
HWP01
Programmable Hardware

Lab Work Handbook

Version 3.1

E.H.W. van de Logt

J.H. Peltenburg

J.Z.M. Broeders

HWP01

Lab Work Handbook Programmable Hardware from Rotterdam University of Applied Sciences
is licensed by Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Netherlands
license.

Rotterdam University Programmable Hardware 2

https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en

HWP01 Contents

Contents

Introduction 4

1 Purpose and prerequisites 6

2 Creating a ModelSim Project 7

3 Simulating your design with ModelSim 13

4 Creating a Quartus project 19

5 Assigning signals to physical pins 25

6 Place and route the design for FPGA implementation 28

7 Summary 39

8 Tips and further reading 40

Bibliography 42

Rotterdam University Programmable Hardware 3

HWP01 Introduction

Introduction

In the modern world of electronics, everything must be fast; the time-to-market must be
short and performance must be high. Recently, the PLD (programmable logic device) market
has grown tremendously (turnover doubles about every five years1) because these devices
have become more and more adapt to meet these criteria in many fields of electronics.

FPGAs (field-programmable gate arrays) and other reconfigurable hardware in general are
becoming more popular every day. If you have a high-performance application without high
power requirements, but you don’t have money or time to make an ASIC (application specific
integrated circuit), reconfigurable hardware is often a good choice.

HDLs (hardware description languages) capture the functionality of digital schematics in
plain text. In short; a HDL is used to “draw” digital logic with text. The most widely-used HDLs
today are VHDL and Verilog, but there are many others (System C for example). In practise,
HDLs are used to design full-scale production ICs, ASICs and especially FPGA configurations.

The power of HDLs is the high level of abstraction. Developing applications with HDLs and
letting tools compile and place them in your PLD is faster than drawing schematics by hand.
Next to that, the HDL code can often be reused in newer, bigger PLDs and is easily scalable.
For example; a well coded 16-bit microprocessor core (captured in HDL) may be changed
into a 32-bit microprocessor core by adjusting a few variables only.

The goal of this course is an introduction to VHDL, FPGAs and PLDs in general. The functional
designs made by students are implemented into an FPGA that resides on the Altera DE1-SoC
development kit.

1 See: https://www.researchandmarkets.com/reports/5398214/fpga-market-by-configuration-low-
end-fpga-mid

Rotterdam University Programmable Hardware 4

https://www.researchandmarkets.com/reports/5398214/fpga-market-by-configuration-low-end-fpga-mid
https://www.researchandmarkets.com/reports/5398214/fpga-market-by-configuration-low-end-fpga-mid

HWP01 Introduction

This document contains the introductory assignment for this course. This first assignment is a
step by step introduction to designing and simulating logic with ModelSim and synthesizing
and testing it with Quartus.

Rotterdam University Programmable Hardware 5

HWP01 Chapter 1. Purpose and prerequisites

1

Purpose and prerequisites

The purpose of the first introductory assignment is:

• to create a simple functional design with basic logic for a digital system consisting of
LEDs and switches;

• to simulate a digital system and thus verify its functionality with ModelSim;

• to introduce you to working with the Quartus Prime software tool;

• to reconfigure an FPGA with a digital schematic.

The perquisites of this assignment are:

• the Terasic DE1-SoC Development Kit is available;

• Intel Quartus Prime Lite edition (version 18.1) software including the has been installed;
We use this older version because we want to use the Nios softcore processor in the
following up course CSC10;

• ModelSim-Intel FPGA Edition has been installed.

The first thing we will do is create a project in ModelSim to make functional simulations.

Rotterdam University Programmable Hardware 6

HWP01 Chapter 2. Creating a ModelSim Project

2

Creating a ModelSim Project

Step 1: Find and open the link to “ModelSim-Intel FPGA Starter Edition” on your desktop
or in the start menu and start ModelSim.

