" Hardware Programming
HWPO1

HOGESCHOOL
ROTTERDAM

capturing a
FPGA
design with
VHDL

Planning: theory

* First week * Third week e Fifth week

— Introduction digital — Combinational N

systems versus — Designing
— Introduction to sequential state

FPGAs design machines
— Structured digital

Design — Concurrent . — Advanced
— Modeling concepts in and sequential VHDL design

VHDL code

— Signals and
variables

 Fourth week

— Introduction
to state
machines

HR EAS ELE HWPO1 WK1 V1.0 2

Agenda

e Discussion of previous week
Introduction to VHDL
e Design verification

Code structure and data types

HR EAS ELE HWPO1 WK1 V1.0 3

Agenda

e Discussion of previous week
Introduction to VHDL
e Design verification

Code structure and data types

HR EAS ELE HWPO1 WK1 V1.0 4

Introduction to VHDL

e VHSIC was a 1980s U.S. government program to develop very-

high-speed integrated circuits. The United States Department
of Defense launched the VHSIC project in 1980 as a joint tri-
service project. The project led to advances in integrated
circuit materials, lithography, packaging, testing, and
algorithms, and created numerous computer-aided design
tools. A well-known part of the project's contribution is VHDL,
a hardware description language.

Standard defined by IEEE in 1987, revisions in 2008 and 2019
Remember: VHDL is not a normal programming language

Everything happens all the time

HR EAS ELE HWP0O1 WK1 V1.2 5

VHDL Design
ENTITY

ARCHITECTURE

& w

signal

INPUT 5

Componenti] 4’::';-,_

| zignal

Component#z —.E)'_

l--—.I

Figure adapted from FPGAcenter.com

HR EAS ELE HWPO1 WK1 V1.2

QUTPUTS

Entity and architecture keywords

 ENTITY

— Define a function block and specify the interface to the
outside world with PORTS

* ARCHITECTURE

— Define the implementation of your entity. Either
behavioral or structural

HR EAS ELE HWP0O1 WK1 V1.2 7

Agenda

e Discussion of previous week
Introduction to VHDL
Design verification

Code structure and data types

HR EAS ELE HWP0O1 WK1 V1.2 8

Design verification: test bench

* Functional verification of your design

* |In this course you will have to create a test bench for
every assignment you hand in

Response analyzer

Stimuli : . verification
generator [] DYV ~» Comparator (—— 201
) j. i
: test index :
. ~» Template
time--4p generator

Figure adapted from Pedroni.

HR EAS ELE HWP0O1 WK1 V1.2 9

Test bench overview

* A test bench entity has no ports

* |n the architecture you create port maps to
instantiate your design

* Generate a clock signal as stimulus

* In this course we only cover functional verification;
no timing verification

HR EAS ELE HWP0O1 WK1 V1.2 10

Delay models

Inertial delay:

— Models delays in gates with the after clause: a <= b AFTER
1 ns;

Transport delay:
— Models delays in wires

Delta delay:

— Delay added automatically by the simulator if no delay is
explicitly prescribed

* Remember: delay statements are not synthesizable

HR EAS ELE HWP0O1 WK1 V1.2 11

Discussion of testbench example

LIBRARY ieee;
USE ieee.std logic_1164.all;

USE ieee.numeric_std.all; Response analyzer

ENTITY assignment2_tb IS gonomor ™| DUV sf Comparator —%-:ﬂ;ah"
END ENTITY; X g P i
tirim Teut e -— Template i
ARCHITECTURE testbench OF assignment2_tb IS fime--4-»| generator | |
COMPONENT assignment2 IS e
PORT (
SW : IN STD_LOGIC_VECTOR(17 DOWNTO 9);
HEX@ : IN STD_LOGIC_VECTOR(6 DOWNTO ©);
LEDR : IN STD_LOGIC_VECTOR(17 DOWNTO 9)
)
END COMPONENT;
SIGNAL SW_tb : STD_LOGIC_VECTOR(17 DOWNTO ©);
SIGNAL HEXe_tb : STD_LOGIC_VECTOR(6 DOWNTO ©);
SIGNAL LEDR_tb : STD_LOGIC_VECTOR(17 DOWNTO ©);
BEGIN
TB: assignment2 PORT MAP (SW => SW_tb, HEX@ => HEX@_tb, LEDR => LEDR_tb);
PROCESS
BEGIN
SW_tb <= "000000000000000000" ;
FOR I IN © TO 15 LOOP
WAIT FOR 10 ns;
SW_tb <= STD LOGIC_VECTOR(UNSIGNED(SW_tb) + 1);
END LOOP;
REPORT "Test completed.";
WAIT;
END PROCESS;
END ARCHITECTURE; "

