
capturing a

FPGA

design with

VHDL

Hardware Programming
HWP01

Planning: theory

• First week
‒ Introduction digital

systems
‒ Structured digital

Design
‒ RTL

• Second week
– Introduction VHDL
– Code structure and

data types
– Design verification

• Third week
– Combinational

versus
sequential
design

– Concurrent and
sequential
code

– Signals and
variables

2HR EAS ELE HWP01 WK1 V1.0

• Fourth week

– Introduction
to state
machines

• Fifth week

– Designing
state
machines

– Advanced
VHDL design

Agenda

• Discussion of previous week

• Combinational versus sequential design

• Concurrent and sequential code

• Signals versus variables

3HR EAS ELE HWP01 WK1 V1.0

Zie ook:
TABEL:
H.3 ; blz 76

Agenda

• Discussion of previous week

• Combinational versus sequential design

• Concurrent and sequential code

• Signals versus variables

5HR EAS ELE HWP01 WK1 V1.0

Combinational and sequential logic (1/2)

• Combinational: no memory

• The output is a function only of the current inputs.

• In any implementation there is a propagation delay

– For this course, we don’t consider the propagation delay.

6

Combinational

Logic

Combinational and sequential logic (2/2)

• Sequential logic:

• The output of sequential logic, is ...

... a function of a sequence of operations ..

... on current and/or previous inputs.

• Advantages?

7

Storage

element

Combinational

Logic

Combinational

Logic

Storage

element

Storage

element

Combinational vs. sequential logic example

8

R

CLK

D

Q

• Combinational

• Sequential

A

B
Y

D Q

R

A

B

Y

Updates instantly

as input changes

(in theory).

Updates

only when

CLK goes

high. Until

then it

remembers

the

previous

input

(memory)

Combinational or sequential?

• Multiplexer vs. Synchronized Multiplexer?

• Timer?

• Encoder (for example binary to 7-seg display)?

• Comparators?

• Adder?

• Multiplier?

• ALU?

• CPU?

• Register?

9

Agenda

• Discussion of previous week

• Combinational versus sequential design

• Concurrent and sequential code

• Signals versus variables

10

Concurrent Code

• concurrent code is intended only for combinational
circuits.
– often used for structural descriptions of a circuit.

• outputs activated asynchronously, at any time.

• statements for concurrent code:
– when ... else

– with ... select

– generate

• can be placed outside process, function and procedure

11

WITH/SELECT

12

• with ... select is used very often

• read: depending on sel, y becomes a when sel is 00, y
becomes b when sel is 01, etc…

• note the usage of the others keyword here to cover
all possibilities

M
U

X

a
b
c
d

Y

sel(1..0)

architecture mux2 of mux is

begin

with sel select

y <= a when "00", -- use "," not ";"

b when "01",

c when "10",

d when others;

end mux2;

WHEN/ELSE

13

M
U

X

a
b
c
d

Y

sel(1..0)

architecture mux1 of mux is

begin

y <= a when sel="00" else

b when sel="01" else

c when sel="10" else

d;

end mux1;

• Read: when sel is equal to “00”, y obtains the value of a,
else when sel is equal to “01”, y obtains the value of b,
etc…

• Cover all combinations

• Let the synthesizer do the K-map for us!

• Lijkt op een priority encoder

Difference

• When/Else

• With/Select

HR EAS ELE HWP01 WK1 V1.2 14

Synchronized Multiplexer

15

library ieee;

use ieee.std_logic_1164.all;

entity synced_mux is

port (a, b, c, d, clk: in std_logic;

sel : in std_logic_vector (1 downto 0);

y : out std_logic);

end gated_mux;

--

architecture behavioral of synced_mux is

signal x: std_logic;

begin

with sel select

x <= a when "00", -- use "," not ";"

b when "01",

c when "10",

d when others;

process (clk)

begin

if rising_edge(clk) then

y <= x;

end process

end architecture
M

U
X

a
b
c
d

x

sel(1..0)

yD Q

DFF

clk

Sequential Code

• statements for sequential code:

– if

– wait

– loop

– case

• sequential code can be used to design both
sequential and combinational circuits

• code within a process, function or procedure is
sequential.