After closing the “Important info” window, it should show the following window:

Rotterdam University Programmable Hardware 7

HWP01 Chapter 2. Creating a ModelSim Project

The library window shows all libraries. Libraries contain components that can be used in
simulations. Most of the components in the ModelSim INTEL FPGA Starter edition shown in
the list are hardware components inside the physical FPGA that can be used in your designs.
There are also some other useful components that can be used for testing. For this course,
we will not make use of any of them. Eventually, we will create our own library with our
own components (later more on this).

We will first create a new project.

Step 2: Go to File New Project... .

You should see the “create project” window.

Step 3: Fill it in as follows:

Step 4: Click OK .

It will probably show a pop-up window that asks if you want to ModelSim to create a directory
for your project.

Step 5: Let ModelSim create the new directory.

Rotterdam University Programmable Hardware 8

HWP01 Chapter 2. Creating a ModelSim Project

A new window should pop up:

Step 6: Click “Create New File.”

We will now create our first VHDL file. The extension for VHDL files is .vhd. The name of
the file must be the same of your components name! Since the component will be named
“my_first_component” we will name the file my_first_component.vhd.

Step 7: Click OK and Close to close the “Add items to project” window.

Rotterdam University Programmable Hardware 9

HWP01 Chapter 2. Creating a ModelSim Project

Now ModelSim will show the project window:

We can see our VHDL file included in the project. The status of the file, which is a question
mark, means that the file is not compiled yet. We will do this later.

Step 8: Right-click on the file and select Properties.... . Select the “VHDL” tab and choose
“Use 1076-2008”.

We will use the latest (2008) version of the VHDL standard.

Step 9: Double-click on the file to edit it. Add the following lines to the file:

library ieee;

use ieee.std_logic_1164.all;

entity my_first_component is

port (

inputs: in std_ulogic_vector(3 downto 0);

Rotterdam University Programmable Hardware 10

HWP01 Chapter 2. Creating a ModelSim Project

outputs: out std_ulogic_vector(6 downto 0)

);

end my_first_component;

The first two lines define the standard libraries that contain many different functions and
data types in VHDL we want to use for this (and probably any other) project.

The entity part defines the interface of our functional block. The port part inside the entity
defines which ports we want to see at the interface of our functional block. It does not define
the implementation of the functionality of the block itself. This is done in the architecture

section.

This concept, the difference between and separation of the interface and the implementation
of a (sub)system, is the key to system engineering in any field.

in std_ulogic_vector(3 downto 0) defines an input port (high impedance). std_ulogic
is a basic digital connection. A vector makes it a group or bus of inputs. 3 downto 0 tells us
that the bus is four bits wide. This is the VHDL notation for a bus. Note that we have written
it in MSB-first style (Most Significant Bit first).

Step 10: Save the file.

We have now declared the interface of your component. What is missing is how it should
behave. This is done in the architecture. However, only declaring the interface is enough to
compile our component.

Step 11: Right click on the file and select Compile Compile Selected .

You should now see the following:

Note that the status of the component has also changed to a green ✓. This means it compiled
successfully. If it didn’t compile successfully it would show a red ✗. Even though we compiled

Rotterdam University Programmable Hardware 11

HWP01 Chapter 2. Creating a ModelSim Project

the component, we cannot simulate it, because we have not declared how it should behave.
This can be done by adding the architecture section to the code.

Step 12: Add the following lines to the file:

architecture implementation of my_first_component is

begin

outputs(0) <= inputs(0);

outputs(1) <= inputs(1);

outputs(2) <= inputs(0) or inputs(1);

outputs(3) <= inputs(0) and inputs(1);

outputs(4) <= inputs(0) and inputs(1) and inputs(2) and ←-
,→ inputs(3);

outputs(5) <= inputs(0) or inputs(1) or inputs(2) or inputs(3);

outputs(6) <= not(inputs(0) or inputs(1) or inputs(2) or ←-
,→ inputs(3));

end implementation;

The outputs are now some combinational function of the inputs.

Step 13: Fill in the truth table for this function, shown below.

inputs outputs

0000 1000000

0001 0100101

0010 0100110

0011 0101111

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

We will now verify these results by simulating our little design.

