HOGESCHOOL
ROTTERDAM

“ HOCE2CHOOI ~ '
-- - : : |

| B - ople
l “ U uofizsfovvv‘ib:!'-_. e

Lab Work Handbook

Version 3.1

E.H.W. van de Logt
JZM Br'OederS






Lab Work Handbook Programmable Hardware
Versie 3.1

E.H.W. van de Logt
J.H. Peltenburg
J.Z.M. Broeders

[@ocle)

Lab Work Handbook Programmable Hardware from Rotterdam University of Applied Sciences
is licensed by Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Netherlands
license.

Rotterdam University of Applied Sciences “


https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en




Contents

Introduction

7

8

Purpose and prerequisites

Creating a ModelSim Project

Simulating your design with ModelSim

Creating a Quartus project

Assigning signals to physical pins

Place and route the design for FPGA implementation
Summary

Tips and further reading

Bibliography

11

15

19

23

31

33

35

Rotterdam University of Applied Sciences n






Introduction

In the modern world of electronics, everything must be fast; the time-to-market must be
short and performance must be high. Recently, the PLD (programmable logic device) market
has grown tremendously (turnover doubles about every five years') because these devices
have become more and more adapt to meet these criteria in many fields of electronics.

FPGAs (field-programmable gate arrays) and other reconfigurable hardware in general are
becoming more popular every day. If you have a high-performance application without high
power requirements, but you don’t have money or time to make an ASIC (application specific
integrated circuit), reconfigurable hardware is often a good choice.

HDLs (hardware description languages) capture the functionality of digital schematics in
plain text. In short; a HDL is used to “draw” digital logic with text. The most widely-used HDLs
today are VHDL and Verilog, but there are many others (System C for example). In practise,
HDLs are used to design full-scale production ICs, ASICs and especially FPGA configurations.

The power of HDLs is the high level of abstraction. Developing applications with HDLs and
letting tools compile and place them in your PLD is faster than drawing schematics by hand.
Next to that, the HDL code can often be reused in newer, bigger PLDs and is easily scalable.
For example; a well coded 16-bit microprocessor core (captured in HDL) may be changed
into a 32-bit microprocessor core by adjusting a few variables only.

The goal of this course is an introduction to VHDL, FPGAs and PLDs in general. The functional
designs made by students are implemented into an FPGA that resides on the Altera DE1-SoC
development kit.

This document contains the introductory assignment for this course. This first assignment is a
step by step introduction to designing and simulating logic with ModelSim and synthesizing
and testing it with Quartus.

1 See: https://www.researchandmarkets.com/reports/5398214/fpga-market-by-configuration-low-
end-fpga-mid

Rotterdam University of Applied Sciences n


https://www.researchandmarkets.com/reports/5398214/fpga-market-by-configuration-low-end-fpga-mid
https://www.researchandmarkets.com/reports/5398214/fpga-market-by-configuration-low-end-fpga-mid




Purpose and prerequisites

The purpose of the first introductory assignment is:

* to create a simple functional design with basic logic for a digital system consisting of
LEDs and switches;

* to simulate a digital system and thus verify its functionality with ModelSim;
* to introduce you to working with the Quartus Prime software tool,;

* to reconfigure an FPGA with a digital schematic.
The perquisites of this assignment are:

* the Terasic DE1-SoC Development Kit is available;

* Intel Quartus Prime Lite edition (version 18.1) software including the has been installed;
We use this older version because we want to use the Nios softcore processor in the
following up course CSC10;

¢ ModelSim-Intel FPGA Edition has been installed.

The first thing we will do is create a project in ModelSim to make functional simulations.

Rotterdam University of Applied Sciences n






HWPO1

Creating a ModelSim Project

Step 1: Find and open the link to “ModelSim-Intel FPGA Starter Edition” on your desktop
or in the start menu and start ModelSim.

After closing the “Important info” window, it should show the following window:

ﬁ ModelSim - INTEL FPGA STARTER EDITION 10.5b - a X
File Edit View Compile Simulate Add Library Tools Layout Bookmarks Window Help

8- 6 y N i J & P8 G B || Ccoumnlayout [A11Columns b
O - T | H b 415 2 SIS AT T A J Layout |NoDesign hd
1 vibrary + ) x|
"Nama |Tvpe Path ‘ -
i{ 220model Library $MODEL_TECH/.. faltera/vhdl/220model
1—‘1 220model _ver Library $MODEL_TECH/.. faltera/verilog/220m...
1—'1 altera Library $MODEL_TECH/. . faltera/vhdl/altera
Lﬂ altera_lnsim Library $MODEL_TECH/.. faltera/vhdl/altera_l...
iﬂ altera_Insim_ver Library SMODEL_TECH)/.. falterafverilog/altera...
i{ altera_mf Library SMODEL_TECH/. . faltera/fvhdl/altera_mf
1—‘1 altera_mf_ver Library $MODEL_TECH/.. faltera/verilog/altera...
1—'1 altera_ver Library $MODEL_TECH/. . faltera/verilog/altera
1+ ﬂ arriaii Library $MODEL_TECH/.. faltera/vhdl/arriaii
) ﬂ arriaii_hssi Library SMODEL_TECH/.. falterafvhdl/arriaii_hssi
+ —‘l arriaii_hssi_ver Library $MODEL_TECH/.. faltera/verilog/arriaii. ..
1—‘1 arriaii_pde_hip Library $MODEL_TECH/.. faltera/vhdl/arriaii_p. ..
1—'1 arriaii_pcie_hip_ver Library $MODEL_TECH/.. faltera/verilog/arriaii. ..
1+ Jl arriaii_ver Library $MODEL_TECH/.. falterafverilog/arriaii
L+ ﬂ arriaiigz Library SMODEL_TECH/.. falterafvhdl/arriaiigz
+ —‘l arriaiigz_hssi Library $MODEL_TECH/. . faltera/vhdl/arriaiigz. ..
L+ —‘l arriaiigz_hssi_ver Library $MODEL_TECH/.. faltera/verilog/arriaii. ..
1—'1 arriaiigz_pcie_hip Library $MODEL_TECH/. . faltera/vhdl/arriaiigz. ..
1+ Jl arriaiigz_pcie_hip_v... Library $MODEL_TECH/.. faltera/verilog/arriaii. ..
L+ ﬂ arriaiigz_ver Library SMODEL_TECH/.. [altera fverilog/arriaiigz
+ —‘l arriav Library $MODEL_TECH/.. faltera/vhdl/arriav
1—‘1 arriav_hssi_ver Library $MODEL_TECH/.. faltera/verilog/arriav...
Lﬂ arriav_pcie_hip_ver Library $MODEL_TECH/.. falterafverilog/arriav...
=4l arriav_ver Library SMODEL_TECH/.. /altera/verilog/arriav
i‘l arriavgz Library SMODEL_TECH/.. falterafvhdlfarriavgz j
-\ Transcript s + 2 x|
# Reading C:/intelFPGA/18.1/modelsim ase/tcl/vsim/pref.tcl
ModelSim >
=
<No Design Loaded> $MODEL_TECHY/. . faltera/verilog/arriav y

