
Real-Time Operating Systems

ROS01
Minor Embedded Systems

Week 5
Using TI-RTOS

versd@hr.nl
brojz@hr.nl

mailto:versd@hr.nl
mailto:brojz@hr.nl

Planning ROS01

• Week 1: Introduction – Blinking leds
• Week 2: Super loop construct with an ISR
• Week 3: Cooperative Scheduling
• Week 4: Pre-emptive Scheduling
• Week 5: Using TI-RTOS
• Week 6: Schedulability Analyses, Priority Assignment
• Week 7: Response Time Analyses
• Week 8: Finalizing Final Assigment

ROS01 Week 5 2

Overview

– Tasks
• Creation / Deletion
• Parameter passing

– Multitasking problems
• Situation / Problem
• Goal
• Solution

ROS01 Week 5 3

Multitasking

“An environment where program execution can be interrupted
and continued at any time in any location”

• Questions
– How to design such a system and promise timing?
– How to prevent data corruption?
– How to communicate between tasks?

ROS01 Week 5 4

POSIX

POSIX
• Portable Operating System Interface (POSIX) is a standard

API for Operating Systems.
– Many OS partially comply with this standard. For example: Linux,

Android, OSX, VxWorks, QNX Neutrino, TI-RTOS etc.

• Tasks (threads) are dynamically created by using API calls.
• Semaphores and mutexes can be used to synchronize

tasks.
• Message Queues can be used to communicate between

tasks.
5

Pthread Example (1 of 2)

void *print1(void *par) {
for (int i = 0; i < 10; i++) {

usleep(100000);
printf("print1\n");

}
return NULL;

}

void *print2(void *par) {
for (int i = 0; i < 10; i++) {

usleep(200000);
printf("print2\n");

}
return NULL;

}
ROS01 Week 5 6

Pthread Example (2 of 2)

void *main_thread(void *arg) {
pthread_attr_t pta;
pthread_attr_init(&pta);
pthread_attr_setstacksize(&pta, 1024);

pthread_t t1, t2;
pthread_create(&t1, &pta, &print1, NULL);
pthread_create(&t2, &pta, &print2, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);

check(pthread_attr_destroy(&pta));
return NULL;

}
ROS01 Week 5 7

print1
print2
print1
print1
print2
print1
print1
print2
print1
print1
print2
print1
print1
print2
print1
print2
print2
print2
print2
print2

Uitvoer:

Source: pthread.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread.c

Pthread with Parameter Example (1 of 2)

typedef struct {
char *msg;
useconds_t us;

} par_t;

void *print(void *par) {
par_t* p = par;
for (int i = 0; i < 10; i++) {

usleep(p->us);
printf(p->msg);

}
return NULL;

}

ROS01 Week 5 8

Pthread with Parameter Example (2 of 2)
void *main_thread(void *arg) {

pthread_attr_t pta;
pthread_attr_init(&pta);
pthread_attr_setstacksize(&pta, 1024);

pthread_t t1, t2;
par_t p1 = {"print1\n", 100000};
par_t p2 = {"print2\n", 200000};
pthread_create(&t1, &pta, &print, &p1);
pthread_create(&t2, &pta, &print, &p2);

pthread_join(t1, NULL);
pthread_join(t2, NULL);
check(pthread_attr_destroy(&pta));
return NULL;

} ROS01 Week 5 9

print1
print2
print1
print1
print2
print1
print1
print2
print1
print1
print2
print1
print1
print2
print1
print2
print2
print2
print2
print2

Uitvoer:

Source: pthread_par.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread_par.c

Problem with Shared Memory
volatile int aantal = 0;

void *teller(void *par) {
for (int i = 0; i < 10000000; i++) {

aantal++;
}
return NULL;

}

//…
pthread_create(&t1, &pta, &teller, NULL);
pthread_create(&t2, &pta, &teller, NULL);
pthread_create(&t3, &pta, &teller, NULL);

What is the final
value of aantal?

ROS01 Week 5 10

Source: pthread_shared.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread_shared.c

Problem with Shared Memory

• The operation aantal++ is not atomic (in machine code).
– For example, X10 contains the address of aantal:

LDUR X9, [X10, #0]
ADDI X9, X9, #1
STUR X9, [X10, #0]

• What is the minimal and the maximal final value of aantal?
– Minimum = 10000000
– Maximum = 30000000

What happens when
a task switch occurs

at this moment?

ROS01 Week 5 11

Data Corruption

Situations: Task A and B use a shared global variable
(just demonstrated)

Task C and D are both using the same peripheral
(e.g., UART port)

Goal: Preventing concurrent use of a resource by multiple tasks

Solution: Using tokens to represent resources. Allow a limited number
of tasks to get the same token at the same time.

ROS01 Week 5 12

Solution?

• There are solutions which use shared variables
(2 flags and 1 turn variable) and busy waiting.
– Dekker’s algorithm: http://en.wikipedia.org/wiki/Dekker's_algorithm
– Peterson’s algorithm:

http://en.wikipedia.org/wiki/Peterson's_algorithm

• Busy waiting costs clock cycles!

• OSes offer solutions without busy waiting.

