
ROS01 Real-Time Operating Systems – TI-RTOS

Assignments week 5 – TI-RTOS

So far, all work has been done using self-written code. For small systems this
can be sufficient and the question remains whether pre-emptive scheduling is a
necessity for these systems at all! However, for bigger systems with lots of I/O, a
real-time operating system might be better suitable. In this assignment you will
use TI-RTOS, a free Real-Time Operating System provided by Texas Instruments.
There is a standard POSIX1 API2 available which can be used to define tasks and
inter task communication. In this assignment you will be introduced to threads
(tasks) and semaphores (an inter task communication device) by analyzing an
existing multi-threaded program. We will analyze the properties of the real-time
scheduler used in TI-RTOS in particular. In the last parts of this assignment you
will use a POSIX mqueue (message queue) and mutex (a synchronization device
which provides mutual exclusivity) to simplify the program.

The problem we are going to analyze is the so-called producer-consumer synchro-
nization problem. See Figure 1.

Producer 1

Buffer

Producer 2

Consumer

Figure 1: Two producers and one consumer communicating via a buffer.

The example program buffer.c consists of three threads: two producers and one
consumer. Each producer produces one data element at a time and puts this into a

1 The Portable Operating System Interface (POSIX) is a family of standards specified by the IEEE
Computer Society for maintaining compatibility between operating systems.

2 https://dev.ti.com/tirex/explore/content/simplelink_cc32xx_sdk_5_20_00_06/docs/
tiposix/Users_Guide.html.

Rotterdam University Assignments week 5 – Version 1.4 1

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/buffer.c
https://dev.ti.com/tirex/explore/content/simplelink_cc32xx_sdk_5_20_00_06/docs/tiposix/Users_Guide.html
https://dev.ti.com/tirex/explore/content/simplelink_cc32xx_sdk_5_20_00_06/docs/tiposix/Users_Guide.html

ROS01 Real-Time Operating Systems – TI-RTOS

shared buffer. The consumer reads one data element at a time from this buffer
and consumes the data.

Obviously, it must be ensured that the producers and the consumer synchronize:

• The consumer has to wait when the buffer is empty.

• A producer has to wait when the buffer is full.

• The consumer and producers have to wait on each other when using shared
variables (used to implement the buffer).

This synchronization can be realized with the help of three semaphores:

• The semaphore semEmpty counts the number of empty places. This sema-
phore is initialized with the number of places in the buffer. A producer calls a
sem_wait on this semaphore before placing a data element into the buffer. As
a result, the semaphore is decremented by 1 every time an element is placed
into the buffer. If the semaphore semEmpty is 0, the producer must wait
(there are no more empty places, so the buffer is full). After the consumer
has taken a data element from the buffer, a sem_post is executed on the
semaphore semEmpty. As a result, the semaphore is incremented by 1 each
time a place has been emptied.

• The semaphore semFilled counts the number of filled places. This sema-
phore is initialized with 0. The consumer calls a sem_wait on this semaphore
before a data element is taken from the buffer. As a result, the semaphore
is decremented by 1 every time one place is emptied in the buffer. If the
semaphore semFilled is 0, the consumer must wait (there are no more filled
places, so the buffer is empty). After a producer has put a data element into
the buffer, a sem_post is executed on the semaphore semFull. As a result,
the semaphore is incremented by 1 each time one element is put into the
buffer.

• The semaphore semMutualExclusive ensures mutual exclusion. This sema-
phore is initialized with 1. The consumer and producers call a sem_wait on
this semaphore before using the shared variables. When they have finished

Rotterdam University Assignments week 5 – Version 1.4 2

ROS01 Real-Time Operating Systems – TI-RTOS

using the shared variables, a sem_post is executed on this semaphore. This
ensures that only one thread at a time can use the shared variables.

The buffer is globally defined as follows:

#define SIZE 8

char buffer[SIZE]; // buffer which can store SIZE elements ←-
,→ of type char

int indexGet = 0; // index where the next element will be ←-
,→ read

int indexPut = 0; // index where the next element will be ←-
,→ written

sem_t semMutualExclusive; // binary semaphore: used for ←-
,→ mutual exclusive use of the buffer

sem_t semEmpty; // counting semaphore: counts the number ←-
,→ of empty places

sem_t semFilled; // counting semaphore: count the number ←-
,→ of filled places

The use of global variables is of course "not done". All these variables can be places
in a structure and passed to the threads by using the void * argument. But to
begin with, the use of global variables is simpler.