16

Sequential Code

• process is a sequential section, located in the
architecture

• note that multiple processes are allowed. they are
concurrent to each other.

• support for the following sequential statements:

– if

– wait

– loop

– case

– with (since 2008)

– when (since 2008)

17

Sequential Code Circuit Examples

HR EAS ELE HWP01 WK1 V1.2 18

M
U

X
A
B
C
D

Y

SEL(1..0)

Multiplexer with sequential code

19

• A process has a
sensitivity list

• The outputs of
the process get
updated if the
value of an
object in the list
changes

M
U

X
A
B
C
D

Y

SEL(1..0)

library ieee;

use ieee.std_logic_1164.all;

entity seq_code_mux is

port (a, b, c, d: in std_logic;

sel : in std_logic_vector (1 downto 0);

y : out std_logic);

end seq_code_mux;

architecture seq_code_impl of seq_code_mux is

begin

process(sel,a,b,c,d)

begin

if sel = "00" then

y <= a;

elsif sel = "01" then

y <= b;

elsif sel = "10" then

y <= c;

else

y <= d;

end if;

end process;

end seq_code_impl;

Multiplexer with CASE

20

library ieee;

use ieee.std_logic_1164.all;

entity seq_code_mux is

port (a, b, c, d: in std_logic;

sel : in std_logic_vector (1 downto 0);

y : out std_logic);

end seq_code_mux;

architecture seq_code_impl of seq_code_mux is

begin

process(sel,a,b,c,d)

begin

case sel is

when "00" =>

y <= a;

when "01" =>

y <= b;

when "10" =>

y <= c;

when others =>

y <= d;

end case;

end process;

end seq_code_impl;

Difference

• Case

• If/Else

HR EAS ELE HWP01 WK1 V1.2 21

D Flip-Flop

HR EAS ELE HWP01 WK1 V1.2 23

library ieee;

use ieee.std_logic_1164.all;

entity dff_example is

port (

clk: in std_logic;

d,r: in std_logic;

q : out std_logic

);

end dff_example;

architecture dff_implementation of dff_example is

begin

process(clk, r)

begin

if r = '1' then

q <= '0';

elsif rising_edge(clk) then

q <= d;

end if;

end process;

end dff_implementation;

D

DFF

Q

R

We only want to

update Q when

the CLK goes

high, so only

the CLK & R are

in the

sensitivity list

Technology Map of DFF

HR EAS ELE HWP01 WK1 V1.2 24

Sequential circuits can only be written with

sequential code

Up/down counter

HR EAS ELE HWP01 WK1 V1.2 25

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity updown is
generic (

counter_width : integer := 31
);

port (
clk : in std_ulogic;
rst : in std_ulogic;

up_ndown : in std_ulogic;

count_out : out std_ulogic_vector(counter_width downto 0)
);

end updown;

Up/down counter

HR EAS ELE HWP01 WK1 V1.2 26

architecture arch of updown is
variable count : unsigned(counter_width downto 0);

begin
process(clk)
begin

if rising_edge(clk) then
if rst = '1' then

count <= (others => '0');
else

if up_ndown = '1' then
count <= count + 1;

else
count <= count - 1;

end if;
end if;

end if;
end process;

count_out <= std_ulogic_vector(count);

end arch;

WAIT

• In a process you can use the wait keyword

• A process CANNOT have both a sensitivity list and wait
statements

• Three types:
– wait until condition

– wait on sig1, sig2, ..., sign (sensitivity list)

– wait for time

• wait for cannot be synthesized; only for simulation and
test benches

HR EAS ELE HWP01 WK1 V1.2 27

D Flip-Flop with WAIT

HR EAS ELE HWP01 WK1 V1.2 28

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dff_example IS

PORT (

clk: IN STD_LOGIC;

d,r: IN STD_LOGIC;

q : OUT STD_LOGIC

);

