
Hardware Programming
HWP01

capturing a

FPGA

design with

VHDL

Fifth Week: Theory

• Theory:

– Ch15+16: State Machines

• Goals:

– Learn how to design and implement a Finite State
Machine in a digital circuit using VHDL

2

Agenda

• Finite State Machines

• Example

• Example in VHDL

• Template in VHDL

3

Finite State Machines Design

• FSM diagrams consist of:

– States

– Transitions
• Conditions

– Inputs

– Outputs

– Reset

0

A=0

B=0

1

A=0

B=1

2

A=X

B=1

3

A=1

B=Y

X=1

Y=0

X=0

Y=0

X=1

Y=1

X=0

Y=1

reset

FSM
clk

x

y

A

B

4 Reset

Finite State Machines in Digital Circuits

Combinational
Logic

Q D

R

INPUTS OUTPUTS

PRESENT STATE NEXT STATE

Combinational Part

Sequential Part

5

The Sequential Part

• The sequential part consists

only of dffs, a clock and a reset.

• The flip-flops hold the present

state

• They switch to the next state

on the clock-edge

• The reset makes the present

state 0000 (initial state).

• The combinational part

determines the next state by

the inputs and present state

Q D

R

Sequential Part

Combinational
Logic

INPUTS OUTPUTS

PRESENT STATE NEXT STATE

Combinational Part

6

Encoding the State Bus

• The states are represented by
bits (of course)

• Encoding states can be done
in a few ways:
– State BINARY GRAY ONE-HOT

– 0 00 00 0001

– 1 01 01 0010

– 2 10 11 0100

– 3 11 10 1000

• Why? (See Ch. 2.6.5)

• Keep it easy, let Quartus
decide the encoding.

• See Ch. 15.2 how to do this.

Combinational
Logic

INPUTS OUTPUTS

PRESENT STATE NEXT STATE

Combinational Part

Q D

R

Sequential Part

7

The Combinational Part

• the combinational part
determines the next state
– it is a function of the inputs

and present state

• the combinational part
determines the outputs
– Moore: it is a function of the

present state

– Mealy: it is a function of the
present state combined with
the inputs

• Always design as Moore and
change to Mealy if output
needs to react instantly

Combinational
Logic

Q D

R

INPUTS OUTPUTS

PRESENT STATE NEXT STATE

Combinational Part

Sequential Part

8

• Template M1 on page 382

• Listing

https://bytebucket.org/HR_ELEKTRO/hwp01/wiki/uitleg/FSM_template.txt?rev=08b81cb3f85a7a1e6526b07619bc40bcc7b823dc

The Combinational Part

• The Combinational Part is
Combinational Logic

• It is a (simple) Boolean
Function

• We can draw a truth-table
for this

• We can use K-maps to
minimize the logic

Combinational
Logic

Q D

R

INPUTS OUTPUTS

PRESENT STATE NEXT STATE

Combinational Part

Sequential Part

9

Agenda

• Finite State Machines

• Example

• Example in VHDL

• Template in VHDL

10

Egg Timer: FSM Context

State Machine

Counter
button

reset

cnt_done cnt_donecnt_enable

cnt_reset

led

11

Egg Timer: State Diagram

12

Agenda

• Finite State Machines

• Example

• Example in VHDL

• Template in VHDL

15

Example in VHDL

• Same Egg Timer: the entity

library ieee;

use ieee.std_logic_1164.all;

entity fsm_egg_timer is

 port(

 clk, reset, btn, cnt_done : in std_ulogic;

 cnt_enable, cnt_reset, led : out std_ulogic

);

end entity;

17

State Bus Encoding in VHDL

• We need to define the states inside our architecture.

• We can use the “TYPE” keyword, it’s like “ENUM” in C. The
synthesizer will define what idle, button, cnting, etc… is.