The type sem_t is defined in the header file semaphore.h. The link refers to the
POSIX standard (IEEE Std 1003.1) documentation.

A character can be written into the buffer using the function put:

void put(char c)

{

check_errno(sem_wait (& semEmpty)); // lower the ←-
,→ number of empty places , WAIT if there are no free ←-
,→ places left!

check_errno(sem_wait (& semMutualExclusive)); // enter ←-
,→ critical region

buffer[indexPut] = c;

indexPut ++;

if (indexPut == SIZE)

Rotterdam University Assignments week 5 – Version 1.4 3

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/semaphore.h.html

ROS01 Real-Time Operating Systems – TI-RTOS

{

indexPut = 0;

}

check_errno(sem_post (& semMutualExclusive)); // leave ←-
,→ critical region

check_errno(sem_post (& semFilled)); // increase the ←-
,→ number of filled places

}

The sem_wait and sem_post functions return the value 0 if no error has occurred.
In case of an error, -1 is returned and the standard global variable errno is filled
with the error number. In the example program the function check_errno is used
to check this return value. In case of an error, this function prints an appropriate
error message using the standard function perror and enters an infinite loop.

void check_errno(int error)

{

if (error < 0)

{

perror("Error");

while (1);

}

}

A character can be read from the buffer using the function get:

char get(void)

{

check_errno(sem_wait (& semFilled)); // lower the ←-
,→ number of filled places , WAIT if there are no filled ←-
,→ places left!

check_errno(sem_wait (& semMutualExclusive)); // enter ←-
,→ critical region

char c = buffer[indexGet];

indexGet ++;

if (indexGet == SIZE)

{

Rotterdam University Assignments week 5 – Version 1.4 4

https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_wait.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_post.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/perror.html

ROS01 Real-Time Operating Systems – TI-RTOS

indexGet = 0;

}

check_errno(sem_post (& semMutualExclusive)); // leave ←-
,→ critical region

check_errno(sem_post (& semEmpty)); // increase the ←-
,→ number of empty places

return c;

}

The semaphores are initialized in the main_thread function using the function
sem_init:

check_errno(sem_init (& semMutualExclusive , 0, 1)); // ←-
,→ allow one thread exclusively in critical section

check_errno(sem_init (&semEmpty , 0, SIZE)); // there ←-
,→ are SIZE empty places

check_errno(sem_init (&semFilled , 0, 0)); // there ←-
,→ are 0 filled places

The two producer threads execute the same code:

void *producer(void *arg) // function for producer thread

{

char c = *(char *)arg;

check_errno(sem_wait (& semPrintf));

check_errno(printf("Thread: %p with argument: %c ←-
,→ starts\n", pthread_self (), c));

check_errno(sem_post (& semPrintf));

for (int i = 0; i < 100; ++i)

{

put(c);

}

check_errno(sem_wait (& semPrintf));

check_errno(printf("Thread: %p stops\n", ←-
,→ pthread_self ()));

check_errno(sem_post (& semPrintf));

return NULL;

}

Rotterdam University Assignments week 5 – Version 1.4 5

https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_init.html

ROS01 Real-Time Operating Systems – TI-RTOS

The character to be produced is passed on as an argument (when starting the
thread). 100 characters are placed in the buffer using the function put. Us-
ing printf, the starting and stopping of the thread is reported. The function
pthread_self is used to retrieve the thread ID. An extra semaphore semPrintf

has been defined which ensures that the output is not alternated with the output
of other threads.

The consumer thread executes the following code:

void *consumer(void *arg) // function for consumer thread

{

check_errno(sem_wait (& semPrintf));

check_errno(printf("Thread: %p starts\n", ←-
,→ pthread_self ()));

check_errno(sem_post (& semPrintf));

for (int i = 0; i < 200; ++i)

{

char c = get();

check_errno(sem_wait (& semPrintf));

check_errno(printf("%c", c));

check_errno(sem_post (& semPrintf));

}

check_errno(sem_wait (& semPrintf));

check_errno(printf("Thread: %p stops\n", ←-
,→ pthread_self ()));

check_errno(sem_post (& semPrintf));

return NULL;

}

200 characters are read from the buffer using the function get. Each character is
printed using the standard function printf. Also the starting and stopping of the
thread is reported.

