
RTS10
Real-Time Systems

Assembly Assignment

Version 1.0a

J.Z.M. Broeders

RTS10

Version History

Date Version Description Author

22-08-20231 1.0a2 Corrected some typos. Replaced MS Teams with
Brightspace.

BroJZ

25-06-2022 1.0 Initial version for LEGv7 Pinky. BroJZ

Assembly Assignment Real-Time Systems from Rotterdam University of Applied Sciences is
licensed by a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Netherlands
license.

1 Dates are formatted in the Gregorian way (dd-mm-y y y y).
2 Explanation version coding A.Bc: A = major change, B = minor change, c = linguistic or mathematical

corrections.

Rotterdam University Real-Time Systems 2

mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en

RTS10 Contents

Contents

1 Introduction 4

2 Assignments 6
2.1 Assignment 1. Testing a simple LEGv7 Pinky program 6
2.2 Assignment 2. Writing a simple multiplication program 9
2.3 Assignment 3. A smarter multiply algorithm . 11
2.4 Assignment 4. A smarter, recursive multiply algorithm 12
2.5 Assignment 5. A smarter, tail recursive multiply algorithm 13
2.6 Assignment 6. Using your multiply function to calculate a power 14
2.7 Assignment 7. A smarter power algorithm . 15
2.8 Assignment 8. A smarter, recursive power algorithm 16
2.9 Assignment 9. A smarter, tail recursive power algorithm 17
2.10 Assignment 10. Using your multiply function to calculate the dot product of

two vectors . 18
2.11 Assignment 11. Using your multiply function to calculate a square root 20
2.12 Assignment 12. Sorting an array of 32-bit integers by using insertion sort . . 23
2.13 Assignment 13. Sorting an array of 32-bit integers by using selection sort . . 25
2.14 Assignment 14. Sorting an array of 32-bit integers by using cocktail shaker sort 27
2.15 Assignment 15. Sorting an array of 32-bit integers by using gnome sort 29
2.16 Assignment 16. Sorting an array of 32-bit integers by using stooge sort 31
2.17 Assignment 17. Sorting an array of 32-bit integers by using slow sort 33
2.18 Assignment 18. Sorting an array of 32-bit integers by using optimized bubble

sort . 35

Bibliography 37

Rotterdam University Real-Time Systems 3

RTS10 Chapter 1. Introduction

1

Introduction

To fully understand how a computer program runs on computer hardware it is required to
have knowledge, not only about the computer hardware, but also on how to write machine
language instructions that will be executed on the hardware.

Because we explain the concepts of computer architecture by looking at the ARM Cortex
M4 processor [4] (which is especially suitable for this purpose) we will also write assembly
programs for this processor. The ARM Cortex M4 uses the ARMv7 Thumb instruction set [1]
which consists of 16-bits and 32-bits instructions. This instruction set is quite big [3] and
contains about 280 instructions. Therefore, we have defined a small subset which we call
LEGv7 Pinky [2] which only consists of thirty-three 16-bit instructions. Because the LEGv7
architecture is a subset of the ARMv7 architecture and the Pinky instruction set is a subset
of the Thumb instruction set, programs written in LEGv7 Pinky can run on any Cortex M4
processor. You will use the STM32F411E-DISCO Board3 to test your assembly programs.

Using the STM32CubeIDE4, you can easily single step instructions and look at the registers
and memory in the meantime. In this way we will get a better understanding of and insights
in:

• What type of instructions a computer will need to support to gain some desired func-
tionality.

• How a compiler might translate high-level code into assembly.

3 https://www.st.com/en/evaluation-tools/32f411ediscovery.html

4 https://www.st.com/en/development-tools/stm32cubeide.html

Rotterdam University Real-Time Systems 4

https://www.st.com/en/evaluation-tools/32f411ediscovery.html
https://www.st.com/en/development-tools/stm32cubeide.html

RTS10 Chapter 1. Introduction

• How to use memory (and especially the stack).

During this assembly assignment you will only use the LEGv7 Pinky instruction set. These
instructions are defined in a separate document [2]. You are not allowed to use the other
instructions from the ARMv7 Thumb instruction set.

You need to assemble (pun intended) a small report which contains all the assembler func-
tions you have written, the C programs which you have used to test your assembler functions,
and the outcomes of those tests. Also, the answers to the questions raised in the assign-
ments should be included in the report. This report should be uploaded to the appropriate
assignment in Brightspace before the deadline which is defined in the “Cursushandleiding”.

