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Planning ROS01

• Week 1: Introduction – Blinking leds
• Week 2: Super loop construct with an ISR
• Week 3: Cooperative Scheduling
• Week 4: Pre-emptive Scheduling
• Week 5: Using TI-RTOS
• Week 6: Schedulability Analyses, Priority Assignment
• Week 7: Response Time Analyses
• Week 8: Finalizing Final Assigment
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Overview

– Tasks
• Creation / Deletion
• Parameter passing

– Multitasking problems
• Situation / Problem
• Goal
• Solution
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Multitasking

“An environment where program execution can be interrupted 
and continued at any time in any location”

• Questions
– How to design such a system and promise timing?
– How to prevent data corruption?
– How to communicate between tasks?
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POSIX

POSIX
• Portable Operating System Interface (POSIX) is a standard 

API for Operating Systems.
– Many OS partially comply with this standard. For example: Linux, 

Android, OSX, VxWorks, QNX Neutrino, TI-RTOS etc.

• Tasks (threads) are dynamically created by using API calls.
• Semaphores and mutexes can be used to synchronize 

tasks.
• Message Queues can be used to communicate between 

tasks.  
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Pthread Example (1 of 2)

void *print1(void *par) {
for (int i = 0; i < 10; i++) {

usleep(100000);
printf("print1\n");

}
return NULL;

}

void *print2(void *par) {
for (int i = 0; i < 10; i++) {

usleep(200000);
printf("print2\n");

}
return NULL;

}
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Pthread Example (2 of 2)

void *main_thread(void *arg) {
pthread_attr_t pta;
pthread_attr_init(&pta);
pthread_attr_setstacksize(&pta, 1024);

pthread_t t1, t2;
pthread_create(&t1, &pta, &print1, NULL);
pthread_create(&t2, &pta, &print2, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);

check( pthread_attr_destroy(&pta) );
return NULL;

}
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Uitvoer:

Source: pthread.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread.c


Pthread with Parameter Example (1 of 2)

typedef struct {
char *msg;
useconds_t us;

} par_t;

void *print(void *par) {
par_t* p = par;
for (int i = 0; i < 10; i++) {

usleep(p->us);
printf(p->msg);

}
return NULL;

}
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Pthread with Parameter Example (2 of 2)
void *main_thread(void *arg) {

pthread_attr_t pta;
pthread_attr_init(&pta);
pthread_attr_setstacksize(&pta, 1024);

pthread_t t1, t2;
par_t p1 = {"print1\n", 100000};
par_t p2 = {"print2\n", 200000};
pthread_create(&t1, &pta, &print, &p1);
pthread_create(&t2, &pta, &print, &p2);

pthread_join(t1, NULL);
pthread_join(t2, NULL);
check( pthread_attr_destroy(&pta) );
return NULL;
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Uitvoer:

Source: pthread_par.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread_par.c


Problem with Shared Memory
volatile int aantal = 0;

void *teller(void *par) {
for (int i = 0; i < 10000000; i++) {

aantal++;
}
return NULL;

}

//…
pthread_create(&t1, &pta, &teller, NULL);
pthread_create(&t2, &pta, &teller, NULL);
pthread_create(&t3, &pta, &teller, NULL);

What is the final 
value of aantal?
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Source: pthread_shared.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread_shared.c


Problem with Shared Memory

• The operation aantal++ is not atomic (in machine code).
– For example, X10 contains the address of aantal:

LDUR X9, [X10, #0]
ADDI X9, X9, #1
STUR X9, [X10, #0]

• What is the minimal and the maximal final value of aantal? 
– Minimum = 10000000
– Maximum = 30000000

What happens when 
a task switch occurs 

at this moment?
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Data Corruption

Situations: Task A and B use a shared global variable 
(just demonstrated)

Task C and D are both using the same peripheral 
(e.g., UART port)

Goal: Preventing concurrent use of a resource by multiple tasks

Solution: Using tokens to represent resources. Allow a limited number
of tasks to get the same token at the same time.
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Solution?

• There are solutions which use shared variables
(2 flags and 1 turn variable) and busy waiting.
– Dekker’s algorithm: http://en.wikipedia.org/wiki/Dekker's_algorithm
– Peterson’s algorithm: 

http://en.wikipedia.org/wiki/Peterson's_algorithm

• Busy waiting costs clock cycles!