The library window shows all libraries. Libraries contain components that can be used in
simulations. Most of the components in the ModelSim INTEL FPGA Starter edition shown in
the list are hardware components inside the physical FPGA that can be used in your designs.
There are also some other useful components that can be used for testing. For this course,
we will not make use of any of them. Eventually, we will create our own library with our
own components (later more on this).

We will first create a new project.

Rotterdam University of Applied Sciences “



m Chapter 2. Creating a ModelSim Project

Step 2: Go to New Project...‘.

You should see the “create project” window.

Step 3: Fill it in as follows:

M Create Project X

Project Mame
assignmentl

Project Location
C:/HWPO1 Browse...

Default Library Name

work

Copy Settings From
medelsim_ase,-'m::delsj_m.ini Browse... |

(¢ Copy Library Mappings { Reference Library Mappings

oK Cancel ||

Step 4:  Click [0K|.

It will probably show a pop-up window that asks if you want to ModelSim to create a directory
for your project.

Step 5: Let ModelSim create the new directory.
A new window should pop up:

ﬁ Add items to the Project X
Click on the icon to add items of that type:

0] ]

Create New File Add Exasting File
w— N
M tad
Create Simulation Create New Folder

Close

Step 6: Click “Create New File.”

We will now create our first VHDL file. The extension for VHDL files is .vhd. The name of
the file must be the same of your components name! Since the component will be named
“my_first component” we will name the file my_first_component.vhd.

n Programmable Hardware




HWPO1

Step 7: Click and to close the “Add items to project” window.

—File Name
|my_f irst_component.vhd Browse... |

e

_ Ok | Cancel |

Now ModelSim will show the project window:

File Edit View Compile Simulate Add Project Tools Lay
|B-sRed @02 0-AE M|
|- A-T@-F|| ¢ 1188 2| awat

*|Name Statug Type Modified
‘ ™M my_first_compone... *»  VHDL 0  05/12/202306:11:21...

thvx|Eﬁqut |

We can see our VHDL file included in the project. The status of the file, which is a question
mark, means that the file is not compiled yet. We will do this later.

Step 8: Right-click on the file and select . Select the “VHDL” tab and choose

“Use 1076

-2008”.

We will use the latest (2008) version of the VHDL standard.

—

A

Step 9: Double-click on the file to edit it. Add the following lines to the file:

library ieee;

v}

General  VHDL ] Coverage | T
anguage Syntax | [ Don't put debugging info in library
" Use 1076-1987 V¥ Use explicit dedarations only
" Use 1076-1993 [ Disable loading messages
" Use 1076-2002 [~ Show source lines with errors
¢ Use 1076-2008 I~ Disable optimizations by using -00

use ieee.std_logic_1164.all;

entity my_first_component is

port (

inputs: in std_ulogic_vector(3 downto 0);

Rotterdam University of Applied Sciences



m Chapter 2. Creating a ModelSim Project

outputs: out std_ulogic_vector(6 downto 0)
)

end my_first_component;

The first two lines define the standard libraries that contain many different functions and
data types in VHDL we want to use for this (and probably any other) project.

The entity part defines the interface of our functional block. The port part inside the
entity defines which ports we want to see at the interface of our functional block. It does
not define the implementation of the functionality of the block itself. This is done in the
architecture section.

This concept, the difference between and separation of the interface and the implementation
of a (sub)system, is the key to system engineering in any field.

in std_ulogic_vector(3 downto 0) defines an input port (high impedance). std_ulogic
is a basic digital connection. A vector makes it a group or bus of inputs. 3 downto 0 tells
us that the bus is four bits wide. This is the VHDL notation for a bus. Note that we have
written it in MSB-first style (Most Significant Bit first).

Step 10: Save the file.

We have now declared the interface of your component. What is missing is how it should
behave. This is done in the architecture. However, only declaring the interface is enough to
compile our component.

Step 11: Right click on the file and select |Compile )) Compile Selected|.

You should now see the following:

[#] Project - C:HWPO 1/assignment1 ——— :in—— #| & x| | C:\HWPO1\my_first_component.vhd - Default b33 + ) x|
¥ |Name statusType |Orde{Modified Ln# ¢ H vow #7]»]
&) my_first_component.vhd ¢~ VHDL 0  05/26/2023 L library ieee;

use ieee.std_logic_ll64.all;

entity my first component is

port |

0 ods W

€ inputs: in std _ulogic_wector (3 downto 0);
7 outputs: out std_ulogic_vector (€ downto 0
5 end my_ first_component;

¢| | » X_ .t 'k

10 L

c
g
-
3
-
2
=2t

Note that the status of the component has also changed to a green v/. This means it compiled
successfully. If it didn’t compile successfully it would show a red X. Even though we compiled
the component, we cannot simulate it, because we have not declared how it should behave.
This can be done by adding the architecture section to the code.