Rotterdam University Programmable Hardware 12

HWP01 Chapter 3. Simulating your design with ModelSim

3

Simulating your design with Model-

Sim

Step 14: In the ModelSim menu, select Simulate Start Simulation... .

After opening up the “work” library, you should see the following dialog:

When we created the project, we called our default library “work”. This library now appears
with all our compiled components in the dialog. Expand the library “work”, and you can see
“my_first_component” appearing there. You may even expand the component in the list to

Rotterdam University Programmable Hardware 13

HWP01 Chapter 3. Simulating your design with ModelSim

see which implementations are available. In our case, we have only one implementation
which is called “implementation”.

Step 15: Select “my_first_component” and click OK to start the simulation.

Rotterdam University Programmable Hardware 14

HWP01 Chapter 3. Simulating your design with ModelSim

You should now see the following window:

This is the simulation setup of ModelSim. In the “Instance” window we can see all components
and their underlying architectures and processes from which we can select objects to include
in the simulation. All objects that can be included are shown in the “Objects” window.

We can clearly see our signals inputs and outputs here.

Now, if we want to simulate our design with all the signals that are in it do the following:

Step 16: Right click in the “Objects” window.

Step 17: Click Add to Wave Signals in Design .

Rotterdam University Programmable Hardware 15

HWP01 Chapter 3. Simulating your design with ModelSim

All signals are now added to the “Wave” window. We can now see our signals in the wave
window:

Their values are all U’s. This means the values are unknown. To set the value of a signal,
right-click this signal’s name or value in the wave window and select Force... . Of course, we
should only force signals that are inputs.

Step 18: Open the force window on the signal inputs.

The value here is shown as UUUU. Remember that the inputs signal is a vector of four values.
The inputs are currently all unknown (U).

Step 19: Change the value to 0000.

This means that input(0) will get the value 0. input(1) will get the value 0 as well, and so
forth.

Step 20: Click OK to apply the changes.

Rotterdam University Programmable Hardware 16

HWP01 Chapter 3. Simulating your design with ModelSim

You will not see any changes right away in the wave window, but that is because the simulation
hasn’t started yet.

Step 21: To run the simulation for 100 time steps, go to menu. Click Simulate Run Run 100 .

The Wave window should now show (to enlarge hold the Ctrl button down while scrolling
with the mouse):

You can also expand the signals that are vectors to show their individual elements. This
should look like this:

Verify that the outputs have the correct values (corresponding to your code).

Step 22: Now force the inputs to 0001 and repeat until you have tested all possible inputs
(assume the values of each individual input can only be 0 or 1.

Take a screenshot of the wave window which shows all possible input values and the associated
output values. Compare the output values with the expected values given in the truth table
you filled in at step 13.

Rotterdam University Programmable Hardware 17

HWP01 Chapter 3. Simulating your design with ModelSim

Verifying your design by forcing all possible input combinations one by one and comparing
the simulation results from the wave window with the intended behavior in the truth table
is a time-consuming and error-prone job. During this course you will learn a better way to
verify your design by using a so called “testbench”.

If you are not sure your design works properly, call your instructor to verify your results.

Rotterdam University Programmable Hardware 18

HWP01 Chapter 4. Creating a Quartus project

4

Creating a Quartus project

Now the design is ready to be exported to Quartus, so we may continue to implement it with
the FPGA.

• Start “Quartus (Quartus Prime 18.1)” from the desktop or from the start menu.

• Start the “New Project Wizard”.

• Skip the introduction of the Wizard.

• In the “Directory, Name, etc.” page of the wizard, select the same directory as your
ModelSim project as the working directory.

• Name the project “assignment1” as well.

• The top-level entity is our component called “my_first_component”. If you decide to
add a different top level later, it is easy to change after you’ve completed the wizard.

Rotterdam University Programmable Hardware 19

HWP01 Chapter 4. Creating a Quartus project

Eventually, the current page should look as follows:

Step 23: Click Next .

Step 24: Set Project Type to “Empty Project” and click Next .

