
capturing a

FPGA

design with

VHDL

Hardware Programming
HWP01

Planning: theory

• First week
‒ Introduction digital

systems
‒ Introduction to

FPGAs
‒ Structured digital

Design
‒ Modeling concepts in

VHDL

• Second Week
– Introduction

VHDL
– Code structure
– Data types

• Third week
– Combinational

versus
sequential
design

– Concurrent
and sequential
code

– Signals and
variables

• Fourth week
– Introduction

to state
machines

2HR EAS ELE HWP01 WK1 V1.0

• Fifth week
– Designing

state
machines

– Advanced
VHDL design

Agenda

• Discussion of previous week

• Introduction to VHDL

• Design verification

• Code structure and data types

3HR EAS ELE HWP01 WK1 V1.0

Agenda

• Discussion of previous week

• Introduction to VHDL

• Design verification

• Code structure and data types

4HR EAS ELE HWP01 WK1 V1.0

Introduction to VHDL

• VHSIC was a 1980s U.S. government program to develop very-
high-speed integrated circuits. The United States Department
of Defense launched the VHSIC project in 1980 as a joint tri-
service project. The project led to advances in integrated
circuit materials, lithography, packaging, testing, and
algorithms, and created numerous computer-aided design
tools. A well-known part of the project's contribution is VHDL,
a hardware description language.

• Standard defined by IEEE in 1987, revisions in 2008 and 2019

• Remember: VHDL is not a normal programming language

• Everything happens all the time

HR EAS ELE HWP01 WK1 V1.2 5

VHDL Design

HR EAS ELE HWP01 WK1 V1.2 6

Figure adapted from FPGAcenter.com

Entity and architecture keywords

• ENTITY

– Define a function block and specify the interface to the
outside world with PORTS

• ARCHITECTURE

– Define the implementation of your entity. Either
behavioral or structural

HR EAS ELE HWP01 WK1 V1.2 7

Agenda

HR EAS ELE HWP01 WK1 V1.2 8

• Discussion of previous week

• Introduction to VHDL

• Design verification

• Code structure and data types

Design verification: test bench

• Functional verification of your design

• In this course you will have to create a test bench for
every assignment you hand in

HR EAS ELE HWP01 WK1 V1.2 9

Figure adapted from Pedroni.

Test bench overview

• A test bench entity has no ports

• In the architecture you create port maps to
instantiate your design

• Generate a clock signal as stimulus

• In this course we only cover functional verification;
no timing verification

HR EAS ELE HWP01 WK1 V1.2 10

Delay models

• Inertial delay:

– Models delays in gates with the after clause: a <= b AFTER
1 ns;

• Transport delay:

– Models delays in wires

• Delta delay:

– Delay added automatically by the simulator if no delay is
explicitly prescribed

• Remember: delay statements are not synthesizable

HR EAS ELE HWP01 WK1 V1.2 11

Discussion of testbench example

HR EAS ELE HWP01 WK1 V1.2 12

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY assignment2_tb IS
END ENTITY;

ARCHITECTURE testbench OF assignment2_tb IS
COMPONENT assignment2 IS

PORT (
SW : IN STD_LOGIC_VECTOR(17 DOWNTO 0);
HEX0 : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
LEDR : IN STD_LOGIC_VECTOR(17 DOWNTO 0)

);
END COMPONENT;
SIGNAL SW_tb : STD_LOGIC_VECTOR(17 DOWNTO 0);
SIGNAL HEX0_tb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL LEDR_tb : STD_LOGIC_VECTOR(17 DOWNTO 0);

BEGIN
TB: assignment2 PORT MAP (SW => SW_tb, HEX0 => HEX0_tb, LEDR => LEDR_tb);
PROCESS
BEGIN

SW_tb <= "000000000000000000";
FOR I IN 0 TO 15 LOOP

WAIT FOR 10 ns;
SW_tb <= STD_LOGIC_VECTOR(UNSIGNED(SW_tb) + 1);

END LOOP;

REPORT "Test completed.";
WAIT;

END PROCESS;

END ARCHITECTURE;

HR EAS ELE HWP01 WK1 V1.2 13

process

type int_array is array(0 to 15) of integer;

constant expexted_seven_segment_code: int_array := (

16#40#, 16#79#, 16#24#, 16#30#,

16#19#, 16#12#, 16#02#, 16#78#,

16#00#, 16#10#, 16#08#, 16#03#,

16#46#, 16#21#, 16#06#, 16#0E#

);

begin

report "Testing entity assignment2.";

-- Initialize signals.

sw_tb <= "0000";

blank_tb <= '1’;

wait for 10 ns;

-- Check blank.

assert hex0_tb = "1111111"

report "test failed for blank = 1" severity error;

blank_tb <= '0’;

-- Loop through all possible values of switches.

for i in 0 to 15 loop

sw_tb <= std_ulogic_vector(to_unsigned(i, sw_tb'length));

wait for 10 ns;

-- Check result.

assert hex0_tb = std_ulogic_vector(to_unsigned(

expexted_seven_segment_code(i), hex0_tb'length

))

report "test failed for i = " & to_string(i)

severity error;

end loop;

report "Test completed.";

std.env.stop;

end process;

end architecture;