• OSes offer solutions without busy waiting.
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IPC Inter Process (Task) Communication

• Shared variable based
– Busy waiting

• Inefficient
• Mutual exclusion is hard (Dekker’s or Peterson’s algorithm)

– Spinlock
• Busy waiting

– Mutex
– Semaphore
– Monitor

• Mutex combined with Conditional variables
– Barrier
– Read Write Lock
– Event Groups

• Message based
– Message Queue
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Mutex

• Simple way to create a mutual exclusive so-called critical 
section.
– Only one task can be in the critical section.

• Mutex has a lock (take) and a unlock (give) function.
– OS ensures that these functions are atomic!
– At the start of the critical section the mutex

must be locked (taken) and at the end of
the critical section the mutex must be 
unlocked (given).
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Task States

runningready

Blocked on m

Lock mutex m which 
is already lockedUnlock mutex m

Lock mutex m
which is unlocked
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Mutex

• When a task t tries to lock mutex m which is already locked by an other 
task, task t is blocked on m. 
We also say:
– Task t waits for mutex m.
– Task t sleeps until mutex m is unlocked.

• Order of unblocking (waking up):
– general purpose OS: FIFO
– real-time OS: highest priority
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Mutex with Shared Memory

int aantal = 0;
pthread_mutex_t m;

void *teller(void *par) {
for (int i = 0; i < 10000000; i++) {

pthread_mutex_lock(&m);
aantal++;
pthread_mutex_unlock(&m);

}
return NULL;

}
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Source: mutex.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/mutex.c


Data Corruption

DANGER
– Priority inversion

• Low priority task has mutex locked
• High priority task is blocked due to mutex
• Solution: priority inheritance

– Deadlock
• Task A has resource 1 locked and wants to lock resource 2
• Task B has resource 2 locked and wants to lock resource 1
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Will be discussed in week 7!



Counting Semaphore

• Operations:
– Psem (prolaag (probeer te verlagen), take, wait): 

wait (block, sleep) if count == 0 else decrement count.
– Vsem (verhoog, signal, give, post): 

unblock a waiting task if count == 0 else increment count. 

• Order of unblocking (wake up):
– general purpose: FIFO
– real-time: highest priority

23

Edsger Dijkstra
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Semaphore versus Mutex

• Mutex can only be used for mutual exclusion (task which takes the 
mutex should also give the mutex (back)). 

• Semaphore can also be used for other synchronization purposes.

 Homework:
 Task a consists of two sequential parts a1 and a2. 
 Task b consists of two sequential parts b1 and b2. 
 Task c consists of two sequential parts c1 and c2.
 Make sure (using a semaphore) that the parts b2

and c2 are always executed after part a1 has been 
executed.

waitpost
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Inter Task Communication

Situation: Task A reads/debounces buttons
Task B executes functionality based on button pressed

Task C is the gate to the USB port
Other tasks send messages to C

Goal: Create a message queue variable that tasks can add to and receive from.
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Communication between Threads
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Message Queue Example (1 of 2)

void *main_thread(void *arg)
{

mqd_t mqdes;
mq_attr mqAttrs;
mqAttrs.mq_maxmsg = 3;
mqAttrs.mq_msgsize = sizeof(int);
mqAttrs.mq_flags = 0;
mqdes = mq_open("ints", O_RDWR | O_CREAT, 0666, &mqAttrs);

pthread_t tp, tc;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, 1024);
pthread_create(&tp, &attr, &producer, &mqdes);
pthread_create(&tc, &attr, &consumer, &mqdes);
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Message Queue Example (2 of 2)
void *producer(void *p) {

mqd_t mq = *(mqd_t *)p;
for (int i = 0; i < 10; i++) {

mq_send(mq, (char *)&i, sizeof(i), 0);
}
return NULL;

}
void *consumer(void *p) {

mqd_t mq = *(mqd_t *)p;
for (int i = 0; i < 10; i++) {

int msg;
mq_receive(mq, (char *)&msg, sizeof(msg), NULL);
printf("%d\n", msg);

}
return NULL;
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Source: mqueue.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/mqueue.c


Next Week

• Week 6: Schedulability Analyses, Priority Assignment
• Week 7: Response Time Analyses
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