On the next page (Add Files), since we’ve already created a VHDL file, we can easily include
it in the project by clicking Add All . The page should now look like this:

Step 25: Click Next .

Rotterdam University Programmable Hardware 20

HWP01 Chapter 4. Creating a Quartus project

In the Family and Device Settings page, we have to select which FPGA we’re using. Our
programming tools are well capable of selecting the proper device automatically (this is done
through the JTAG chain), but let us select the right FPGA from the start.

The right device is the Cyclone V 5CSEMA5F31C6.

Step 26: Select this device:

Rotterdam University Programmable Hardware 21

HWP01 Chapter 4. Creating a Quartus project

Alternatively, you can select the Board tab and select the DE1-SoC board:

Step 27: Now click Next until you can Finish the wizard.

We can now see the new project in the “Project Navigator” pane on the left of the Quartus II
window. We want to implement “my_first_component” on the Cyclone V FPGA that is on the
DE1-SoC development and education kit.

You may double-click on “my_first_component” on the left side at the tab “Files” to show its
source. This can be a schematic, a VHDL file, a Verilog file or anything else that Quartus can
handle.

Rotterdam University Programmable Hardware 22

HWP01 Chapter 4. Creating a Quartus project

In our case, we know it is our VHDL file we created in ModelSim, so double-clicking it should
result in the following:

Because we want ti use VHDL 2008 features in our designs, we have to tell Quartus to use
VHDL 2008 as well.

Step 28: Right-click on “my_first_component” in the “Project Navigator” pane and select
“Settings...”.

Rotterdam University Programmable Hardware 23

HWP01 Chapter 4. Creating a Quartus project

Step 29: Select Compiler Settings VHDL Input and select VHDL 2008 and click OK :

Rotterdam University Programmable Hardware 24

HWP01 Chapter 5. Assigning signals to physical pins

5

Assigning signals to physical pins

The first thing to do now, is to compile the design in Quartus, to let Quartus know which
signals we are using and which signals have to go to the outside world.

Step 30: In the “Tasks” pane, double-click “Analysis & Synthesis”.

If Quartus is done, it will show a green check mark next to the task you performed (if
everything went OK). If there are any errors or warnings investigate them and determine if
they need to be resolved.

Quartus should show this:

Rotterdam University Programmable Hardware 25

HWP01 Chapter 5. Assigning signals to physical pins

In the flow summary, we can see that our design uses 11 pins. The number of pins is correct,
since we have 4 inputs and 7 outputs. This means Quartus properly detected which signals
we want to connect to the outside world.

We will now assign real world pins of the FPGA to our signals.

Step 31: In the menu, select Assignments Pin Planner .

You will now get the following window:

We see the BGA side of the FPGA chip that we’ve selected. Our goal is to connect our signals
to one of the pins of the chip. We cannot just arbitrarily select some pins because our FPGA
resides on a given circuit board. Luckily we have the schematics and a user manual for the
board.

Rotterdam University Programmable Hardware 26

HWP01 Chapter 5. Assigning signals to physical pins

We see a list of so-called “nodes” which are actually our signals that have to get a physical
connection to the outside world.

Our goal is to connect inputs 0 to 3 to keys 0 to 3 on the DE1-SoC board. Open the user
manual2 and find out at which location those keys are connected.

Do the same for the outputs 0 to 6. We want to connect these to the red LEDs 0 to 6.
Once you know all the pin locations for the keys and the LEDs, fill in those locations in the
column locations next to their respective nodes. You may just type the pin location instead
of searching for it in the dropdown menu.

An example is shown for the first input and output in the list:

Once you are done connecting all nodes, you may close the pin planner.

2 For boards numbered 1 to 15 the DE1-SoC User Manual revisie C can be find here: https://bitbucket.org/
HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revd.pdf. For boards numbered 16 to 50 the DE1-
SoC User Manual revisie G can be find here: https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-
SoC_User_manual_revf.pdf.