Step 12: Add the following lines to the file:

architecture implementation of my_first_component is
begin

outputs(0) <= inputs(90);

outputs(1) <= inputs(1);

outputs(2) <= inputs(0) inputs(1);

outputs(3) <= inputs(0) inputs(1);

n Programmable Hardware



HWPO1

outputs(4) <= inputs(9) inputs (1) inputs(2) «

— inputs(3);
outputs(5) <= inputs(0) inputs (1) inputs(2) inputs(3);
outputs(6) <= (inputs(0) inputs (1) inputs(2) «

— inputs(3));
end implementation;

The outputs are now some combinational function of the inputs.

Step 13: Fill in the truth table for this function, shown below.

inputs outputs

0000 1000000
0001 0100101
0010 0100110
0011 0101111
0100 .......
o101 .......
o110 .......
N I
1000 .......
1001 .......
1010 .......
1011 ...,
1100 .......
1101 ...,
1110 .......
L L

We will now verify these results by simulating our little design.

Rotterdam University of Applied Sciences n






3

Simulating your design with ModelSim

Step 14: In the ModelSim menu, select [Simulate ) Start Simulation... .

After opening up the “work” library, you should see the following dialog:

ﬁ Start Simulation

X
Design I VHDL ] Verilog ] Libraries ] SDF ] Others ] 43|
FIName |T‘,.-pe |Pa1:h I ﬂ
+ ‘1 work Library work
+ ‘1 220model Library $MODEL_TECH)/.. faltera/vhdl/220model
+) ‘1 220model_ver Library $MODEL_TECH)/.. faltera/verilog/220m...
+) ‘l altera Library S$MODEL_TECH/.. faltera/vhdl/altera
+ ‘1 altera_Insim Library $MODEL_TECH)/.. faltera/vhdl/altera_l... d
Design Unit(s) Resolution

default !l

oK Cancel

When we created the project, we called our default library “work”. This library now appears
with all our compiled components in the dialog. Expand the library “work”, and you can see
“my_first component” appearing there. You may even expand the component in the list to

see which implementations are available. In our case, we have only one implementation
which is called “implementation”.

Rotterdam University of Applied Sciences n



m Chapter 3. Simulating your design with ModelSim

|

M

Deg'mlmlveriog]utrarieslswloﬂ'lers] ﬂﬂ

v|mme [Type ]Path || 3

= work Library work

[=HE] my_first_component Entity C:HWPO1/my_first_component.vhd
implementation  Architecture

=+l 220model Library ~ $MODEL_TECH/..faltera/vhd//220mode!

M 220model_ver Library $MODEL_TECH/. . /altera/verilog/220m... ;l

~Design Unit(s) solution————

| |default !J
0K Cancel I

Step 15: Select “my _first component” and click to start the simulation.
You should now see the following window:

File Edit View Compile Simulate Add Transcript Toels Layout Bookmarks Window Help
‘ -2 & i mBan > o -Aim H @Eﬂ[ﬁlﬁ|

‘ B e EF] 00psHEIEIEEEELS | D DO H ColumnLayout [411Columns v ‘
[ s pla][fowmae e a-aa 3| tat L-aa| obmnme |
y i—— # & x| M v_first_component.vhd (/my_first_component) - Default ::::+: 4 & X|
¥|Instance | Design unit tnz | [ W How ]3] »
= my_first_comp... my_first_com... uts Signal In 1 library ieee;
@ line__13 my_first_com... outputs Signal Out 2 use ieee.std_logic_l1€4.all;
& line__14 my_first_com... 3
o line__15 my_first_com... 4 Eentity my_ first_component is
& line__16 my_first_com... C = port (
& line__17 my_first_com... € inputs: in std_ulogic_vector
& line__18 my_first_com... 7 outputs: out std_ulogic_vectc
& line__19 my_first_com... || «| | » 8 - N
. standard standard = end my_firsr._campanen‘r.:
B texto o~ &8 Processes (Active) —— i—— + & x| w0 L
W std_logic_1164  std_logic_1164 State * 11 architecture implementation of my i
- 12 [Hbegin
13 outputs (0) <= inputs(0);
oflay outputs (1) <= inputs(l);
15 outputs (2) <= inputs(0) or ir
le outputs (3) <= inputs(0) and ing
o L] 17 outputs (4) <= inputs(0) and ing
4 * . = d 18 outputs (5) <= inputs(0) or ing
Library | ) Project » | & sim <M | 4 | | o T - T

ModelSim> vsim -gui work.my first_ component -
# vsim -gui work.my first_component

# Start time: 12:0€:32 on May 13,2023

# Loading std.standard

# Loading std.textio(bedy)

# Loading ieee.std_logic_l16€4(body)

# Loading work.my first_component(implementation)

VSIM 2)]

<

| |Pto}ect:as§grment1 \Now:ops Delta: 0 |st'n:lmv_ﬁ'st_cwwrent 4

This is the simulation setup of ModelSim. In the “Instance” window we can see all components
and their underlying architectures and processes from which we can select objects to include
in the simulation. All objects that can be included are shown in the “Objects” window.

We can clearly see our signals inputs and outputs here.

Programmable Hardware



HWPO1

Now, if we want to simulate our design with all the signals that are in it do the following:

Step 16: Right click in the “Objects” window.

Step 17: Click [Add to>> Wave>> Signals in Design}_

All signals are now added to the “Wave” window. We can now see our signals in the wave
window:

sm] Wave - Defauit e + 7| x|
- /my_first_componentfoutputs
‘me MNow | 0,00000000 ms

are Cursor 1000000000 ms B

K B P [v]

[ﬁmﬂ;_ﬁrst_cnn‘ponmt.\.hd l_lWave I

&-liLIL.

Their values are all U’s. This means the values are unknown. To set the value of a signal,
right-click this signal’s name or value in the wave window and select . Of course, we
should only force signals that are inputs.

Step 18: Open the force window on the signal inputs.

M Force Selected Signal X .

Signal Name: |sim: /my_first_component/inputs

Value: UUTOU
Kind

* Freeze ( Drive ( Deposit

Delay For: 0

Cancel After:

ok | cancel |

The value here is shown as UUUU. Remember that the inputs signal is a vector of four values.
The inputs are currently all unknown (U).