Agenda

HR EAS ELE HWP01 WK1 V1.2 14

• Discussion of previous week

• Introduction to VHDL

• Design verification

• Code structure and data types

Example: AND gate

HR EAS ELE HWP01 WK1 V1.2 15

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY andgate IS

PORT (a,b: IN STD_LOGIC;

c: OUT STD_LOGIC);

END andgate;

ARCHITECTURE voorbeeld OF andgate IS

BEGIN

c <= A AND B;

END voorbeeld;

Libraries

HR EAS ELE HWP01 WK1 V1.2 16

• ---

• LIBRARY library_name;

• USE library_name.package_name.all;

• ---

The most frequently used packages are:

• Package standard, from the library std (visible by default)

• Library work (where the projects are saved is visible by default)

• Package std_logic_1164, from the library ieee (when needed, must be

explicitly declared)

• ---

• LIBRARY std; -- optional declaration

• USE std.standard.all; --optional

• LIBRARY work -- optional

• USE work.all -- optional; also not needed if defined as below

• USE work.my_package.all; --if an extra user made package is needed

• LIBRARY ieee;

• USE ieee.std_logic_1164.all

• ---

INCLUDE : IEEE.STD_LOGIC_1164 LIBRARY

17

LIBRARY ieee;

USE ieee.std_logic_1164.all;

https://www.csee.umbc.edu/portal/help/VHDL/std_logic_1164.vhdl

Defines STD_LOGIC as well as STD_LOGIC_VECTOR (array of STD_LOGIC)
'U', -- Uninitialized
'X', -- Unknown
'0', -- LOGIC 0
'1', -- LOGIC 1
'Z', -- High Impedance (used for tri-state I/O’s)
'W',-- Weak signal
'L', -- Weak signal with logic 0 as preference
'H', -- Weak signal with logic 1 as preference
'-' -- Don't care

Simulation or Synthesis?

Defines various FUNCTIONS, such as EDGE DETECTION

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

Data Types: IEEE 1164 Standard Logic

18

▪ IEEE’s std_logic_1164 examples:

▪ STD_LOGIC

▪ STD_LOGIC_VECTOR

SIGNAL b: STD_LOGIC_VECTOR (7 DOWNTO 0);

b <= “1100ZZZZ”; -- array of 8 std_logic’s

-- in MSB representation

SIGNAL a: STD_LOGIC;

a <= ‘0’; -- a is zero

a <= ‘1’; -- a is one

a <= ‘Z’; -- a is high-impedance

-- used for bidi ports

Data Types: IEEE.numeric_std.all LIBRARY

19

Allows for: unsigned, signed, integer, natural

Contains many functions such as: abs(), + addition, - subtraction, *
multiplication, / division, etc…, that can be used with these types

As well as: >, <, <=, >=, =, sll, srl

Normal STD_LOGIC_VECTORS: can’t calculate with those!
Additional Type conversion functions needed to overcome this…..

Zie H10.7 van het boek.

LIBRARY ieee;

USE ieee.numeric_std.all;

https://www.csee.umbc.edu/portal/help/VHDL/numeric_std.vhdl

Conversion of Common Types

20

SIGNAL a: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL b: UNSIGNED (7 DOWNTO 0);

SIGNAL c: SIGNED (7 DOWNTO 0);

(un)signed → std_logic_vector

std_logic_vector → (un)signed

a <= STD_LOGIC_VECTOR(b);

a <= STD_LOGIC_VECTOR(c);

b <= UNSIGNED(a);

c <= SIGNED(a);

Conversion of Common Types

21

SIGNAL d: UNSIGNED (7 DOWNTO 0);

SIGNAL e: SIGNED (7 DOWNTO 0);

SIGNAL f: INTEGER RANGE 0 TO 255;

SIGNAL g: INTEGER RANGE -128 TO 127;

integer → (un)signed

(un)signed → integer

d <= TO_UNSIGNED(f, 8); -- d is an array of 8

e <= TO_SIGNED(g, 8); -- e is an array of 8

f <= TO_INTEGER(d);

g <= TO_INTEGER(e);

Conversion of Common Types

22

integer → std_logic_vector

SIGNAL h: STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL i: INTEGER RANGE 0 TO 255;

SIGNAL j: INTEGER RANGE -128 TO 127;

std_logic_vector → integer

h <= STD_LOGIC_VECTOR(TO_UNSIGNED(i,i'length);

h <= STD_LOGIC_VECTOR(TO_SIGNED(j,j'length);

i <= TO_INTEGER(UNSIGNED(h));

j <= TO_INTEGER(SIGNED(h));

Warning

23

Don’t use it, no matter what older books or
websites/forums/code snippets online say!

Use IEEE 1164
ieee.numeric_std.all

instead for unsigned and signed types!