The main_thread is given a high priority in the main function . The main_thread

must have the highest priority because this thread starts the other threads and we
want to study the mutual interaction of these threads.

Rotterdam University Assignments week 5 – Version 1.4 6

https://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_self.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html

ROS01 Real-Time Operating Systems – TI-RTOS

Setting the priority of a thread is fairly complicated. First the scheduling parameters
have to be retrieved from the pthread attributes using the function pthread_attr_-

getschedparam. These scheduling parameters are of the type struct sched_-

param. The data field sched_priority in this struct can be used to set the
priority. Finally, the changed scheduling parameters must be passed to the thread
attributes again using the function pthread_attr_setschedparam.

struct sched_param sp;

check(pthread_attr_getschedparam (&pta , &sp));

sp.sched_priority = 15;

check(pthread_attr_setschedparam (&pta , &sp));

The pthread_xxx functions have a return value of 0 if no error has occurred. In
case of an error, the error number is returned. The default global variable errno is
not filled with the error number. In the example program the function check is used
to check the return value. In case of an error, this function prints an appropriate
error message using the standard function strerror and enters an infinite loop.

void check(int error)

{

if (error != 0)

{

printf("Error: %s\n", strerror(error));

while (1);

}

}

In the example program, one producer “bakes” frikandellen3 (represented by the
letter F) and the other producer “bakes” kroketten4 (represented by the letter K).
The consumer “eats” the frikandellen and kroketten.

3 A frikandel (plural frikandellen) is a traditional Dutch snack, a sausage-shaped meatball, see
Figure 2.

4 A kroket (plural kroketten) is also a traditional Dutch snack, meat ragout covered in breadcrumbs.

Rotterdam University Assignments week 5 – Version 1.4 7

https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getschedparam.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getschedparam.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setschedparam.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/strerror.html

ROS01 Real-Time Operating Systems – TI-RTOS

Figure 2: Cora from Mora is showing a box filled with king size frikandellen.

When starting the program, the priorities of the consumer, the frikandel producer
and the kroket producer can be entered in the console. These priorities are stored
in the variables prioc, priop1, and priop2.

When starting a thread, the scheduling priority can be specified via a variable of the
type pthread_attr_t. A variable of the type pthread_attr_t can be initialized
with the default values using the function pthread_attr_init:

pthread_attr_t ptac , ptap1 , ptap2;

check(pthread_attr_init (&ptac));

check(pthread_attr_init (&ptap1));

check(pthread_attr_init (&ptap2));

Then the stack size can be set by using the function pthread_attr_setstacksize:

check(pthread_attr_setstacksize (&ptac , 1024));

check(pthread_attr_setstacksize (&ptap1 , 1024));

check(pthread_attr_setstacksize (&ptap2 , 1024));

Specifying the priority with which a thread has to be started is cumbersome, as dis-
cussed before. First the scheduling parameters must be retrieved (from the thread
attributes) using the function pthread_attr_getschedparam. These scheduling
parameters are of the type struct sched_param. The data field sched_priority

in this struct can be used to set the priority. Finally, the scheduling parameters

Rotterdam University Assignments week 5 – Version 1.4 8

https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_init.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setstacksize.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getschedparam.html

ROS01 Real-Time Operating Systems – TI-RTOS

must be stored in the thread parameters again using the function pthread_attr_-

setschedparam.

struct sched_param spc , spp1 , spp2;

check(pthread_attr_getschedparam (&ptac , &spc));

check(pthread_attr_getschedparam (&ptap1 , &spp1));

check(pthread_attr_getschedparam (&ptap2 , &spp2));

spc.sched_priority = prioc;

spp1.sched_priority = priop1;

spp2.sched_priority = priop2;

check(pthread_attr_setschedparam (&ptac , &spc));

check(pthread_attr_setschedparam (&ptap1 , &spp1));

check(pthread_attr_setschedparam (&ptap2 , &spp2));

After the thread attributes are set, the threads can be started using the function
pthread_create:

pthread_t ptc , ptp1 , ptp2;

char frikandel = 'F', kroket = 'K';

check(pthread_create (&ptc , &ptac , consumer , NULL));

check(pthread_create (&ptp1 , &ptap1 , producer , ←-
,→ &frikandel));

check(pthread_create (&ptp2 , &ptap2 , producer , ←-
,→ &kroket));

The thread IDs of these threads are of the type pthread_t and are stored in the
variables ptc, ptp1, and ptp2.