HR EAS ELE HWP0O1 WK1 V1.2 12 HogescHooL

process

type int array is array(0 to 15) of integer;

constant expexted seven

)i
begin

end process;

end architecture;

segment code: int array := (

N

Response analyzer

16#404#, 1o#794#, lo#244#, 1o6#30#, H
—_ i

164104, 164124, 164024, 164784%, Stmui | | pyy | isl Comparator
AN A . generator :

16#00#, 16#10#, 16#08#, 16#03#, il +

Fu Fo - - -0 A [!
lo#do#, 16#21#, 16#064#, 16#0E# N feakinidex i

time Template

time--4 geNerator

report "Testing entity assignment2.";
-- Initialize signals.
sw_tb <= "0000";

blank tb <= '1’";
wait for 10 ns;
-- Check blank.
assert hex0O tb = "1111111"
report "test failed for blank = 1" severity error;

blank tb <= '0’;
-- Loop through all possible values of switches.
for i in 0 to 15 loop

sw_tb <= std ulogic vector(to_unsigned(i, sw_tb'length));

wait for 10 ns;

-— Check result.
assert hex(0 tb = std ulogic vector(to_unsigned(

expexted seven segment code(i), hexO tb'length

))
report "test failed for i = " & to_string(i)
severity error;

end loop;

report "Test completed.";
std.env.stop;

HR EAS ELE HWPO1 WK1 V1.2 13

verification
result

2 2

HOGESCHOOL
ROTTERDAM

Agenda

e Discussion of previous week

* Introduction to VHDL

e Design verification

e Code structure and data types

HR EAS ELE HWP0O1 WK1 V1.2 14

Example: AND gate

a ™
P —

LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY andgate IS

PORT (a,b: IN STD LOGIC;

c: OUT STD LOGIC) ;

END andgate;
ARCHITECTURE voorbeeld OF andgate IS
BEGIN

c <= A AND B;
END voorbeeld;

HR EAS ELE HWPO1 WK1 V1.2 15

Libraries

LIBRARY

library name;

* USE library name.package name.all;

The most frequently used packages are:

* Package
* Library

* Package
explicitly

standard, from the library std (visible by default)
work (where the projects are saved 1is visible by default)

std logic 1164, from the library ileee (when needed, must be
declared)

e LIBRARY std; -- optional declaration

* USE std.standard.all; --optional

* LIBRARY work -- optional

* USE work.all -- optional; also not needed if defined as below

* USE work.my package.all; --if an extra user made package is needed
* LIBRARY ieee;

* USE ieee.std logic_1164.all

HR EAS ELE HWPO1 WK1 V1.2 16

2 2

HOGESCHOOL
ROTTERDAM

INCLUDE : IEEE.STD _LOGIC_1164 LIBRARY

https://www.csee.umbc.edu/portal/help/VHDL/std_logic_1164.vhd|I

LIBRARY ieee;
USE ieee.std logic 1164.all;

Defines STD_LOGIC as well as STD_LOGIC_VECTOR (array of STD_LOGIC)
'U', -- Uninitialized
'X', -- Unknown
'0', --LOGIC O
'1', --LOGIC 1
'Z', -- High Impedance (used for tri-state 1/O’s)
'W',-- Weak signal
'L', -- Weak signal with logic 0 as preference
'H', -- Weak signal with logic 1 as preference
'-' --Don't care

Simulation or Synthesis?