Step 19: Change the value to 0000.

This means that input (@) will get the value @. input (1) will get the value @ as well, and so
forth.

Step 20: Click to apply the changes.

You will not see any changes right away in the wave window, but that is because the simulation
hasn’t started yet.

Step 21: To run the simulation for 100 time steps, go to menu. Click|Simulate )Run ) Run 100/,

Rotterdam University of Applied Sciences m



m Chapter 3. Simulating your design with ModelSim

The Wave window should now show (to enlarge hold the Ctrl button down while scrolling
with the mouse):

1| Wave - Default + ) %/

Jfnw first_component/inputs o000 |

B i

MNow 0.0000001 ms

| -Q
.u‘= Curmrl oommmoms

W s ] |
I_ my_first_component.vhd l u]Wave I |3

You can also expand the signals that are vectors to show their individual elements. This
should look like this:

&L [my_first_component/inputs Y0000
(3
@
)
©
8- fmy_first_component/outputs
“a (6)

“u (9)
‘a9
‘a3
‘2 (@
‘a (1)
‘s (0)

Verify that the outputs have the correct values (corresponding to your code).

Step 22: Now force the inputs to @001 and repeat until you have tested all possible inputs
(assume the values of each individual input can only be @ or 1.

Take a screenshot of the wave window which shows all possible input values and the
associated output values. Compare the output values with the expected values given in the
truth table you filled in at step 13.

Verifying your design by forcing all possible input combinations one by one and comparing
the simulation results from the wave window with the intended behavior in the truth table
is a time-consuming and error-prone job. During this course you will learn a better way to
verify your design by using a so called “testbench”.

If you are not sure your design works properly, call your instructor to verify your results.

Programmable Hardware



Creating a Quartus project

Now the design is ready to be exported to Quartus, so we may continue to implement it with
the FPGA.

Start “Quartus (Quartus Prime 18.1)” from the desktop or from the start menu.
Start the “New Project Wizard”.
Skip the introduction of the Wizard.

In the “Directory, Name, etc.” page of the wizard, select the same directory as your
ModelSim project as the working directory.

Name the project “assignment1” as well.

The top-level entity is our component called “my _first component”. If you decide to
add a different top level later it is easy to change after you've completed the wizard.

Eventually, the current page should look as follows:

a

\_p New Project Wizard X

Directory, Name, Top-Level Entity

What is the working directory for this project?

C./HWPO1

What is the name of this project?

Assignment1

What is the name of the top-level design entity for this project? This name is
case sensitive and must exactly match the entity name in the design file.

my_first_component

Use Existing Project Settings...

Step 23: Click [Next|,

Step 24: Set Project Type to “Empty Project” and click .

On the next page (Add Files), since we've already created a VHDL file, we can easily include
it in the project by clicking . The page should now look like this:

Rotterdam University of Applied Sciences m



m Chapter 4. Creating a Quartus project

% New Project Wizard X

Add Files

Select the design files you want 1o include in the project. Click Add All to add all
design files in the project directory to the project.

Note: you can always add design files to the project later.

Eile name: Add
« X Addal
File Name Type Library Design Entry/Syn|  Remove

my_first_componentvhd VHDL File
Up

Step 25: Click [Next|.

In the Family and Device Settings page, we have to select which FPGA we’re using. Our
programming tools are well capable of selecting the proper device automatically (this is done
through the JTAG chain), but let us select the right FPGA from the start.

The right device is the Cyclone V 5CSEMA5F31Cé6.

Step 26: Select this device:

(@ New Project Wizard x
Family, Device & Board Settings

Device Board

Select the family and device you want to target for compilation.
You can install additional device support with the Install Devices command on the Tools menu.

To determine the version of the Quartus Prime software in which your target device is supported, refer to the Device Support List webpage.

Device family Show in 'Available devices' list
Eamily: Cyclone V (E/GX/GT/SX/SE/ST) = package: Any -
Device: [All T Pin count: Any 57
Target device Core speed grade: Any -
Aurto device selected by the Fitter Name filter:
© specific device selected in 'Available devices' list Show advanced devices
Orther: nfa

Available devices:

Name Core Voltage ALMs Total 1/Os GPIOs GXB Channel PMA GXB Channel PCS
5CSEMA4U2317 1.4V 15880 314 314 0 0
5CSEMASF31A7 1.4V 32070 457 457 0 0
scsemasi3ice v [3070 a7 7 oo |
5CSEMASF31CT 1.4V 32070 457 457 0 0

m Programmable Hardware



HWPO1

Alternatively, you can select the Board tab and select the DE1-SoC board:

(_® New Project Wizard X

Family, Device & Board Settings

Device Board

Select the board/development kit you want to target for compilation.

Family: Cyclone V v Development Kit: Any b
Ayailable boards:
Name Version Family Device Vendor ALMs Total 1/Os
= Atlas-SoC (DEO-Nano-SoC) 1.0 Cyclone v 5CSEMA4U23C6  Terasic 15880 314
=] Cyclone V E FPGA Development Kit 1.0 Cyclone v SCEFA7F3117 Altera 56480 480
= Cyclone V GT FPGA DevelopmentKit 1.0 Cyclone v 5CGTFDOESF35CT Altera 113560 616
= Cyclone V SoCKit 1.0 Cyclone v 5CSXFCEDEF31CE Arrow 41910 499
=] Cyclone V SoC Development Kit 1.0 Cyclone v 5CSXFCEDEF31CE Altera 41910 499
= Cyclone v GX Starter Kit 1.0 Cyclone v 5CGXFC5C6F27CT7 Terasic 29080 364
== DEO-CV Development Board Cyclone v SCEBA4F23C7 Terasic 18480
e e e e e

Step 27: Now click until you can the wizard.

We can now see the new project in the “Project Navigator” pane on the left of the Quartus II
window. We want to implement “my_first component” on the Cyclone V FPGA that is on the
DE1-SoC development and education kit.

You may double-click on “my _first component” on the left side at the tab “Files” to show its

source. This can be a schematic, a VHDL file, a Verilog file or anything else that Quartus can
handle.