Rotterdam University Programmable Hardware 27

https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revd.pdf
https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revd.pdf
https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revf.pdf
https://bitbucket.org/HR_ELEKTRO/hwp01/wiki/docs/DE1-SoC_User_manual_revf.pdf

HWP01 Chapter 6. Place and route the design for FPGA implementation

6

Place and route the design for FPGA

implementation

Now that all nodes are connected to some physical pin, we may let Quartus place and route
our new design in the FPGA. This will generate a programming file with which the FPGA will
be configured to work as we want.

Step 32: To do this, double-click on the Assembler task:

This step usually takes a relatively long time, compared to compiling a small piece of software,
for example. This is another reason why we want to simulate our design before implementing
it into the FPGA.

Rotterdam University Programmable Hardware 28

HWP01 Chapter 6. Place and route the design for FPGA implementation

If everything went OK, it should eventually display a pop-up that says the compilation is
successful. Ignore any warnings for now.

Some interesting things to check is the RTL schematic that Quartus has synthesized from
your code.

You may find it here:

The RTL viewer will show the register transfer level schematic of your design.

Rotterdam University Programmable Hardware 29

HWP01 Chapter 6. Place and route the design for FPGA implementation

It should show the following:

Here we may see the logic function that our architecture implements with the given inputs
and outputs.

Eventually, writing VHDL code is about thinking how this schematic will look when you write
a certain piece of code. (Usually you will think about your schematic in a more macroscopic
way, and not as detailed as this.)

Another interesting view is the “Post-Fitting Technology Map” viewer. Here you can see how
the logic elements and other hardware components in the FPGA are used to create your
schematic.

Rotterdam University Programmable Hardware 30

HWP01 Chapter 6. Place and route the design for FPGA implementation

It can be found here:

Rotterdam University Programmable Hardware 31

HWP01 Chapter 6. Place and route the design for FPGA implementation

We can see the following:

Here we see that it uses just a few logic elements. This is only a tiny fraction of the number
of logic elements available (over thirty thousand).

Another interesting thing to look at is the “Chip Planner” which can be found above the
“Technology Map Viewer” task.

Here we can see the following:

Rotterdam University Programmable Hardware 32

HWP01 Chapter 6. Place and route the design for FPGA implementation

This is a schematic view of the FPGA chip itself, and it also shows which elements of the
chips are used. Only one region is used, and most of the time the unused regions are shut
down to save power. The bigger your design is, the more power it will therefore use.

By, the way, the region that is used is not the black region. It is in the middle left, the bit
more blueish rectangle, indicated by the red arrow.

Rotterdam University Programmable Hardware 33

HWP01 Chapter 6. Place and route the design for FPGA implementation

If you zoom in on this, you can see the logic elements that are used:

For specialized and high-speed designs, the tools which you have just seen are extremely
useful, because you can manually implement designs in the FPGA if you wish, so to optimize
your design. In this course, we will not use them much (except for the RTL viewer).

Rotterdam University Programmable Hardware 34

HWP01 Chapter 6. Place and route the design for FPGA implementation

Step 33: On the bottom of the Tasks list, double-click “Program Device”. This will open the
“Programmer” window:

Connect the DE1-SoC kit to the computer using the USB Blaster connection on the board, and
also connect it to a power supply, and turn on the board3. Under the Hardware Setup button
in the Programmer window, make sure the currently selected hardware is set to the DE-SoC.

3 Typically, the USB Blaster driver software is installed when installing Quartus, but if this is not the
case a wizard will pop up to install the driver for the USB Blaster. Choose “Browse my computer for
drivers”, and select the location: C:\intelFPGA_lite\18.1\quartus\drivers. A more detailed explana-
tion can be found here: https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/
Tutorials/Getting_Started_with_DE-series_boards.pdf#section.4.

Rotterdam University Programmable Hardware 35

https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/Getting_Started_with_DE-series_boards.pdf#section.4
https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/Getting_Started_with_DE-series_boards.pdf#section.4

HWP01 Chapter 6. Place and route the design for FPGA implementation

Step 34: Now close the Hardware Setup window and click Auto-Detect in the Programmer
window. The “Select Device” window appears:

Step 35: Select 5CSEMA5 and click OK .