• We need to define signals for the present and next state.

architecture rtl of fsm_egg_timer is

 -- Define an enumerated type for the state machine

 type state_type is (idle, button, cnting, done);

 -- Register to hold the current state

 signal present_state, next_state : state_type;

begin

18

Define the flip-flops

-- state register

pr_flipflops : process (clk, reset)

begin

if reset then

present_state <= idle;

elsif rising_edge(clk) then

present_state <= next_state;

end if;

end process;

20

-- logic to determine the next state

pr_next_state : process (present_state, btn, cnt_done)

begin

case present_state is

when idle =>

if btn then

next_state <= btn;

else

next_state <= idle;

end if;

when btn =>

if not btn then

next_state <= cnting;

else

next_state <= btn;

end if;

when cnting =>

if cnt_done then

next_state <= done;

else

next_state <= cnting;

end if;

when done =>

next_state <= done;

end case;

end process;

Write the transitions

21

Write the outputs (Moore)

-- Logic to determine the outputs

 pr_outputs: process (present_state)

 begin

 case present_state is

 when idle =>

 cnt_enable <= '0';

 cnt_reset <= '1';

 led <= '0';

 when btn =>

 cnt_enable <= '0';

 cnt_reset <= '1';

 led <= '0';

 when cnting =>

 cnt_enable <= '0';

 cnt_reset <= '0';

 led <= ‘0';

 when done =>

 cnt_enable <= '1';

 cnt_reset <= '0';

 led <= ‘1';

 end case;

 end process;

end architecture;

22

State Machine Viewer

• Quartus can detect a state machine in your code!

23

State Machine Viewer

24

Agenda

• Finite State Machines

• Example

• Example in VHDL

• Template in VHDL

25

Write the outputs (Moore)

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

port (

clk, rst: in std_ulogic;

input1, input2, ...: in std_ulogic;

output1, output2, ...: out std_ulogic

);

end fsm;

architecture behavior of fsm is

type state_type is (idle, state1, state2,

...);

signal pr_state, nx_state: state_type;

begin

process(clk, rst)

begin

if rst then

pr_state <= idle;

elsif rising_edge(clk) then

pr_state <= nx_state;

end if;

end process;

26

process(pr_state, input1, input2, ...)

begin

case pr_state is

when idle =>

if input1 then

nx_state <= state1;

else

nx_state <= state2;

end if;

when state1 =>

nx_state <= state2;

when state2 =>

...;

when ... =>

...;

end case;

end process;

process(pr_state)

begin

case pr_state is

when idle =>

output1 <= '0';

output2 <= '0';

...

when state1 =>

output1 <= '0';

output2 <= '1';

...

when state2 =>

...;

when ... =>

...;

end case;

end process;

end architecture;

• Template M1 on page 382

• Listing

https://bytebucket.org/HR_ELEKTRO/hwp01/wiki/uitleg/FSM_template.txt?rev=08b81cb3f85a7a1e6526b07619bc40bcc7b823dc

Advantages of using the template

• Readability

• Reusability

• Adaptability

• Quicker (especially for bigger designs)

• Quartus also has built-in templates (right-click in the
editor)

27

	Slide 1
	Slide 2: Fifth Week: Theory
	Slide 3: Agenda
	Slide 4: Finite State Machines Design
	Slide 5: Finite State Machines in Digital Circuits
	Slide 6: The Sequential Part
	Slide 7: Encoding the State Bus
	Slide 8: The Combinational Part
	Slide 9: The Combinational Part
	Slide 10: Agenda
	Slide 11: Egg Timer: FSM Context
	Slide 12: Egg Timer: State Diagram
	Slide 15: Agenda
	Slide 17: Example in VHDL
	Slide 18: State Bus Encoding in VHDL
	Slide 20: Define the flip-flops
	Slide 21: Write the transitions
	Slide 22: Write the outputs (Moore)
	Slide 23: State Machine Viewer
	Slide 24: State Machine Viewer
	Slide 25: Agenda
	Slide 26: Write the outputs (Moore)
	Slide 27: Advantages of using the template