In our case, we know it is our VHDL file we created in ModelSim, so double-clicking it should
result in the following:

G Quartus Prime Lite Edition - C;/HWPO01/ssignment1 - my _first_component — a X

File Edit View Project Assignments Processing Tools Window Help

D = D .‘ my_first_component 9¢® P> B> ’.o e i‘i »# 9

search altera.com [ ]

Project Navigator «» Hierarchy vQRax @ my_first_compenentvhd ‘IP Catalog pa X‘
Entity:nstance =880 EE D B». B @ Ty ’D 27 = LY X =
i Cyclone V: 5CSEMASF31C6 1 Tibrary ieee; v ak Installed 1P
BB my first_component " % use ieee._std. _logic_1164.all; ~ Project Directory
4 Hentity my_first_component is No Selection Available
5 8 port ( ~ Library
6 inputs: in std_ulogic_vector (3 downto 0); > Basic Functi
7 outputs: out std_ulogic_vector (6 downto 0) asic Functions
8 HE > DSP
— 13 end my first component; > Interface Protocols
. : . . . 5
Tasks Compilation “l=m@= = i% ggg;:};tecture implementation of my_first_component is Memory Interfaces and Controllers
: . > i
Task 13 outputs(0) <= inputs(0); Processors and Peripherals
I 14 outputs (1) <= inputs(l); . > System
v~ B Compile Desi 15 outputs(2) <= inputs(0) or inputs(l); > Universi
empile Design 16 outputs(3) <= inputs(0) and inputs(l); University Program
> P> Analysis & Synthesis 17 outputs(4) <= inputs(0) and inputs(l) and inputs(2) and inputs(3); @ search for Parmer IP
5 18 outputs(5) <= inputs(0) or dnputs(l) or inputs(2) or inputs(3);
> B Fitter (Place & Route) 19 outputs(6) <= not(inputs(0) or inputs(1) or inputs(2) or inputs’(i));
> P> Assembler (Generate programn 20 end implementation;
— + Add..
[= |
alall O A 4 ~ <<Filter>> B Find.. 88 Find Next
L) -
=|Tvoe ID Messaae
&
&
@
i System  Processing

0% 00:00:00

Because we want ti use VHDL 2008 features in our designs, we have to tell Quartus to use
VHDL 2008 as well.

Rotterdam University of Applied Sciences



m Chapter 4. Creating a Quartus project

Step 28: Right-click on “my _first component” in the “Project Navigator” pane and select
“Settings...”.

Step 29: Select |Compiler Settings )) VHDL Input| and select VHDL 2008 and click :

- Settings - my_first_component — O X
Category: Device/Board...
General VHDL Input
Files Options for directly compiling or simulating VHDL input files. (Click on the EDA Tool Settings
Libraries category to enter options for VHDL files generated by other EDA tools.)
v |P Settings

IP Catalog Search Locatior | VHDL version
Design Templates

O VHDL 1987
v Operating Settings and Cond _
Voltage ) VHDL 1993
Temperature © vHDL 2008
v Compilation Process Settings
Incremental Compilation Library Mapping File
v EDA Tool Settings i
File name:

Design Entry/Synthesis
Simulation [ show information messages describing LMF mapping during compilation
Board-Level

v Compiler settings
VHDL Input

m Programmable Hardware



HWPO1

Assigning signals to physical pins

The first thing to do now, is to compile the design in Quartus, to let Quartus know which
signals we are using and which signals have to go to the outside world.

Step 30: In the “Tasks” pane, double-click “Analysis & Synthesis”.

If Quartus is done, it will show a green check mark next to the task you performed (if

everything went OK). If there are any errors or warnings investigate them and determine if
they need to be resolved.

Quartus should show this:

\_% Quartus Prime Lite Edition - C:/HWPO01/ssignment1 - my_first_component

File Edit View Project Assignments Processing Tools Window Help

OfFHd LB

my_first_component

PR 21

P @adE 9

- [m] X

Search altera.com [

Project Navigator #% Hierarchy vamme x @ my_first_componentvhd Q Compilation Report - my_first_component B ‘IP Catalog e x‘
Entity:Instance Table of Contents L Flow Summary Y X =
& Cyclone V: 5CSEMASF31C6 == Pty sy R <<Filter>> v 4 Installed IP
my_first_component ‘& B3 Flow Settings Flow Status Successful - Tue May 23 22:17:43 2023 v Project Directory
EE Flow Non-Default Global Settir | Quartus Prime Version 18.1.0 Build 625 09/12/2018 SJ Lite Edit No Selection Available
E= Flow Elapsed Time Revision Name my_first_component v Library
EE Flow 0S Summary Top-level Entity Name my_first_component > Basic Functions
E Flow Log Family Cyclone V > DSP
— > [ Analysis & synthesis Device 5CSEMASF31C6 > Interface Protocols
Tasks Compilation v=g8x © Flow Messages Timing Models Final > Memory Interfaces and Controllers
Task © Flow £ Logic utilization (in ALMs) N/A > Processors and Peripherals
. . I Total registers [o] > System
~ P compile Design Total pins 11 > University Program
> P> Analysis & Synthesis Total virtual pins 0 @ search for Partner 1P
> P> Fitter (Place & Route) Total block memory bits o}
— + Add..
= | [}
glal (@ A |4 Iad <<Filter>> B8 Find.. | 88 Find Next
q
=|Tvbe ID Messace
> @ 21057 Implemented 15 device resources after synthesis - the final resource count might be different I
gl @ Quartus Prime Analysis & synthesis was successful. 0 errors, 1 warning
2
;E System Processing (11)
100%  00:00:24

In the flow summary, we can see that our design uses 11 pins. The number of pins is correct,

since we have 4 inputs and 7 outputs. This means Quartus properly detected which signals
we want to connect to the outside world.

We will now assign real world pins of the FPGA to our signals.

