" Hardware Programming
HOGESCHOOL HWPO1

ROTTERDAM

capturing a
FPGA
design with
VHDL

Fifth Week: Theory

* Theory:
— Ch15+16: State Machines

e Goals:

— Learn how to design and implement a Finite State
Machine in a digital circuit using VHDL

Agenda

* Finite State Machines
* Example

* Example in VHDL
 Template in VHDL

Finite State Machines Design

 FSM diagrams consist of:
— States
— Transitions

 Conditions

— Inputs
— Outputs

— Reset

clk —> A
*—> FSM |
Y é B

Finite State Machines in Digital Circuits

Combinational Part

INPUTS OUTPUTS
—_— . . >
Combinational
Logic
PRESENT STATE NEXT STATE
—_—
Q D |€
> R
>

Sequential Part

5

The Sequential Part

Combinational Part

* The sequential part consists

INPUTS OUTPUTS only of dffs, a clock and a reset.
Combinational * The flip-flops hold the present
Logic
PRESENT STATE NEXT STATE State
—> _— * They switch to the next state

on the clock-edge

* The reset makes the present
state 0000 (initial state).

e The combinational part
determines the next state by
Sequential Part the inputs and present state

Encoding the State Bus

Combinational Part

* The states are represented by

INPUTS OUTPUTS bits (of course)
. * Encoding states can be done
Combinational .
Logic in a few ways:
PRESENT STATE NEXT STATE

— State BINARY GRAY ONE-HOT
-0 00 00 0001

-1 01 01 0010
Qa o — 2 10 11 0100
. -3 11 10 1000

e Why? (See Ch. 2.6.5)

* Keep it easy, let Quartus
decide the encoding.

e See Ch. 15.2 how to do this.

Sequential Part

The Combinational Part

Combinational Part

INPUTS
—>

PRESENT STATE

—>

OUTPUTS
—>

Combinational
Logic
NEXT STATE

Sequential Part

Template M1 on page 382

the combinational part
determines the next state

— itis a function of the inputs
and present state

the combinational part

determines the outputs

— Moore: it is a function of the
present state

— Mealy: it is a function of the
present state combined with
the inputs

Always design as Moore and
change to Mealy if output
needs to react instantly

https://bytebucket.org/HR_ELEKTRO/hwp01/wiki/uitleg/FSM_template.txt?rev=08b81cb3f85a7a1e6526b07619bc40bcc7b823dc

The Combinational Part

Combinational Part

INPUTS
—>

PRESENT STATE

—>

Combinational
Logic

OUTPUTS
—>

NEXT STATE

Sequential Part

The Combinational Part is
Combinational Logic

It is a (simple) Boolean
Function

We can draw a truth-table
for this

We can use K-maps to
minimize the logic

Agenda

* Finite State Machines
 Example

* Example in VHDL
 Template in VHDL

Egg Timer: FSM Context

A

cnt_done

>

—— button
F—

—p— reset
T —

State Machine

cnt_enable

>
cnt_reset

—>

Counter

cnt_done

led

11

Egg Timer: State Diagram

button = x button = 1
done = x idle done = x button
reset = 1 reset=0
Cnt_enable =0 cnt enable =0
cnt_reset =1 ent reset = 1
led=0 led=0
button = x button =0
done = x
reset=0
done cnting
cnt enable =0 cnt_enable = 1
cntl_res_e11= 0 button = x r:ntl_re:a_e:jI =0
ed = done = 1 ed =
reset=0

2 2

1 2 HOGESCHOOL
ROTTERDAM

Agenda

* Finite State Machines
* Example

* Example in VHDL
 Template in VHDL

Example in VHDL

 Same Egg Timer: the entity

library ieee;
use leee.std logic 1lo4.all;

entity fsm egg timer is
port (
clk, reset, btn, cnt done : in std ulogic;
cnt enable, cnt reset, led : out std ulogic

)
end entity;

17

State Bus Encoding in VHDL

We need to define the states inside our architecture.

We can use the “TYPE” keyword, it’s like “ENUM” in C. The
synthesizer will define what idle, button, cnting, etc... is.

