure 10: Torsion angle difference between structures in GDP (1tag) and GTP (1tnd) nucleotide states

18

−10

−5

0

5

10

1tag

1t
nd

 (
po

si
tio

ns
 r

el
at

iv
e

to
 1

ta
g)

27 67 107 147 187 227 267 307

327

307

287

267

247

227

207

187

167

147

127

107

87

67

47

27

Figure 11: Difference of distance matrices between structures in GDP(1tag) and GTP(1tnd) nucleotide states

19

The below sequence of commands returns the indices of for gap containing positions, which we then exclude
from subsequent PCA with the pca.xyz() command.

Ignore gap containing positions

gaps.res <- gap.inspect(pdbs$ali)

gaps.pos <- gap.inspect(pdbs$xyz)

-- Do PCA

pc.xray <- pca.xyz(xyz[, gaps.pos$f.inds])

Question: Why is the input to function pca.xyz() given as xyz rather than pdbs$xyz?

Question: Why would you need superposition before using pca.xyz but not need it for pca.tor?
A quick overview of the results of pca.xyz() can be obtained by calling plot.pca() (Figure 12).

plot(pc.xray, col = annotation[, "color"])

We can also call plot.bio3d() to examine the contribution of each residue to the first three principal
components with the following commands (Figure 13).

par(mfrow = c(3, 1), cex = 0.6, mar = c(3, 4, 1, 1))

plot.bio3d(res.ind, pc.xray$au[, 1], sse = sse, ylab = "PC1 (A)")

plot.bio3d(res.ind, pc.xray$au[, 2], sse = sse, ylab = "PC2 (A)")

plot.bio3d(res.ind, pc.xray$au[, 3], sse = sse, ylab = "PC3 (A)")

par(op)

The plots in Figures 12 and 14 display the relationships between different conformers, highlight positions
responsible for the major differences between structures and enable the interpretation and characterization
of multiple interconformer relationships.

To further aid interpretation, a PDB format trajectory can be produced that interpolates between the most
dissimilar structures in the distribution along a given principal cmponent. This involves dividing the difference
between the conformers into a number of evenly spaced steps along the principal components, forming the
frames of the trajectory. Such trajectories can be directly visualized in a molecular graphics program, such
as VMD (Humphrey et al., 1996). Furthermore, the PCA results can be compared to those from simulations
(see the molecular dynamics and normal mode analysis vignettes), as well as guiding dynamic network
analysis, being analyzed for possible domain and shear movements with the DynDom package (Hayward and
Berendsen, 1989), or used as initial seed structures for reaction path refinement methods such as Conjugate
Peak Refinement (Fischer and Karplus, 1992).

a <- mktrj.pca(pc.xray, pc = 1, file = "pc1.pdb")

5.1 Conformer Clustering in PC Space

Clustering structures in PC space can often enable one to focus on the relationships between individual
structures in terms of their major structural displacements, with a controllable the level of dynamic details
(via specifying the number of PCs used in the clustering). For example, with clustering along PCs 1 and
2, we can investigate how the X-ray structures of transducin relate to each other with respect to the major
conformation change that covers over 65% structural variance (See Figures 12 and 15). This can reveal
functional relationships that are often hard to find by conventional pairwise methods such as the RMSD
clustering detailed previously. For example in the PC1-PC2 plane, the inactive “GDP” structures (green
points in Figure 12) are further split into two sub-groups (Figures 15 and 16). The bottom-right sub-group
(blue) exclusively correspond to the structures complexed with GDP dissociation inhibitor (GDPi). This is
clearly evident in the PC plot and clustering dendrogram that can be generated with the following commands:

20

●●●●●
●

●

●
●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●
●

● ●

●

●

●●

−10 0 10 20 30

−
10

0
10

20

PC1

P
C

2

● ●
●● ●
●

●

●
●

●

● ●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●
●

● ●

●

●

●●

−10 −5 0 5 10 15

−
10

0
10

20

PC3

P
C

2

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

−10 0 10 20 30

−
10

−
5

0
5

10
15

PC1

P
C

3

1 3 5 7 20

0.
0

7.
7

15
.6

49
.8 49.8

65.4

73.1
78.8

91 98.3

Eigenvalue Rank

P
ro

po
rt

on
 o

f V
ar

ia
nc

e
(%

)

Figure 12: Overview of PCA results for transducin crystallographic structures

21

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

P
C

1
(A

)

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

P
C

2
(A

)

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

P
C

3
(A

)

Figure 13: Contribution of each residue to the first three principal components

22

Figure 14: Interpolated structures along PC1 produced by the mktrj.pdb() function

hc <- hclust(dist(pc.xray$z[, 1:2]))

grps <- cutree(hc, h = 30)

cols <- c("red", "green", "blue")

plot(pc.xray$z[, 1:2], typ = "p", pch = 16, col = cols[grps], xlab = "PC1",

ylab = "PC2")

plot(hc, labels = pdbs$id, main = "PC1-2", xlab = "", ylab = "Distance")

abline(h = 30, lty = 3, col = "gray60")

Side-note: On the PC1 vs PC2 conformer plot in Figure 15 you can interactively identify and label indi-
vidual structures by using the identify() function clicking with your mouse (left to select, right to end). In
this particular case the command would be:

identify(pc.xray$z[, 1], pc.xray$z[, 2], labels = pdbs$id)

Question: Which clustering appears to be most informative, that based on RMSD or that based on PCA?
Why might this be the case? HINT: It can be useful to think of PCA as a filter for large scale conformational
changes.