Step 31: In the menu, select |Assignments )) Pin Planner),

Rotterdam University of Applied Sciences m



m Chapter 5. Assigning signals to physical pins

You will now get the following window:

6 Pin Planner - C:/HWPO01/ssignment1 - my_first_component — (m] X
File Edit View Processing Tools Window Help Search altera.com "]
i g x . . i g =
gy (Report = Top View - Wire Bond RinlCeeend £
M| Report notavailable CycloneV SCSEMASF31C6 symbol Pin Type
k === 3 CJ User I/O
T V@@D@r}ééé% @®  Userassi
- ser assign...
Q @@A@ @ V & . )
< . Fitter assign...
w g@ O Unbonded ...
j:/L v . Reserved pin
; NV S ® DEV_OE
: Fa x WA AC o DIFF_n
MAYAYAY = DIFF_p
: AVAVAY E DIFF_n outp...
i T YAVVA [ DIFF_p outp...
M= Groups  Report v . -
T v @ DQ
YA ALY ANV YA =
=V E [Tasks nE = RYAY LRV AN AV 5y DOS
1 PAVAVAYAY -
IEI v I~ Early Pin Planning . ;::VAVO @] DQsB
MW Early Pin Planning... I ;‘; 4 ® Hard proce...
ﬂ P> Run 1/0 Assignment / y‘v‘y @‘ D CLK n
— B Export Pin Assignmen gg%“% @@D@ CLK p
= in Fi a @@V@ - -
W Pin Finder... | DOON @1;)@@3@@@@ @A@@AD@@@ /GO0 "« (L) otherpLL
ipl ~ I~ Highlight Pins = = L=, © MSELOQ
nanm -
"H * |Named: * v |«»|Edit X ‘Fil‘cer: Pins: all &
&
® =1 Node Name Direction Location 1/O Bank VREF Group /O Standard  Reserved urrent Streng Slew Rate  ifferer
(-]
. inputs[3] Input 2.5V ..fauly) 12mA ..ault)
& B inputs[2] Input 2.5V ..faul) 12mA ..ault)
= inputs[1] Input 25V .fault) 12mA ..ault)
¢ . inputs[0] Input 2.5V ..fauly) 12mA ..ault)
i ‘& outputs[6] OQutput 2.5V .fault) 12mA ..ault) 1 (default)
P io
- E % outputs[5] Output 2.5V .fault) 12mA ..ault) 1 (default)
E [T Jp——" ] P N e Faanla B T X I = Py Py
v | <
0% 00:00:00

We see the BGA side of the FPGA chip that we’ve selected. Our goal is to connect our signals
to one of the pins of the chip. We cannot just arbitrarily select some pins because our FPGA

resides on a given circuit board. Luckily we have the schematics and a user manual for the
board.

We see a list of so-called “nodes” which are actually our signals that have to get a physical
connection to the outside world.

Our goal is to connect inputs O to 3 to keys O to 3 on the DE1-SoC board. Open the user
manual® and find out at which location those keys are connected.

Do the same for the outputs 0 to 6. We want to connect these to the red LEDs 0O to 6.
Once you know all the pin locations for the keys and the LEDs, fill in those locations in the
column locations next to their respective nodes. You may just type the pin location instead
of searching for it in the dropdown menu.

An example is shown for the first input and output in the list:

2 For boards numbered 1 to 15 the DE1-SoC User Manual revisie C can be find here: https://bitbucket.org/
HR_ELEKTRO/hwp@1/wiki/docs/DE1-SoC_User_manual_revd.pdf. For boards numbered 16 to 50 the DE1-
SoC User Manual revisie G can be find here: https://bitbucket.org/HR_ELEKTRO/hwp@1/wiki/docs/DE1-
SoC_User_manual_revf.pdf.

m Programmable Hardware


https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revd.pdf
https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revd.pdf
https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revf.pdf
https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revf.pdf

HWPO1

& inputs[3] Input
- inputs[2] Input
s inputs[1] Input
s inputs[C] Input
% outputs[6] Output PIN_¥19 4A

oyt

» outputs[5] Output

PIN_Y1& 3B

Node Name  Jirectior Location /O Bank VREF Group

B3B_NO

B4A_NO

IO Standard Reserved Current Strength Slew Rate

2.5 V (default)
2.5V (default)
2.5V (default)
2.5V (default)
2.5V (default)
2.5V (default)

12mA (default)
12mA (default)
12mA (default)
12mA (default)
12mA (default)
12mA (default)

Once you are done connecting all nodes, you may close the pin planner.

1 (default)
1 (default)

Rotterdam University of Applied Sciences m






6

Place and route the design for FPGA
implementation

Now that all nodes are connected to some physical pin, we may let Quartus place and route
our new design in the FPGA. This will generate a programming file with which the FPGA
will be configured to work as we want.

Step 32: To do this, double-click on the Assembler task:

Tasks Compilation = Qg x
Task Time
~ P> Compile Design
> P Analysis & Synthesis 00:00:24
> P> Fitter (Place & Route) 00:00:55

> P Assembler (Generate programming files) 00:00:17
> P Timing Analysis
> P> EDA Netlist Writer

[ TR S T,

This step usually takes a relatively long time, compared to compiling a small piece of software,
for example. This is another reason why we want to simulate our design before implementing
it into the FPGA.

If everything went OK, it should eventually display a pop-up that says the compilation is
successful. Ignore any warnings for now.

Some interesting things to check is the RTL schematic that Quartus has synthesized from
your code.

Rotterdam University of Applied Sciences m



m Chapter 6. Place and route the design for FPGA implementation

You may find it here:

Tasks Compilation - [=la =

Task Time
v P Compile Design
v P Analysis & Synthesis 00:00:24
W Edit Settings
6 view Report
P> Analysis & Elaboration
> P> Partition Merge
hd Netlist Viewers
Q‘ RTL Viewer
@ State Machine Viewer

The RTL viewer will show the register transfer level schematic of your design.