END dff_example;

ARCHITECTURE dff_implementation OF dff_example IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL RISING_EDGE(clk);

q <= d;

END PROCESS;

END dff_implementation;

Not very

handy without

a reset

Loops in VHDL

• for and while loops

• for ... loop repeats until the upperbound is reached

• static bounds; use constants to specify the upper
bound of your loop

HR EAS ELE HWP01 WK1 V1.2 29

process(sel)

..

begin

for i in 0 to 5 loop

x <= i;

end loop;

end process;

Loops in VHDL

• while ... loop is similar in structure as the for ... loop

• see page 161 of your book for some examples with
loops

HR EAS ELE HWP01 WK1 V1.2 30

process(sel)

..

begin

while i<10 loop

...do something...

end loop;

end process;

Agenda

• Discussion of previous week

• Combinational versus sequential design

• Concurrent and sequential code

• Signals versus variables

31HR EAS ELE HWP01 WK1 V1.0

Signals versus variables

• SIGNAL

– Is eigenlijk een verbinding of draadje

– Bedoeld om data over te brengen tussen verschillende
blokken zoals concurrent statements en processen

• VARIABLE

– Is meer een abstracte waarde

– Het wordt gebruikt om iets te onthouden binnen een
process

HR EAS ELE HWP01 WK1 V1.2 32

Signals versus variables

• SIGNAL properties:
– Can ONLY be declared outside a process but can be used

within a process

– Within sequential code the signal is not ‘updated
immediately’ (at the end of the process)

– Only a single assignment is allowed to a signal in the whole
code (multiple assignments in processes are fine, but only
the last one will be effective!)

• VARIABLE properties:
– Can ONLY be declared inside a process

– Is ‘updated immediately’ and can be used in the next line
of code

– Multiple assignments are not a problem

HR EAS ELE HWP01 WK1 V1.2 33

Summary

• Combinational versus sequential design: no memory
versus memory.

• In VHDL we can model combinational circuits with
sequential statements

• Remember the differences between signals and
variables

HR EAS ELE HWP01 WK1 V1.2 38

Homework

• Covered today:

– Discussion of previous week

– Combinatorial versus sequential design

– Concurrent and sequential design

– Signals versus variables

• Next week:

– Chapter 12 (13) ‘Sequential Code’
• ! Chapter 12.9 ‘SIGNAL and VARIABLE’

– Chapter 14.3 – 14.5 ‘FUNCTION and PROCEDURE’

HR EAS ELE HWP01 WK1 V1.2 39

	Slide 1: Hardware Programming HWP01
	Slide 2: Planning: theory
	Slide 3: Agenda
	Slide 4
	Slide 5: Agenda
	Slide 6: Combinational and sequential logic (1/2)
	Slide 7: Combinational and sequential logic (2/2)
	Slide 8: Combinational vs. sequential logic example
	Slide 9: Combinational or sequential?
	Slide 10: Agenda
	Slide 11: Concurrent Code
	Slide 12: WITH/SELECT
	Slide 13: WHEN/ELSE
	Slide 14: Difference
	Slide 15: Synchronized Multiplexer
	Slide 16: Sequential Code
	Slide 17: Sequential Code
	Slide 18: Sequential Code Circuit Examples
	Slide 19: Multiplexer with sequential code
	Slide 20: Multiplexer with CASE
	Slide 21: Difference
	Slide 23: D Flip-Flop
	Slide 24: Technology Map of DFF
	Slide 25: Up/down counter
	Slide 26: Up/down counter
	Slide 27: WAIT
	Slide 28: D Flip-Flop with WAIT
	Slide 29: Loops in VHDL
	Slide 30: Loops in VHDL
	Slide 31: Agenda
	Slide 32: Signals versus variables
	Slide 33: Signals versus variables
	Slide 38: Summary
	Slide 39: Homework