Question: Can you find a Bio3D function that would allow you to compare the different clustering results?

6 Where to Next

If you have read this far, congratulations! We are ready to have some fun and move to other package
vignettes that describe more interesting analysis including Correlation Network Analysis (where we will build

23

●
●

●
●●

●

●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●
●

−10 0 10 20 30

−
10

0
10

20

PC1

P
C

2

Figure 15: Clustering based on PC1-PC2

24

4G
5Q

_D
4G

5O
_D

4G
5R

_A
4G

5Q
_A

4G
5O

_A
3O

N
W

_B
1K

JY
_C

2O
M

2_
C

2X
N

S
_A

2X
N

S
_B

3Q
I2

_A
1K

JY
_A

2O
M

2_
A

3O
N

W
_A

3Q
I2

_B
1S

V
S

_A
2Z

JY
_A

1S
V

K
_A

1A
S

0_
A

1C
IP

_A
1G

F
I_

A
1G

IL
_A

2I
H

B
_A

1G
IA

_A
1B

H
2_

A
3F

FA
_A

1T
A

D
_C

1T
A

D
_A

1T
N

D
_A

1T
N

D
_C

1T
A

D
_B

1F
Q

K
_A

1F
Q

J_
A

1F
Q

K
_C

1T
N

D
_B

1F
Q

J_
D

2O
D

E
_C

1A
G

R
_A

2O
D

E
_A

3C
7K

_C
2G

T
P

_B
1A

G
R

_D
2V

4Z
_A

1G
P

2_
A

1G
G

2_
A

1T
A

G
_A

3Q
E

0_
B

3V
00

_B
3V

00
_A

1G
IT

_A
1A

S
2_

A
3V

00
_C

1G
O

T
_A

0
10

20
30

40
50

PC1−2

hclust (*, "complete")

D
is

ta
nc

e

Figure 16: Clustering based on PC1-PC2

25

and dissect dynamic networks form different correlated motion data), enhanced methods for Normal Mode
Analysis (where we will explore the dynamics of large protein families and superfamilies using predictive
calculations), and advanced Comparative Structure Analysis (where we will mine available experimental
data and supplement it with simulation results to map the conformational dynamics and coupled motions of
proteins).

7 Document Details

This document is shipped with the Bio3D package in both Rnw and PDF formats. All code can be extracted
and automatically executed to generate Figures and/or the PDF with the following commands:

knitr::knit("Bio3D_pca.Rnw")

tools::texi2pdf("Bio3D_pca.tex")

Information About the Current Bio3D Session

sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

##

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats graphics utils datasets grDevices methods base

##

other attached packages:

[1] XML_3.95-0.2 bio3d_2.0-1

##

loaded via a namespace (and not attached):

[1] codetools_0.2-8 digest_0.6.3 evaluate_0.5.1 formatR_0.9

[5] highr_0.2.1 knitr_1.5 stringr_0.6.2 tools_3.0.2

References

Grant, B.J. and Rodrigues, A.P.D.C and Elsawy, K.M. and Mccammon, A.J. and Caves, L.S.D. (2006)
Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics, 22,
2695–2696.

Grant, B.J. and Mccammon, A.J. and Caves, L.S.D. and Cross, R.A. (2007) Multivariate Analysis of
Conserved Sequence-Structure Relationships in Kinesins: Coupling of the Active Site and a
Tubulin-binding Sub-domain. J. Mol. Biol., 5, 1231–1248

Fischer, S. and Karplus, M. (1992) Conjugate peak refinement: an algorithm for finding reaction
paths and accurate transition states in systems with many degrees of freedom. Chem. Phys.
Lett, 194, 252–261

Hayward, S. and Berendsen, H. (1998) Systematic analysis of domain motions in proteins from
conformational change: new results on citrate synthase and T4 lysozyme. Proteins, 30, 144–154

Humphrey, W., et al. (1996) VMD: visual molecular dynamics. J. Mol. Graph, 14, 33–38

26

Yao, X.Q. and Grant, B.J. (2013) Domain-opening and dynamic coupling in the alpha-subunit of
heterotrimeric G proteins. Biophys. J, 105, L08–10

27

	Background
	Getting Started
	Working with single PDB structures
	Working with multiple PDB structures
	Exploring example data for the transducin heterotrimeric G Protein

	Constructing Experimental Structure Ensembles for a Protein Family
	Finding Available Sets of Similar Structures
	Multiple Sequence Alignment

	Comparative Structure Analysis
	Structure Superposition
	Standard Structural Analysis

	Principal Component Analysis (PCA)
	Conformer Clustering in PC Space

	Where to Next
	Document Details