ROS01 Week 5 13

http://en.wikipedia.org/wiki/Dekker's_algorithm
http://en.wikipedia.org/wiki/Peterson's_algorithm

IPC Inter Process (Task) Communication

• Shared variable based
– Busy waiting

• Inefficient
• Mutual exclusion is hard (Dekker’s or Peterson’s algorithm)

– Spinlock
• Busy waiting

– Mutex
– Semaphore
– Monitor

• Mutex combined with Conditional variables
– Barrier
– Read Write Lock
– Event Groups

• Message based
– Message Queue

ROS01 Week 5 14

Mutex

• Simple way to create a mutual exclusive so-called critical
section.
– Only one task can be in the critical section.

• Mutex has a lock (take) and a unlock (give) function.
– OS ensures that these functions are atomic!
– At the start of the critical section the mutex

must be locked (taken) and at the end of
the critical section the mutex must be
unlocked (given).

ROS01 Week 5 15

Task States

runningready

Blocked on m

Lock mutex m which
is already lockedUnlock mutex m

Lock mutex m
which is unlocked

ROS01 Week 5 16

Mutex

• When a task t tries to lock mutex m which is already locked by an other
task, task t is blocked on m.
We also say:
– Task t waits for mutex m.
– Task t sleeps until mutex m is unlocked.

• Order of unblocking (waking up):
– general purpose OS: FIFO
– real-time OS: highest priority

ROS01 Week 5 17

Mutex with Shared Memory

int aantal = 0;
pthread_mutex_t m;

void *teller(void *par) {
for (int i = 0; i < 10000000; i++) {

pthread_mutex_lock(&m);
aantal++;
pthread_mutex_unlock(&m);

}
return NULL;

}

ROS01 Week 5 18

Source: mutex.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/mutex.c

Data Corruption

DANGER
– Priority inversion

• Low priority task has mutex locked
• High priority task is blocked due to mutex
• Solution: priority inheritance

– Deadlock
• Task A has resource 1 locked and wants to lock resource 2
• Task B has resource 2 locked and wants to lock resource 1

ROS01 Week 5 19

Will be discussed in week 7!

Counting Semaphore

• Operations:
– Psem (prolaag (probeer te verlagen), take, wait):

wait (block, sleep) if count == 0 else decrement count.
– Vsem (verhoog, signal, give, post):

unblock a waiting task if count == 0 else increment count.

• Order of unblocking (wake up):
– general purpose: FIFO
– real-time: highest priority

23

Edsger Dijkstra

ROS01 Week 5

Semaphore versus Mutex

• Mutex can only be used for mutual exclusion (task which takes the
mutex should also give the mutex (back)).

• Semaphore can also be used for other synchronization purposes.

 Homework:
 Task a consists of two sequential parts a1 and a2.
 Task b consists of two sequential parts b1 and b2.
 Task c consists of two sequential parts c1 and c2.
 Make sure (using a semaphore) that the parts b2

and c2 are always executed after part a1 has been
executed.

waitpost

ROS01 Week 5 25

Inter Task Communication

Situation: Task A reads/debounces buttons
Task B executes functionality based on button pressed

Task C is the gate to the USB port
Other tasks send messages to C

Goal: Create a message queue variable that tasks can add to and receive from.

ROS01 Week 5 26

Communication between Threads

ROS01 Week 5 27

T

S

P

Switch Screen

DAC

ADC
ADC

thermocouple pressure transducer

heater

pump/valve

Message Queue Example (1 of 2)

void *main_thread(void *arg)
{

mqd_t mqdes;
mq_attr mqAttrs;
mqAttrs.mq_maxmsg = 3;
mqAttrs.mq_msgsize = sizeof(int);
mqAttrs.mq_flags = 0;
mqdes = mq_open("ints", O_RDWR | O_CREAT, 0666, &mqAttrs);

pthread_t tp, tc;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, 1024);
pthread_create(&tp, &attr, &producer, &mqdes);
pthread_create(&tc, &attr, &consumer, &mqdes);

ROS01 Week 5 28

Message Queue Example (2 of 2)
void *producer(void *p) {

mqd_t mq = *(mqd_t *)p;
for (int i = 0; i < 10; i++) {

mq_send(mq, (char *)&i, sizeof(i), 0);
}
return NULL;

}
void *consumer(void *p) {

mqd_t mq = *(mqd_t *)p;
for (int i = 0; i < 10; i++) {

int msg;
mq_receive(mq, (char *)&msg, sizeof(msg), NULL);
printf("%d\n", msg);

}
return NULL;

} ROS01 Week 5 29

Source: mqueue.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/mqueue.c

Next Week

• Week 6: Schedulability Analyses, Priority Assignment
• Week 7: Response Time Analyses

ROS01 Week 5 30

	Real-Time Operating Systems
	Planning ROS01
	Overview
	Multitasking
	POSIX
	Pthread Example (1 of 2)
	Pthread Example (2 of 2)
	Pthread with Parameter Example (1 of 2)
	Pthread with Parameter Example (2 of 2)
	Problem with Shared Memory
	Problem with Shared Memory
	Data Corruption
	Solution?
	IPC Inter Process (Task) Communication
	Mutex
	Task States
	Mutex
	Mutex with Shared Memory
	Data Corruption
	Counting Semaphore
	Semaphore versus Mutex
	Inter Task Communication
	Communication between Threads
	Message Queue Example (1 of 2)
	Message Queue Example (2 of 2)
	Next Week