Then the main_thread must wait until the other threads have ended by using
function pthread_join:

check(pthread_join(ptc , NULL));

check(pthread_join(ptp1 , NULL));

check(pthread_join(ptp2 , NULL));

Rotterdam University Assignments week 5 – Version 1.4 9

https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setschedparam.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setschedparam.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_create.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_join.html

ROS01 Real-Time Operating Systems – TI-RTOS

When all threads are finished, the created semaphores and thread attributes are
destroyed by using the functions sem_destroy and pthread_attr_destroy:

check_errno(sem_destroy (& semMutualExclusive));

check_errno(sem_destroy (& semEmpty));

check_errno(sem_destroy (& semFilled));

check(pthread_attr_destroy (&ptac));

check(pthread_attr_destroy (&ptap1));

check(pthread_attr_destroy (&ptap2));

5.1 You will now create a project to run the example program buffer.c on the
CC3220S LaunchPad, following these steps:

• Import the example project you can find in:
C:\ti\simplelink_cc32xx_sdk_x_xx_xx_xx\examples\rtos\CC-

3220S_LAUNCHXL\drivers\empty\tirtos\ccs.

• Choose Project Properties and select (if needed) CCS General. Click
on the button Manage Configurations... and activate the Debug configura-
tion. Delete the MCU+Image configuration5. Finaly click on OK and
Aply and Close .

• Delete image.syscfg, MCU+Image, empty.c, Board.html, README.html,
and README.md

• Rename the project to buffer_CC3220S_LAUNCHXL_tirtos_ccs.

• Rename main_tirtos.c to buffer.c.

• Rename empty.syscfg to buffer.syscfg.

• Open the menu Project Properties and choose Build ARM Compiler

Advanced Options Language Options . Now, in the dropdown box C Di-
alect, choose Compile program in C11 mode (–c11), see Figure 3.

• Replace the code in buffer.c by the code given in buffer.c.

5 This configuration is used to load the program into the Flash memory. In this case, we only want
to load the into the RAM so we can debug it (using the Debug configuration).

Rotterdam University Assignments week 5 – Version 1.4 10

https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_destroy.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_destroy.html
https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/buffer.c
https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/buffer.c

ROS01 Real-Time Operating Systems – TI-RTOS

Figure 3: Choose to compile the program in C11 mode.

Compile and run this program. There should appear some text in the con-
sole window. Enter the following priorities: Consumer = 3, Frikandel
Producer = 2, and Kroket Producer = 1. You may want to enable the Word
Wrap option in the Console window, see Figure 4. Explain the output of
the program. Be precise in your explanation. For example, explain why
first all frikandellen are baked followed by all kroketten. Explain why no
frikandellen are consumed after the frikandellen producer has stopped. How
many snacks are stored in the buffer before the first snack is consumed?

Make notes so the teacher can easily give you feedback on this assignment.

You can use the Runtime Object View provided by Code Composer Studio to
analyze the program. Set a breakpoint at line 57 indexGet++; and restart the
program. Select the menu Tools Runtime Object View and click on Connect,
see Figure 5. Now click on Task and Semaphore and run the program with
priorities 3, 2, and 1. When the breakpoint is reached the Runtime Object
View displays the current state of the tasks (threads) and semaphores, see
Figure 6.

You can make the following observations:

• There is a thread called idleTask with priority 0 which is ready to run.
This task is created automatically by TI-RTOS and it runs when there is
no other ready task available.

• The main_thread is blocked. It is waiting for the consumer thread to
finish (on line 155 pthread_join(ptc, NULL)).

Rotterdam University Assignments week 5 – Version 1.4 11

ROS01 Real-Time Operating Systems – TI-RTOS

Figure 4: Enable the Word Wrap option in the Console window.

