
Real-Time Operating Systems

ROS01
Minor Embedded Systems

Week 7
RT Analyses (part 2)versd@hr.nl

brojz@hr.nl

mailto:versd@hr.nl
mailto:brojz@hr.nl

Planning ROS01

• Week 1: Introduction – Blinking leds
• Week 2: Super loop construct with an ISR
• Week 3: Cooperative Scheduling
• Week 4: Pre-emptive Scheduling
• Week 5: Using TI-RTOS
• Week 6: Schedulability Analyses, Priority Assignment,

Response Time Analyses (part 1)
• Week 7: Response Time Analyses (part 2)
• Week 8: Finalizing Final Assignment

2ROS01 Week 7

Task states

runningready

Blocked on m

Lock mutex m which
is already lockedUnlock mutex m

Lock mutex m
which is unlocked

ROS01 Week 7 3

FPS-DMPO Blocking

• When a task with a lower priority has to wait on a task with a higher priority, the
task is preempted.

• A preempted task is added to the ready queue before tasks with the same priority.
• When a task with a high priority has to wait on a task with a lower priority, the task

is blocked (priority inversion).
• When a task is unblocked, it is added to the ready queue after tasks with the same

priority.
• To predict the real-time behavior of a task, the maximum time a task can be blocked

must be predictable (bound blocking).

ROS01 Week 7 4

Priority inversion example

• Four tasks (a, b, c, and d) share two resources (Q and V).
• Each resource can only be used mutually exclusive (so

each resource is protected with a mutex).

task prio execution release time
d 4 EEQVE 4
c 3 EVVE 2
b 2 EE 2
a 1 EQQQQE 0

E = task only needs the
processor to run

Q = task needs processor
and resource Q to run

V = task needs processor
and resource V to run

ROS01 Week 7 5

Priority inversion example

6

task prio execution release time

d 4 EEQVE 4

c 3 EVVE 2

b 2 EE 2

a 1 EQQQQE 0

t = 5t = 4t = 3t = 2t = 1

Finish this Gantt chart
yourself!

ROS01 Week 7

FPS-DMPO Priority inversion

• Task d is being blocked by task a, b, and c (all tasks with a lower
priority)!

• Blocking (priority inversion) can not be avoided if we use mutual
exclusive recourses.

• Blocking can be bounded by using priority inheritance:
– When a task is blocked on a resource, then the task that owns the recourse gets

(inherits) the priority of the blocked task.

ROS01 Week 7 7

Priority inheritance example

8

task prio execution release time

d 4 EEQVE 4

c 3 EVVE 2

b 2 EE 2

a 1 EQQQQE 0

t = 5

Finish this Gantt chart
yourself!

ROS01 Week 7

Blocking Priority inheritance

• The blocked time of each task is now bounded.

• Bi = maximum blocking time for task i
• K = total number of resources
• usage(k, i) = Boolean function

– 1 if there is a task with a priority lower than Pi and a task with a
priority higher than or equal to Pi (this can be task i itself) which
share resource k.

– 0 otherwise.

• Ck = maximum time for which resource k is locked.

∑
=

=
K

k
ki CikusageB

1
),(

ROS01 Week 7 9

Blocking Response time analyze

iiii IBCR ++=

j
ihpj j

i
iii C

T
RBCR

)(
∑
∈

++=

j
ihpj j

n
i

ii
n
i C

T
wBCw ∑

∈

+

++=

)(

1

ROS01 Week 7 10

Priority inheritance example

• Calculate the maximum blocking time (Bi) for all tasks in
the previous example

task prio execution release time
d 4 EEQVE 4
c 3 EVVE 2
b 2 EE 2
a 1 EQQQQE 0

E = task only needs the
processor to run

Q = task needs processor
and resource Q to run

V = task needs processor
and resource V to run

∑
=

=
K

k
ki CikusageB

1
),(

usage(k, i) = 1 if there is a task with a priority lower than Pi and a
task with a priority higher than or equal to Pi (this can be task i itself)
which share resource k.

ROS01 Week 7 11

Solution

CV = 2, CQ = 4

Table for usage(k, i) and Bi

ROS01 Week 7 12

i k = V k = Q Bi

d 1 1 6
c 0 1 4
b 0 1 4
a 0 0 0

Blocking Priority inheritance

• Priority inheritance can not be implemented for semaphores and
message queues!
– When using a semaphore it is often not possible to determine which task is causing the blocking

(which task will call the post() for which a task blocked on wait() is waiting for)!
– Example: using a semaphore with an initial count value of zero for synchronization purposes.

– When using message passing it is often not possible to determine which task is causing the
blocking (which task will perform the send() for which a task blocked on receive() is waiting
for)!

• Solution: e.g. Priority Ceiling Protocol

Task 1 Task 2 Task 3 Task 4

wait()

Which task will
call post()?

post()
OS can not see into the future. Who can?

ROS01 Week 7 13

	Real-Time Operating Systems
	Planning ROS01
	Task states
	FPS-DMPO Blocking
	Priority inversion example
	Priority inversion example
	FPS-DMPO Priority inversion
	Priority inheritance example
	Blocking Priority inheritance
	Blocking Response time analyze
	Priority inheritance example
	Solution
	Blocking Priority inheritance

