
Real-Time Operating Systems

ROS01
Minor Embedded Systems

Week 3
Cooperative Scheduling

Planning ROS01

• Week 1: Introduction – Blinking leds
• Week 2: Super loop construct with an ISR
• Week 3: Cooperative Scheduling
• Week 4: Pre-emptive Scheduling
• Week 5: Using TI-RTOS
• Week 6: Schedulability Analyses, Priority Assignment
• Week 7: Response Time Analyses
• Week 8: Finalizing Final Assigment

ROS01 Week 3 2

Overview

• Scheduling
– Problem
– Goal
– Possible solution

ROS01 Week 3 3

Scheduling

• Problem
– Multiple processes require CPU time

• Some processes need it ASAP
• Some processes just need to happen at some point in time

– Multiple processes require bandwidth
• USB, Serial, SPI
• Prioritization?

• Goal
– Create a framework that’ll ease (CPU) time management
– Easy to add new processes and to share resources

ROS01 Week 3 4

Superloop Construct

ROS01 Week 3 5

• Unnecessarily runs all tasks every tick
• ∑𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < SysTick time

– Limited amount of tasks
– Blocking tasks will cause problems: while (buttonIsPressed())

‘Complex’ Cooperative Scheduler

• Cooperative:
– Task finishes
– then transfers control back to the scheduler

• No fights over concurrent use of hardware
• Perfect for small amount of tasks
• Easy to maintain
• Adaption to simple version:

– Each task gets its own period (e.g. 400 SysTicks)
– Each task could have a priority, state, etc

ROS01 Week 3 6

Difference

ROS01 Week 3 7

Overview

• Tasklist
– Structure (struct) for each task
– Ordered by priority
– Only execute task when ready

• Use SysTick to determine which task is READY
• Use main loop to execute all ready tasks.
• Sleep until next SysTick

ROS01 Week 3 8

Interim : Function pointer

• Syntax
void func(int);
void (*pointerNaarFunc)(int);

• To run
pointerNaarFunc = &func;
(*pointerNaarFunc)(42);

• To run (alternative)
pointerNaarFunc = func;
pointerNaarFunc(42);

ROS01 Week 3 9

Suspending a task

• Implementing a delay using SysTick
– Change state to WAITING
– Initialize a counter, or add to the existing period
– Decrement the counter each tick
– When reached zero, put into ready mode

ROS01 Week 3 10

Scheduling

• The process of selecting the task to execute next
– What if 3 tasks are READY at the same time?
– Which one will be selected first?

• Scheduling algorithms
– FIFO
– Priority based
– Shortest Job First

ROS01 Week 3 11

FIFO – Scheduling Algorithm

• Tasks are run in order of task-creation
– Add most important tasks first
– Add less important tasks later

• Pro
– Easy!
– No overhead in selecting

• Con
– Fixed solution, pre-determined at compile time
– Tasks created run-time are always last

ROS01 Week 3 12

Priority based – Scheduling Algorithm

• Use ‘priority’ number over position in task list
– Highest priority task goes first of all READY tasks

• Pro
– Ability to work with more tasks
– Possible to change priority real time
– Most demanding tasks run first

• Cons
– Means either sorting a list or traversing it

• Increases scheduling time
ROS01 Week 3 13

Shortest Job First – Scheduling Algorithm

• First execute the task with shortest estimated run-time
– First used in database applications, keep customers happy!

• Pro
– Shortest average waiting time

• Con
– Estimating (dynamic) task time
– Longest tasks have worst reaction time

ROS01 Week 3 14

Next Week

• Pre-Emptive scheduling
• (pre-emptive) Scheduling algorithms

ROS01 Week 3 15

	Real-Time Operating Systems
	Planning ROS01
	Overview
	Scheduling
	Superloop Construct
	‘Complex’ Cooperative Scheduler
	Difference
	Overview
	Interim : Function pointer
	Suspending a task
	Scheduling
	FIFO – Scheduling Algorithm
	Priority based – Scheduling Algorithm
	Shortest Job First – Scheduling Algorithm
	Next Week