Figure 5: Click on Connect in the Runtime Object View.

• The consumer thread is currently running. This thread has called the
function get in which the breakpoint was hit. The call stacks of the

Rotterdam University Assignments week 5 – Version 1.4 12

ROS01 Real-Time Operating Systems – TI-RTOS

Figure 6: Runtime Object View when the breakpoint at line 57 is reached.

threads can be inspected by using the dropdown box in the Task window,
see Figure 7.

• Both producer threads are ready to run.

• The semaphores are apparently shown in the following order: semEmpty,
semFilled, semMutualExclusive, and semPrintf.

• There are seven empty places in the buffer. sem_post(&semEmpty) has
not been executed yet.

• There are zero filled places in the buffer. sem_wait(&semFilled) has
already executed.

• semMutualExclusive is zero, so the buffer is not available for another
thread.

• semPrintf is one, so the printf function is available to be used by one
thread.

You can use this tool to help you understand what is going on. Remove the
breakpoint when you are finished analyzing the program.

Rotterdam University Assignments week 5 – Version 1.4 13

ROS01 Real-Time Operating Systems – TI-RTOS

Figure 7: The call stacks of the threads can be viewed in the Runtime Object View.

5.2 The code of the consumer seems inefficient:

char c = get();

check_errno(sem_wait (& semPrintf));

check_errno(printf("%c", c));

check_errno(sem_post (& semPrintf));

The use of the local variable c seems unnecessary.

The following code is more compact:

check_errno(sem_wait (& semPrintf));

check_errno(printf("%c", get()));

check_errno(sem_post (& semPrintf));

Adjust the consumer code as discussed above. Compile the program and
run it with priorities 3, 2, and 1. Explain why the program stalls. Use the
Runtime Object View to help you understand what is going on.

Rotterdam University Assignments week 5 – Version 1.4 14

ROS01 Real-Time Operating Systems – TI-RTOS

Make notes so the teacher can easily give you feedback on this assignment.

5.3 Compile the (original) program and run it with the priorities: Consumer = 1,
Frikandel Producer = 2 and Kroket producer = 3. Explain the output. Be
precise in your explanation. Explain why first nine kroketten are consumed.
Explain why one frikandel is consumed followed by a kroket etc. Explain
why there are nine kroketten still consumed after the kroket producer has
stopped. Only eight of them fit in the buffer!

Is the behavior of the semaphore correct in a real-time environment?

Open the file release.cfg in the project tirtos_builds_CC3220S_LAUNCH-
XL_release_ccs and change the line:
Semaphore.supportsPriority = false;

into:
Semaphore.supportsPriority = true;

Recompile the program and run it again with the same priorities: Con-
sumer = 1, Frikandel Producer = 2 and Kroket producer = 3. Discuss the
output, which is surprisingly unchanged. Is the behavior of the semaphore
correct in a real-time environment? You may want to peek at Assignment 5.4.

5.4 As you have seen in Assignment 5.3 the behavior of the semaphore is not cor-
rect in a real-time environment. The implementation of the POSIX-function
sem_init provided by TI is not correct6. Your teacher has written a cor-
rect implementation which is called sem_priority_init. Download the
files sem_priority_init.c and sem_priority_init.h and add them to the
project’s directory in your workspace. Include the file sem_priority_init.h
in the file buffer.c. Replace the calls to sem_init with calls to sem_prior-

ity_init.

6 TI is aware of this problem but has not done anything about it. See: https:
//e2e.ti.com/support/wireless-connectivity/wifi/f/968/t/761146?RTOS-CC3220-
How-to-create-a-priority-aware-semaphore-using-the-POSIX-API-of-TI-RTOS.