Defines various FUNCTIONS, such as EDGE DETECTION

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

Data Types: IEEE 1164 Standard Logic

" |[EEE’s std_logic_1164 examples:

= STD LOGIC

SIGNAL a: STD_LOGIC;

a <= ‘0’; -- a is zero
a <= ‘1l/’; -- a is one
a <= ‘Z'’; -- a is high-impedance

-- used for bidi ports

= STD LOGIC_VECTOR

SIGNAL b: STD LOGIC VECTOR (7 DOWNTO O0) ;

b <= “1100ZZZZ"; -- array of 8 std logic’s

-— 1n MSB representation

18

Data Types: IEEE.numeric_std.all LIBRARY

LIBRARY ieee;
USE ieee.numeric std.all;

Allows for: unsigned, signed, integer, natural

Contains many functions such as: abs(), + addition, - subtraction, *
multiplication, / division, etc..., that can be used with these types

As well as: >, <, <=, >=, =, sll, srl

Normal STD_LOGIC_VECTORS: can’t calculate with those!

Additional Type conversion functions needed to overcome this.....
Zie H10.7 van het boek.

https://www.csee.umbc.edu/portal/help/VHDL/numeric_std.vhdl

19

Conversion of Common Types

SIGNAL a: STD LOGIC VECTOR(7 DOWNTO O) ;
SIGNAL b: UNSIGNED (7 DOWNTO O) ;
SIGNAL c¢: SIGNED (7 DOWNTO O0);

(un)signed - std logic_vector
a <= STD LOGIC VECTOR (b) ;

a <= STD LOGIC VECTOR(c) ;

std logic vector - (un)signed

b <= UNSIGNED (a) ;
c <= SIGNED (a) ;

20

Conversion of Common Types

SIGNAL d: UNSIGNED (7 DOWNTO O) ;
SIGNAL e: SIGNED (7 DOWNTO O);

SIGNAL f: INTEGER RANGE 0O TO 255;
SIGNAL g: INTEGER RANGE -128 TO 127;

integer - (un)signed

d <= TO UNSIGNED(f, 8); -- d is an array of 8
e <= TO SIGNED(g, 8);

-- e is an array of 8

(un)signed - integer

f <= TO INTEGER (d) ;
g <= TO INTEGER (e) ;

21

Conversion of Common Types

SIGNAL h: STD LOGIC VECTOR (7 DOWNTO O0);
SIGNAL i: INTEGER RANGE 0O TO 255;
SIGNAL j: INTEGER RANGE -128 TO 127;

integer - std_logic_vector

h <= STD LOGIC VECTOR(TO UNSIGNED (i,i'length);
h <= STD LOGIC VECTOR(TO SIGNED(j,]'length);

std_logic_vector - integer

1 <= TO_ INTEGER (UNSIGNED (h)) ;
J <= TO INTEGER (SIGNED (h)) ;

22

Warning

STD LOGIC_ARITH

1S
OBSOLETE

Don’t use it, no matter what older books or
websites/forums/code snippets online say!
Use IEEE 1164
ieee.numeric_std.all
instead for unsigned and signed types!

23

Assighnment Operators

<= for a signal
= for a variable
=> for individual elements of a vector

Example:

signal a: std logic;
variable b: integer range 0 to 255;
signal c: std logic_vector (3 downto 0);

a <= "'1l"'; -- assign single bits with '
b := 10; -- assign an integer

c <= "1100"; -- assign a vector with "

c <= (3 =>"'1l'", 2=>"1l", OTHERS => '0"'); -- same as previous line

a <= c(0);

HR EAS ELE HWPO1 WK1 V1.2 24

Other Functions available with numeric_std

* Logical
not, and, or, nand, nor, xor, xnor
* Arithmetic

+, -, %, /, **, mod, rem, abs
NOTE: Not all synthesizable

* Comparison

= /=; <I >; <=) >=

Shift operators:

sll, srl -- shift left logical, shift right logical
sla, sra -- shift right arithmetic, shift right arithmetic
rol, ror -- rotate left, rotate right

HR EAS ELE HWP0O1 WK1 V1.2 25

Attributes

SIGNAL d : STD LOGIC VECTOR (7 DOWNTO 0) ;

d'LOW =0 -- laagste array index
d'HIGH = 7 -- hoogste array index
d'LEFT = 7 -- meest linkse array index
d'RIGHT = 0 -- meest rechtse array index
d'LENGTH = 8 -- lengte van de vector
d'RANGE = (7 DOWNTO 0) -- range of the wvector
d'REVERSE RANGE = (0 TO 7) -- reverse range of the vector

Zie H9 van het boek

HR EAS ELE HWPO1 WK1 V1.2 26

Simple Signal Assighnment statement

 When the Right Hand Side (RHS) of a signal
assignment changes, the signal assignment
statement is executed

e Signals in a circuit are modeled as signal statement
assignments in VHDL

* Order in text is not preserved!