STD_LOGIC_ARITH
is

OBSOLETE

Assignment Operators

HR EAS ELE HWP01 WK1 V1.2 24

<= for a signal

:= for a variable (covered later)

=> for individual elements of a vector

Example:
signal a: std_logic;

variable b: integer range 0 to 255;

signal c: std_logic_vector(3 downto 0);

a <= '1'; -- assign single bits with '

b := 10; -- assign an integer

c <= "1100"; -- assign a vector with "

c <= (3 => '1', 2 => '1', OTHERS => '0'); –- same as previous line

a <= c(0);

Other Functions available with numeric_std

HR EAS ELE HWP01 WK1 V1.2 25

• Logical
not, and, or, nand, nor, xor, xnor

• Arithmetic
+, -, *, /, **, mod, rem, abs

NOTE: Not all synthesizable

• Comparison
=, /=, <, >, <=, >=

• Shift operators:
sll, srl -- shift left logical, shift right logical

sla, sra -- shift right arithmetic, shift right arithmetic

rol, ror -- rotate left, rotate right

Attributes

HR EAS ELE HWP01 WK1 V1.2 26

SIGNAL d : STD_LOGIC_VECTOR (7 DOWNTO 0);

d'LOW = 0 -- laagste array index

d'HIGH = 7 -- hoogste array index

d'LEFT = 7 -- meest linkse array index

d'RIGHT = 0 -- meest rechtse array index

d'LENGTH = 8 -- lengte van de vector

d'RANGE = (7 DOWNTO 0) -- range of the vector

d'REVERSE_RANGE = (0 TO 7) -- reverse range of the vector

Zie H9 van het boek

Simple Signal Assignment statement

• When the Right Hand Side (RHS) of a signal
assignment changes, the signal assignment
statement is executed

• Signals in a circuit are modeled as signal statement
assignments in VHDL

• Order in text is not preserved!

HR EAS ELE HWP01 WK1 V1.2 27

D flip-flop

• We’ll show you a behavioral and structural
description of a simple D flip-flop

HR EAS ELE HWP01 WK1 V1.2 28

Figures adapted from Embedded Systems Design: A Unified Hardware/Software Introduction

Example: DFF (good)

HR EAS ELE HWP01 WK1 V1.2 29

• Use rising_edge() function (or falling_edge())

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dff IS

PORT(d, clk, rst: IN STD_LOGIC;

q, qi: OUT STD_LOGIC)

END dff;

ARCHITECTURE dff_arch OF dff IS

BEGIN

PROCESS (rst, clk)

BEGIN

IF (rst=‘1’) THEN

q <= ‘0’;

ELSIF rising_edge(clk)

THEN

q <= d;

END IF;

END PROCESS;

qi <= NOT(q);

END dff_arch;

Example: D-FlipFlop (bad)

HR EAS ELE HWP01 WK1 V1.2 30

• In many code snippets people use ‘EVENT like this:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dff IS

PORT (d, clk, rst: IN STD_LOGIC;

q, qi : OUT STD_LOGIC);

END dff;

ARCHITECTURE implementation OF dff IS

BEGIN

PROCESS (rst, clk)

BEGIN

IF (rst=‘1’) THEN

q <= ‘0’;

ELSIF (clk’EVENT AND clk=‘1’) THEN

q <= d;

END IF

END PROCESS;

qi <= NOT(q);

END implementation;

Why is this not a proper
DFF?

Hint: think of the values
a STD_LOGIC signal
can obtain by
definition…

Summary

• Introductie in VHDL

• Verify the functional behavior of your design with
test benches

• Use standard functions for conversion of data types

HR EAS ELE HWP01 WK1 V1.2 31

Homework

• Covered today:
– Discussion of previous week

– Introduction to VHDL

– Code structure and data types

– Design verification

• Homework:
– 2.1, 2.2a, 3.1, 3.20, 3.22, 3.24

• Next week:
– Combinational versus sequential design

– Concurrent and sequential code

– Signals versus variables

HR EAS ELE HWP01 WK1 V1.2 32

	Slide 1: Hardware Programming HWP01
	Slide 2: Planning: theory
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Introduction to VHDL
	Slide 6: VHDL Design
	Slide 7: Entity and architecture keywords
	Slide 8: Agenda
	Slide 9: Design verification: test bench
	Slide 10: Test bench overview
	Slide 11: Delay models
	Slide 12: Discussion of testbench example
	Slide 13
	Slide 14: Agenda
	Slide 15: Example: AND gate
	Slide 16: Libraries
	Slide 17: INCLUDE : IEEE.STD_LOGIC_1164 LIBRARY
	Slide 18: Data Types: IEEE 1164 Standard Logic
	Slide 19: Data Types: IEEE.numeric_std.all LIBRARY
	Slide 20: Conversion of Common Types
	Slide 21: Conversion of Common Types
	Slide 22: Conversion of Common Types
	Slide 23: Warning
	Slide 24: Assignment Operators
	Slide 25: Other Functions available with numeric_std
	Slide 26: Attributes
	Slide 27: Simple Signal Assignment statement
	Slide 28: D flip-flop
	Slide 29: Example: DFF (good)
	Slide 30: Example: D-FlipFlop (bad)
	Slide 31: Summary
	Slide 32: Homework