Rotterdam University Assignments week 5 – Version 1.4 15

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/sem_priority_init.c
https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/sem_priority_init.h
https://e2e.ti.com/support/wireless-connectivity/wifi/f/968/t/761146?RTOS-CC3220-How-to-create-a-priority-aware-semaphore-using-the-POSIX-API-of-TI-RTOS
https://e2e.ti.com/support/wireless-connectivity/wifi/f/968/t/761146?RTOS-CC3220-How-to-create-a-priority-aware-semaphore-using-the-POSIX-API-of-TI-RTOS
https://e2e.ti.com/support/wireless-connectivity/wifi/f/968/t/761146?RTOS-CC3220-How-to-create-a-priority-aware-semaphore-using-the-POSIX-API-of-TI-RTOS

ROS01 Real-Time Operating Systems – TI-RTOS

Recompile the program and run it again with the same priorities: Con-
sumer = 1, Frikandel Producer = 2 and Kroket producer = 3. Explain the
output. Be precise in your explanation. Is the behavior of the semaphore
correct in a real-time environment?

5.5 Now try to predict (without running the program) what the flow of execu-
tion will be when the priorities are changed to: Consumer = 1, Frikandel
Producer = 3 and Kroket producer = 2. Think carefully! Test your prediction
by running the program.

Sempahores use shared memory to synchronize. However, it is also possible to
synchronize using message passing. The IEEE Std 1003.1 defines so-called message
queues for this purpose. The relevant functions are:

• mq_open;

• mq_close;

• mq_unlink;

• mq_send;

• mq_receive.

A very simple example using a POSIX message queue which can be run on a
CC3220S LaunchPad is given in mqueue.c.

5.6 Copy the project you created in Assignment 5.1 to Assignment5.6. Re-
place the global variable buffer and the semaphores semMutualExclusive,
semEmpty and semFilled with a message queue. What priority should you
give to the messages in order to implement real-time behavior? You can
not verify your answer to this last question by using TI-RTOS because TI’s
implementation of POSIX’s mqueue does not support prioritized messages.7

7 See: https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz/f/156/t/817039.

Rotterdam University Assignments week 5 – Version 1.4 16

https://pubs.opengroup.org/onlinepubs/9699919799/functions/mq_open.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mq_close.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mq_unlink.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mq_send.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mq_receive.html
https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/mqueue.c
https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz/f/156/t/817039

ROS01 Real-Time Operating Systems – TI-RTOS

The fourth argument given to mq_send the msg_prio is simply ignored in
the implementation.8

The semaphore semPrintf is used to assure that only one thread at a time is using
the function printf. This prevents the output from alternating due to parallel
calls to printf. Mutual exclusivity can also be achieved by using a so-called mutex.
The IEEE Std 1003.1 defines mutexes for this purpose. The relevant functions are:

• pthread_mutex_init;

• pthread_mutex_destroy;

• pthread_mutex_lock;

• pthread_mutex_unlock.

A very simple example using a POSIX mutex which can be run on a CC3220S
LaunchPad is given in mutex.c.

5.7 Copy the project you created in Assignment 5.6 to Assignment5.7. Replace
the semaphore semPrintf with a mutex.

Report Week 1–5

To conclude the first part of the course a report will have to be written. The
contents of the report should include the relevant source codes of the weekly
assignments and a short explanation per assignment. This explanation should also
include difficulties and decisions made to finish the assignment and should provide
ample evidence of the codes authenticity.

Document

The document can be written in English or in Dutch and should be about 4-8
page sides long excluding code but including the title page. The relevant and

8 See: ..\ti\simplelink_cc32xx_sdk_x_xx_xx_xx\source\ti\posix\tirtos\mqueue.c.

Rotterdam University Assignments week 5 – Version 1.4 17

https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_init.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_destroy.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_lock.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_unlock.html
https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/mutex.c

ROS01 Real-Time Operating Systems – TI-RTOS

modified source code should be attached using color coding. Hence the report
should contain the following:

• Title page with the student names, student numbers, and name of this course.

• Information about each weekly assignment with source codes.

• Briefly explain which algorithm was chosen and how it operates. What
advantages and disadvantages does it have?

• Expand on how you implemented this algorithm.

• Describe how you tested the implementation and present the test results.

Delivery

The report shall be delivered as a single PDF document. The file name has the
following convention:
ROS01_studentnumber_surname_studentnumber_surname.pdf

For example:
ROS01_0912345_Dijkstra_0954321_Hoare.pdf

This file must be uploaded into the MS Teams Assignment in the ROS01 team.
Only one of the two students working together has to upload the file.

Rotterdam University Assignments week 5 – Version 1.4 18