HR EAS ELE HWP0O1 WK1 V1.2 27

D flip-flop

 We’ll show you a behavioral and structural
description of a simple D flip-flop

19 g peetel e §OL A LS LA L

(@) ck—> st else | q rst I I
—d g | ck | g+ - ‘
D y—
(b) ck-a> & else | ¢ (©) |
|

Figures adapted from Embedded Systems Design: A Unified Hardware/Software Introduction

HR EAS ELE HWP0O1 WK1 V1.2 28

Example: DFF (good)

* Use rising_edge() function (or falling_edge())

LIBRARY ieee;

USE ieee.std logic_1164.all;

ENTITY dff IS
PORT (d, clk, rst: IN STD LOGIC;
g, gi: OUT STD_LOGIC)

END dff;

ARCHITECTURE dff arch OF dff IS

BEGIN
PROCESS (rst, clk)
BEGIN
IF (rst=‘1’) THEN
q <= 0"y
ELSIF rising edge (clk)
THEN
q <= d;
END IF;

END PROCESS;

gi <= NOT(q);

END dff arch;

2 2

HOGESCHOOL

HR EAS ELE HWP0O1 WK1 V1.2 29 ROTTERDAM

Example: D-FlipFlop (bad)

* In many code snippets people use ‘EVENT like this:

LIBRARY ieee;
USE ieee.std logic_1164.all;
ENTITY dff IS
PORT (d, clk, rst: IN STD_LOGIC;
g, gi : OUT STD_LOGIC) ;

END dff;
ARCHITECTURE implementation OF dff IS
BEGIN

PROCESS (rst, clk)

Why is this not a proper

BEGIN
IF (rst='1’) THEN DFF?
q <= O’ ;
ELSIF (clk’/EVENT AND clk=‘'1’) THEN Hlnt th|nk Of the Values
q <= d; .
END IF a STD_LOGIC signal

END PROCESS;
gi <= NOT(q) ;
END implementation;

can obtain by
definition...

HR EAS ELE HWP0O1 WK1 V1.2 30

Summary

 |Introductie in VHDL

* Verify the functional behavior of your design with
test benches

e Use standard functions for conversion of data types

HR EAS ELE HWP0O1 WK1 V1.2 31

Homework

* Covered today:
— Discussion of previous week
— Introduction to VHDL
— Code structure and data types
— Design verification

e Homework:
— 2.1, 2.23, 3.1, 3.20, 3.22, 3.24

* Next week:
— Combinational versus sequential design
— Concurrent and sequential code
— Signals versus variables

HR EAS ELE HWP0O1 WK1 V1.2 32

	Slide 1: Hardware Programming HWP01
	Slide 2: Planning: theory
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Introduction to VHDL
	Slide 6: VHDL Design
	Slide 7: Entity and architecture keywords
	Slide 8: Agenda
	Slide 9: Design verification: test bench
	Slide 10: Test bench overview
	Slide 11: Delay models
	Slide 12: Discussion of testbench example
	Slide 13
	Slide 14: Agenda
	Slide 15: Example: AND gate
	Slide 16: Libraries
	Slide 17: INCLUDE : IEEE.STD_LOGIC_1164 LIBRARY
	Slide 18: Data Types: IEEE 1164 Standard Logic
	Slide 19: Data Types: IEEE.numeric_std.all LIBRARY
	Slide 20: Conversion of Common Types
	Slide 21: Conversion of Common Types
	Slide 22: Conversion of Common Types
	Slide 23: Warning
	Slide 24: Assignment Operators
	Slide 25: Other Functions available with numeric_std
	Slide 26: Attributes
	Slide 27: Simple Signal Assignment statement
	Slide 28: D flip-flop
	Slide 29: Example: DFF (good)
	Slide 30: Example: D-FlipFlop (bad)
	Slide 31: Summary
	Slide 32: Homework