Step 36: If the following window pops up, click Yes :

Rotterdam University Programmable Hardware 36

HWP01 Chapter 6. Place and route the design for FPGA implementation

Step 37: Double-click under the “File” column next to device 5CSEMA5 and select my_-
first_component.sof in the output_files/ folder of your project:

Step 38: Also check the “Program/Configure” checkbox next to the device.

Rotterdam University Programmable Hardware 37

HWP01 Chapter 6. Place and route the design for FPGA implementation

By doing this, you are letting the programming interface know that the bitstream to be
programmed in the FPGA is in my_first_component.sof. The extension .sof stands for
SRAM Object File.

We can see the boundary scan chain that will be used to program our devices. In this case
we will only program the FPGA chip, so only this one is seen in the chain.

Step 39: Look at the DE1-SoC kit while pressing start.

Step 40: While loading the new FPGA configuration, the JTAG TX LED should be on that
shows a data transfer is in progress in the JTAG boundary scan chain.

Your new design will be programmed into the FPGA.

Notice that LEDR0 to LEDR5 are on. Try all the combinations with KEY0, KEY1, KEY2, and
KEY3. Compare the LED values with the expected values given in the truth table you filled in
at step 13.

As you can see, the inputs are somehow inverted compared to the truth table. Find out why
this has happened (check the DE1-SoC manual where the switches are described). Change
the VHDL code, so that a pressed key is interpreted as a logical one.

Congratulations, you have designed, simulated and programmed (probably) your first FPGA
design!

Consider what questions arose while doing this assignment. Think about what feedback
you want to receive from or give to your instructor. Now call your instructor to ask
your questions and receive and give feedback. Your instructor will then sign off this
assignment.

Rotterdam University Programmable Hardware 38

HWP01 Chapter 7. Summary

7

Summary

We have now finished our first assignment and our first design. We have done the following:

• created a new project in ModelSim and Quartus;

• made a VHDL design;

• simulated our design with ModelSim;

• connected the pins of our top-level design to the real FPGA pins;

• generated programming files and programmed them into the FPGA.

You are now ready to move on to the next assignments. You can use this manual as a reference
for making new projects and simulations.

Good luck with the rest of the course!

Rotterdam University Programmable Hardware 39

HWP01 Chapter 8. Tips and further reading

8

Tips and further reading

Engineering tools are often very versatile and offer a lot of functionality. All those buttons and
settings might confuse you a bit in the beginning. It is always handy to keep user manuals
and tutorials at hand. Most tools have a user community with forums. On these you can
often find questions that arise already asked and answered. If not, of course you can always
post a new question yourself.

Quartus Help

In Quartus you can click Help Search and type in anything you want to know about in
Quartus.

ModelSim

In ModelSim you can click Help PDF Documentation User Manual to find out about ModelSim
in general.

TCL Scripts (DO Files) for ModelSim

You can open the Reference manual to see what commands are available for the DO files
(TCL scripting). Also you can see what syntax the commands we’ve used above use, so you
can experiment with those. There are also examples given.

Rotterdam University Programmable Hardware 40

HWP01 Chapter 8. Tips and further reading

Hierarchical Designs

If you want to create hierarchical designs (this is recommended for most exercises) read
chapter 10.3 of the book [1] for more information on the component keyword.

Rotterdam University Programmable Hardware 41

HWP01 Bibliography

Bibliography

[1] Volnei A. Pedroni. Circuit Design and Simulation with VHDL, Third Edition. 2nd. The
MIT Press, 2020. ISBN: 978-0-262-04264-2 (cit. on p. 41).

Rotterdam University Programmable Hardware 42

	Introduction
	Purpose and prerequisites
	Creating a ModelSim Project
	Simulating your design with ModelSim
	Creating a Quartus project
	Assigning signals to physical pins
	Place and route the design for FPGA implementation
	Summary
	Tips and further reading
	Bibliography

