

Hardware Programming HWP01 2022-2023

capturing a FPGA design with VHDL

Planning: theory

- First week
 - Introduction digital systems
 - Structured digital Design
 - RTL

- Third week
 - Combinational versus sequential design
 - Concurrent and sequential code

• Fourth week

Fifth week

Introduction

machines

machines

to state

Designing

Advanced

state

- Components
- Generics

- Second week
 - Introduction VHDL
 - Code structure and data types
 - Design verification

VHDL design

Agenda

- Discussion of previous week
- Signals versus variables

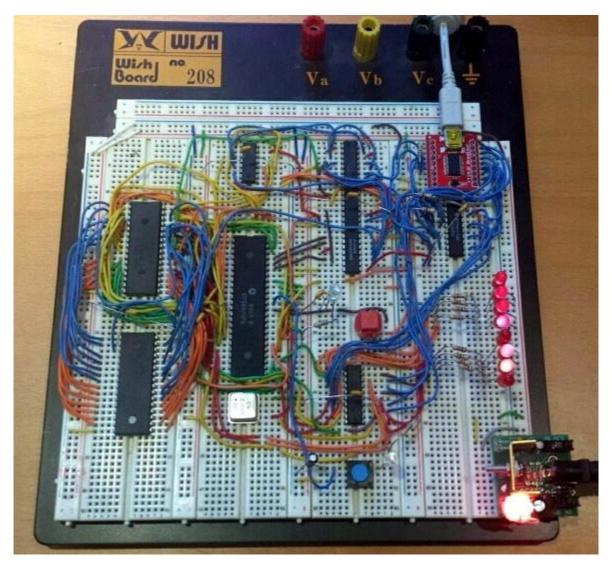
Signals versus variables

• **SIGNAL** properties:

- Can ONLY be declared outside a PROCESS but can be used within a PROCESS
- Within sequential code the signal is not 'updated immediately' (at the end of the PROCESS)
- Only a *single* assignment is allowed to a signal in the whole code (multiple assignments in **PROCESSES** are fine, but only the last one will be effective!)

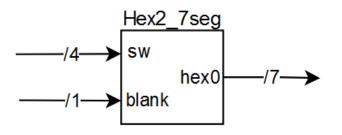
• VARIABLE properties:

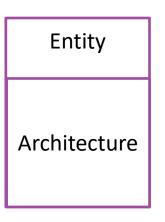
- Can ONLY be declared inside a PROCESS
- Is 'updated immediately' and can be used in the next line of code
- Multiple assignments are not a problem



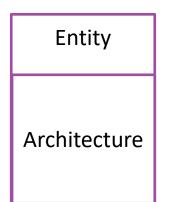
Agenda

- Discussion of previous week
- Signals versus variables

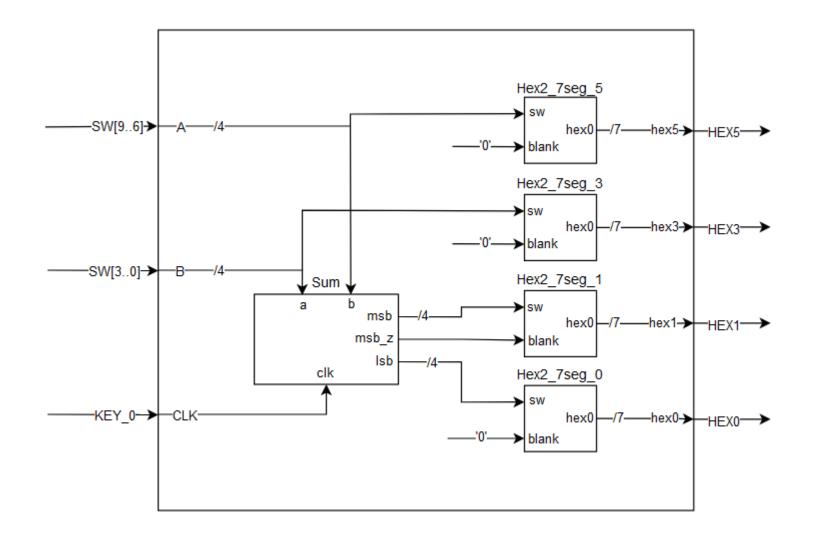



Putting it together




HR EAS ELE HWP01 WK1 V1.2

Create (separately) validated components



HR EAS ELE HWP01 WK1 V1.2

Add components to your top level design

"Top Level Design: multiply_2hexandDisplay.vhd"

Instantiating components

begin hex5decoder: seven segment decoder port map($sw \Rightarrow A$, $blank \Rightarrow '0'$, $hex0 \Rightarrow hex5$); hex3decoder: seven segment decoder port map($sw \Rightarrow B$, $blank \Rightarrow '0'$, $hex0 \Rightarrow hex3$): hexldecoder: seven segment decoder port map(sw => sum msn, blank => blank msn, hex0 => hex1); hex0decoder: seven segment decoder port map($sw \Rightarrow sum lsn, blank \Rightarrow '0', hex0 \Rightarrow hex0$);

begin

dut: assignment3

```
port map(A => SW(9 downto 6), B => SW(3 downto 0), clk => not KEY(0), hex0 => HEX0, hex1 => HEX1, hex3 => HEX3, hex5 => HEX5);
-- Extra: connect the LEDR outputs to the SW inputs
LEDR <= SW;
end architecture;
```


Generic statements

- Generic values are used for declaring global constant in a component
- What is the use of generics?
- For more information on generics and what else they are capable of, see CH 6.7

Voorbeeld Generics

With value

```
entity add_compare_cell is
  generic (
     NUM_BITS: natural := 16)
  port (
     a, b: in std_logic_vector(NUM_BITS-1 downto 0);
     comp: out std_logic;
     sum: out std_logic_vector(NUM_BITS downto 0));
end entity;
```

• Without value

generic (
 type bus_type;
 BUS_WIDTH: natural := 32;
 LAST_ADDRESS: natural);

Summary

- Remember the differences between signals and variables
- Components are pre-validated VHDL library elements used to reduce development time of new products.