It should show the following:

Q RTL Viewer - C:/HWPQ1/ssignment1 - my_first_ component = O X

File Edit View Tools Window Help Search altera.com ®

e Ole=60 R QITWH @8 -~ e o0 -

’ Netlist Navigator og x Q my_first_ component1 |+

5 = .
5= my_first_component outputs[6]~not

r : > outputs[6..0]
inputs[3..0] el joutputs~1
2 .
.
outputs~3
3
2
o outputs~0
1
o outputs~2
1

100% 00:00:03

Here we may see the logic function that our architecture implements with the given inputs
and outputs.

Eventually, writing VHDL code is about thinking how this schematic will look when you write
a certain piece of code. (Usually you will think about your schematic in a more macroscopic
way, and not as detailed as this.)

Another interesting view is the “Post-Fitting Technology Map” viewer. Here you can see how
the logic elements and other hardware components in the FPGA are used to create your
schematic.

m Programmable Hardware



HWPO1

It can be found here:

Tasks Compilation r=E Q8 x

Task Time
v P Compile Design

v > P Analysis & Synthesis 00:00:24
v v P Fiter (Place & Route) 00:00:55

W Edit Settings

= View Report

@ Chip Planner

1 Technology Map Viewer (Post-Fitting)

> P> Design Assistant (Post-Fitting)

We can see the following:

Q Technology Map Viewer - Post-Fitting - C/HWP01/ssignment1 - my_first_component — O X
Eile Edit View Tools window Help Search altera.com ®
s (M— B Y
""‘*‘- —’w *QHW“E:'I:QA!:@. Page: 1of1 ~
Netlist Navigator a8 x ‘Q my_first_component:1 |ﬂ
' ~ 5= my first_component outputs[0]~output “
> 4% Primitives ! 0 —{ > outputs[0..6]
“ = pors 10_OBUF
outputs~0 outputs[2]~output

~ B |nput ,4‘0.&11\3 COMBOUT u—q
> = inputs[0.3] — 10_OBUF

> = Qutput LOGIC_CELL_COMB outputs[1]~output
| 0]
inputs[2]~input outputs~2 10_OBUF
‘”PUTS[O-B]D— 2 | 0 DATAA outputs[4]~output
10 IBUF DATAC ~ COMBOUT|
inputs[1]~input DATAD 10_OBUF
u | ok DATAE
[— outputs[5]~output
10_IBUF LOGIC_CELL_COMB n
inputs[3]~input outputs~3 -
3 I ok DATAA 10_OBUF
lml b cvEm outputs[6]~output
inputs[O]~input DATAC
o —1 e 10_OBUF
10_IBUF LOGIC_CELL_COMB
~QUARTUS_CREATED_GND~I outputs~1 outputs[3]~output
DATAC  COMBOUT i [
LOGIC_CELL_COMB PR 10_OBUF
LOGIC_CELL_COMB

»

100% 00:00:03

Here we see that it uses just a few logic elements. This is only a tiny fraction of the number
of logic elements available (over thirty thousand).

Another interesting thing to look at is the “Chip Planner” which can be found above the
“Technology Map Viewer” task.

Rotterdam University of Applied Sciences m



m Chapter 6. Place and route the design for FPGA implementation

Here we can see the following:

@ Chip Planner - C:/HWP01/ssignment1 - my_first_component — (m] X
Eile Edit View Tools Window Help search alteracom @
Report A& x| cCoordinate: Editing Mode: ECO - 5CSEMASF31C6 v |Node Properties 18 % |

Report not available .
f e Selected elements: inputs[3] =

Tasks agx .
P Generate Clock a4 > Q)
P> Toggle Backgrot
| ] Report Resource Properties/Modes Values
B Report Compilat Full Name |my_first_componen
B Mark Selection T e B

v [ Core Reports
= Report High-¢
B report Routir

Pad Input Buffer

V.V Rim o €927 &l

Properties Fan-in Fan-out

8 — Node Prope... Layers Sett... Color Leg...
-
Elé = et * | Timing Located Objects
] =} &
v |ig i
8 - dF
e =1
5 : g
¥ 8| Console History 8

This is a schematic view of the FPGA chip itself, and it also shows which elements of the
chips are used. Only one region is used, and most of the time the unused regions are shut
down to save power. The bigger your design is, the more power it will therefore use.

By, the way, the region that is used is not the black region. It is in the middle left, the bit
more blueish rectangle, indicated by the red arrow.

m Programmable Hardware



HWPO1

If you zoom in on this, you can see the logic elements that are used:

|

File Edit View Tools Window Help search alteracom @
ﬁ Report B & x| coordinate:(28,27) Editing Mode: ECO - 5CSEMA5F31C6 ~ |Node Properties nex
Report not available
P Selected elements: ~QUARTUS_CREATED_GI ™
.: [ O ~Ehe|
L 0 . t_li"
W - |
O L
i I8
0 [t B =
_I Tasks na x 5 e
P Generate Clock | « > Q)
K P> Toggle Backgrot O I
n Report Resource | O Properties/Modes
A | ] Report Compilat ] Full Name |my_first_componen
X . . fmm
L B Mark Selection _§ ——
+= v I~ Core Reports 0 \_Bottom Combinational /
B Report High-¢ = Properties ~ Fan-in  Fan-out
W report Routir 0 E|
g - Node Prope... Layers Sett..  Color Leg...
-
b et * | Timing Located Objects
[] 2 =
: |ln q
| 5
0 ;- aiF
£ ) 3
¥ 8 Console History s

For specialized and high-speed designs, the tools which you have just seen are extremely
useful, because you can manually implement designs in the FPGA if you wish, so to optimize
your design. In this course, we will not use them much (except for the RTL viewer).

Step 33: On the bottom of the Tasks list, double-click “Program Device”. This will open the
“Programmer” window:

Tasks Compilation r=018x
Task Time
v P> Compile Design
v > P Analysis & Synthesis 00:00:17
vy > P> Fitter (Place & Route) 00:00:39
v > P Assembler (Generate programming files) 00:00:12

> P Timing Analysis
> P> EDA Netlist Writer
W Edit settings

a Program Device (Open Programmer)

Connect the DE1-SoC kit to the computer using the USB Blaster connection on the board,
and also connect it to a power supply, and turn on the board®. Under the

3 Typically, the USB Blaster driver software is installed when installing Quartus, but if this is not the
case a wizard will pop up to install the driver for the USB Blaster. Choose “Browse my computer for
drivers”, and select the location: C:\intelFPGA_lite\18.1\quartus\drivers. A more detailed explanation
can be found here: https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/
Tutorials/Getting_Started_with_DE-series_boards.pdf#section.4.

