
ROS01 Real-Time Operating Systems – Pre-emptive Scheduler

Assignments week 4 – Pre-emptive Scheduler

An alternative to sequentially running tasks is to pre-empt a task to run a new
(more important) task. To be able to pre-empt a task, a context switch has to be
implemented. Gladly, this has already been done by the instructor! Your goal with
this assignment is actually implementing a specific scheduler, i.e. the algorithm
that determines the next task to be run. A scheduler that chooses the next task
based on its properties can be implemented in many ways.

4.1 Clone or pull the last version of the project repository from https://bitbucket.

org/HR_ELEKTRO/ros01_ccs_projecten and import the project VersdOS

into your workspace. Rename it to Assignment4.1 and make sure you’re
able to run it. The leds should blink.

• Look at the currently implemented scheduler and be amazed (take hint
of the sarcasm). An alternative to the currently implemented delay
function has to be implemented. Create a function delayTask(int

ticks) that will delay a task for a given amount of ticks. “Delay” in
this case means preventing the scheduler from executing this task for
the given amount of ticks.

• Now implement a priority-based scheduler. If necessary modify things
to your need. Currently the task list is an array, perhaps several linked
lists are better suitable to your cause? When tasks with equal priority
are to be executed, a back-up algorithm should be used. The backup
algorithm you are going to implement is the Shortest Job First (SJF)
algorithm. You are allowed to specify the estimated run-time at task
creation or to use a counter to determine its run-time.

• Verify the correct behavior of your priority-based scheduler by using a
logic analyzer.

Rotterdam University Assignments week 4 – Version 2.0 1

https://bitbucket.org/HR_ELEKTRO/ros01_ccs_projecten
https://bitbucket.org/HR_ELEKTRO/ros01_ccs_projecten