We need to define signals for the present and next state.

architecture rtl of fsm egg timer is

-—- Define an enumerated type for the state machine
type state type is (idle, button, cnting, done);

—-— Register to hold the current state
signal present state, next state : state type;

begin

18

Define the flip-flops

-—- state register
pr flipflops : process (clk, reset)

begin
if reset then
present state <= 1dle;
elsif rising edge(clk) then
present state <= next state;

end if;
end process;

20

Write the transitions

-- logic to determine the next state
pr next state : process (present state, btn, cnt done)
begin
case present state 1is
when idle =>
if btn then
next state <= btn;
else
next state <= idle;
end if;
when btn =>
if not btn then
next state <= cnting;
else
next state <= btn;
end if;
when cnting =>
if cnt done then
next state <= done;
else
next state <= cnting;
end if;
when done =>

next state <= done;
end case;
end process;

2 2

2 1 HOGESCHOOL
ROTTERDAM

Write the outputs (Moore)

-- Logic to determine the outputs
pr outputs: process (present state)
begin

case present state is

when idle =>
cnt enable <= '0';
cnt reset <= '1"';
led <= '0"';

when btn =>
cnt _enable <= '0';
cnt reset <= '1"';
led <= '0';

when cnting =>
cnt _enable <= '0';
cnt reset <= '0";
led <= ‘0';

when done =>
cnt enable <= '1';
cnt reset <= '0";
led <= ‘1';

end case;
end process;
end architecture;

2 2

2 2 HOGESCHOOL
ROTTERDAM

State Machine Viewer

Tasks Compilation TE LA x

Task
~ P Compile Design
~ P Analysis & Synthesis
B Edit Settings
EE view Report
P> Analysis & Elaboration
> P Partition Merge
v Netlist Viewers
Q RTL Viewer
@ State Machine Viewer
& Technology Map Viewer (Post-
> P Design Assistant (Post-Mapping)

* Quartus can detect a state machine in your code!

2 2

2 3 HOGESCHOOL
ROTTERDAM

State Machine Viewer

Q State Machine Viewer - C;/HWP01/fsm_sheets/fsm_sheets - fsm_egqg_timer — O X
E“E Edit EiEW IGG[S ﬂil‘ldﬂw ﬂElp Search altera.com a-
State Machine: |fsm_egg_timer|present_state i g B v & % A k »

cnting done

; Source State Destination State Condition
11 button cnting (Ybtn)
2 button button (btn)
3 cnting cnting (lcnt_done)
4 cnting done (cnt_daone)
5 done done
% & idle button (btn)
= |7 idle idle (tbtn)
u:r: \Transitions /\ Encc:dingf

100% 00:00:01

2 2

2 4 HOGESCHOOL
ROTTERDAM

Agenda

* Finite State Machines
* Example

* Example in VHDL

* Template in VHDL

Write the outputs (Moore)

library ieee;
use ieee.std logic 1164.all; process(pr_state, inputl, input2, ...)
- - begin

case pr state is

entity fsm is when idle =>

port (if inputl then
clk, rst: in std ulogic; nx state <= statel;
inputl, input2, ...: in std ulogic; else
outputl, output2, ...: out std ulogic nx_state <= stateZ2;

end if;
when statel =>
nx state <= state2;
when state2 =>
architecture behavior of fsm is e
type state type is (idle, statel, state2, when ... =>

<) e

. d case;
signal pr state, nx state: state type; en !
g pr_ roRE_ —tYP end process;

)7

end fsm;

begin
process (pr_state)
process (clk, rst) begin
begin case pr state is
if rst then when idle =>
pr_state <= idle; Zutputé Zz .gf
. . . utpu = ;
elsif rising edge (clk) then b
pr state <= nx state; when statel =
end if; outputl <= '0';
end process; output2 <= '1';

when state2 =>

when ... =>

end case;
end process;

end architecture;

. 1 2
Template M1 on page 38 "

L4 HOGESCHOOL
2 6 ROTTERDAM

https://bytebucket.org/HR_ELEKTRO/hwp01/wiki/uitleg/FSM_template.txt?rev=08b81cb3f85a7a1e6526b07619bc40bcc7b823dc

Advantages of using the template

* Readability

* Reusability

* Adaptability

* Quicker (especially for bigger designs)

e Quartus also has built-in templates (right-click in the
editor)

27

	Slide 1
	Slide 2: Fifth Week: Theory
	Slide 3: Agenda
	Slide 4: Finite State Machines Design
	Slide 5: Finite State Machines in Digital Circuits
	Slide 6: The Sequential Part
	Slide 7: Encoding the State Bus
	Slide 8: The Combinational Part
	Slide 9: The Combinational Part
	Slide 10: Agenda
	Slide 11: Egg Timer: FSM Context
	Slide 12: Egg Timer: State Diagram
	Slide 15: Agenda
	Slide 17: Example in VHDL
	Slide 18: State Bus Encoding in VHDL
	Slide 20: Define the flip-flops
	Slide 21: Write the transitions
	Slide 22: Write the outputs (Moore)
	Slide 23: State Machine Viewer
	Slide 24: State Machine Viewer
	Slide 25: Agenda
	Slide 26: Write the outputs (Moore)
	Slide 27: Advantages of using the template