Rotterdam University of Applied Sciences


https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/Getting_Started_with_DE-series_boards.pdf#section.4
https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/Getting_Started_with_DE-series_boards.pdf#section.4

m Chapter 6. Place and route the design for FPGA implementation

button in the Programmer window, make sure the currently selected hardware is set to the
DE-SoC.

» Hardware Setup X

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

Currently selected hardware: DE-SoC [USB-1] o

Available hardware items

Hardware Server Port Add Hardware...

Local UsB-1

Remove Hardware

Close

Step 34: Now close the Hardware Setup window and click in the Programmer
window. The “Select Device” window appears:

&Y Select Device X

Found devices with shared JTAG ID for device 2. Please select your device.

(0 scsEBAS
O scsemas
(O 5CSTFD5D5
(O scsxFcsce

(O scsxFcsD6

Step 35: Select 5SCSEMAS5 and click [0K|.

Step 36: If the following window pops up, click :

(_% Quartus Prime X
! ~ The auto-detected device chain does not match the
L *  Programmer's device list. Do you want to update the

Programmer's device list, overwriting any existing settings?

Yes No

m Programmable Hardware



HWPO1

Step 37: Double-click under the “File” column next to device 5CSEMAS and select my_-
first_component.sof in the output_files/ folder of your project:

» Select New Programming File X

Look in: ces~ O QO Q @ @

B My computer D my_first_component.sof

Gebruiker

File name: my_first_componentsof Open

Files of type: Programming Files (*.sof ~ Cancel

Step 38: Also check the “Program/Configure” checkbox next to the device.

» Programmer - C:;yHWPQ1/ssignment1 - my_first_component - [my_first_component.cdf]* — Oa X

File Edit View Processing Tools Window Help Search altera.com [ ]

«n Hardware Setup.. DE-SoC [USB-1] Mode: JTAG e Progress: S

(] Enable real-time ISP to allow background programming when available

b Srart File Device Checksum Usercode Program/ Verify Blank-
Configure Check
fh Stop <none> SOCVHPS 00000000 <none>
8 Auto Detec output_files/my_first_componentsof 5CSEMAS5F31 00AF3415 0Q0AF3415
X Delete
% Add File...
¥ Change File : . E E
TOoI u H
- »- [pp—Y [ 3
i save File : : : 5
.IIIIIIIII. IPJ_I_I_IIIJ_I_I.-I
- . - -
Add Device SOCVHPS 5CSEMASF31
, TDo
thup N
% Down

By doing this, you are letting the programming interface know that the bitstream to be
programmed in the FPGA is in my_first_component.sof. The extension .sof stands for
SRAM Object File.

We can see the boundary scan chain that will be used to program our devices. In this case
we will only program the FPGA chip, so only this one is seen in the chain.

Step 39: Look at the DE1-SoC kit while pressing start.

Step 40: While loading the new FPGA configuration, the JTAG TX LED should be on that
shows a data transfer is in progress in the JTAG boundary scan chain.

Rotterdam University of Applied Sciences m



m Chapter 6. Place and route the design for FPGA implementation

Your new design will be programmed into the FPGA.

Notice that LEDRO to LEDRS are on. Try all the combinations with KEYO, KEY1, KEY2, and
KEY3. Compare the LED values with the expected values given in the truth table you filled
in at step 13.

As you can see, the inputs are somehow inverted compared to the truth table. Find out why
this has happened (check the DE1-SoC manual where the switches are described). Change
the VHDL code, so that a pressed key is interpreted as a logical one.

Congratulations, you have designed, simulated and programmed (probably) your first FPGA
design!

Consider what questions arose while doing this assignment. Think about what feedback
you want to receive from or give to your instructor. Now call your instructor to ask
your questions and receive and give feedback. Your instructor will then sign off this
assignment.




Summary

We have now finished our first assignment and our first design. We have done the following:
* created a new project in ModelSim and Quartus;
* made a VHDL design;
* simulated our design with ModelSim;
* connected the pins of our top-level design to the real FPGA pins;
» generated programming files and programmed them into the FPGA.
You are now ready to move on to the next assignments. You can use this manual as a

reference for making new projects and simulations.

Good luck with the rest of the course!

Rotterdam University of Applied Sciences m






Tips and further reading

Engineering tools are often very versatile and offer a lot of functionality. All those buttons
and settings might confuse you a bit in the beginning. It is always handy to keep user
manuals and tutorials at hand. Most tools have a user community with forums. On these
you can often find questions that arise already asked and answered. If not, of course you
can always post a new question yourself.

Quartus Help

In Quartus you can click and type in anything you want to know about in
Quartus.

ModelSim

In ModelSim you can click |Help )) PDF Documentation )) User Manual| to find out about ModelSim
in general.

TCL Scripts (DO Files) for ModelSim

You can open the Reference manual to see what commands are available for the DO files
(TCL scripting). Also you can see what syntax the commands we’ve used above use, so you
can experiment with those. There are also examples given.

Hierarchical Designs

If you want to create hierarchical designs (this is recommended for most exercises) read
chapter 10.3 of the book [1] for more information on the component keyword.

Rotterdam University of Applied Sciences m






Bibliography

[1] Volnei A. Pedroni. Circuit Design and Simulation with VHDL, Third Edition. 2nd. The
MIT Press, 2020. 1SBN: 978-0-262-04264-2 (cit. on p. 33).

Rotterdam University of Applied Sciences m






	Introduction
	Purpose and prerequisites
	Creating a ModelSim Project
	Simulating your design with ModelSim
	Creating a Quartus project
	Assigning signals to physical pins
	Place and route the design for FPGA implementation
	Summary
	Tips and further reading
	Bibliography