Please note: you do not have to do all the assignments, only the ones assigned to you by
your instructor. The list of assignments you have to do will be sent to you by email.

Good luck!

Rotterdam University Real-Time Systems 5

https://bitbucket.org/HR_ELEKTRO/rts10/wiki/Cursushandleiding/Cursushandleiding_RTS01_ebook.pdf

RTS10 Chapter 2. Assignments

2

Assignments

In this chapter you will use STM32CubeIDE to develop and test a few LEGv7 Pinky assembler
programs.

2.1 Assignment 1. Testing a simple LEGv7 Pinky program

This project consists of a very simple assembler function and a C program which calls the
assembler function.

The C program ass01/main.c is given in Listing 2.1.

The main function calls the test function which is defined in the file ass01/test.s shown
in Listing 2.2. The first argument is passed in register R0 and the second argument is passed
in register R1. The return value must be placed in register R05

This very simple assembly program will return the sum of the two arguments. You can test
this program as follows:

• Download ass01.zip.

• In STM32CubeIDE, select File Import... and choose “Projects from Folder or Archive”.
Click Next > .

• Click Archive... and select the .zip file you just downloaded.

• Click Finish .

5 This conforms with the Procedure Call Standard for the Arm Architecture [5].

Rotterdam University Real-Time Systems 6

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/ass01/main.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/ass01/test.s
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/ass01.zip

RTS10 Chapter 2. Assignments

/* main.c simple program to test assembler program */

#include <stdio.h>

extern int test(int a, int b);

int main(void)

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a = test(3, 5);

printf("Result of test(3, 5) = %d\n", a);

return 0;

}

Listing 2.1: A simple C program which calls our assembly function ass01/main.c.

.cpu cortex -m4

.thumb

.syntax unified

.globl test

.text

.thumb_func

test:

ADD.N R0, R0, R1

BX.N LR

Listing 2.2: A very simple LEGv7 Pinky assembly function ass01/test.s.

• Open the directory “ass01.zip_expanded” and select the project “ass01”.

• Build this project and debug it as “STM32 Cortex-M C/C++ Application”, see Figure 2.1.

Figure 2.1: Debug the ass01 project.

• When you run the program the output shown in Figure 2.2 should appear in the Console
window.

Rotterdam University Real-Time Systems 7

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/ass01/main.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/ass01/test.s

RTS10 Chapter 2. Assignments

Figure 2.2: The output of the ass01 project.

We use so called “semihosting” [6, paragraph 7.4.3]6 to make use of the printf and scanf

functions. When you want to start a new project (to do the next assignments), the easiest
way to do this is to copy the project “ass01” as follows:

• Select the project “ass01” and press Ctrl + c , Ctrl + v .

• Enter a project name (the default will be “ass2”) and click Copy .

• Within the newly created project, select the file “ass01.cfg”, press F2 , and rename it
to the new project name (e.g. ass2.cfg).

• Within the newly created project, select the file “ass01.launch”, press F2 and rename
it to the new project name (e.g. ass2.launch).

• Double-click on the new .launch file to open it, press Ctrl + f and change all occur-
rences of “ass01” into the new project name. Press Ctrl + s to save these changes.

• Build the project by pushing .

• Start the debugger by pushing .

• Run the program using the menu Run Resume or by pressing F8 .

• You can now modify or remove the files in the new project’s directory “Core/Src” and/or
add your own .c and .s files.

6 Direct link to paragraph 7.4.3 of AN4989.

Rotterdam University Real-Time Systems 8

https://www.st.com/resource/en/application_note/dm00354244-stm32-microcontroller-debug-toolbox-stmicroelectronics.pdf#%5B%7B%22num%22%3A124%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C67%2C754%2Cnull%5D

RTS10 Chapter 2. Assignments

2.2 Assignment 2. Writing a simple multiplication program

Write an assembler subroutine in LEGv7 Pinky which can multiply two 32-bit unsigned
integers based on the C code shown in Listing 2.3. You may assume that the result fits into a
32-bit unsigned integer.

unsigned int multiply(unsigned int a, unsigned int b)

{

unsigned int m = 0;

for (unsigned int i = 0; i != a; i++)

{

m = m + b;

}

return m;

}

Listing 2.3: A naive multiply algorithm: mulOne.c.

Please note:

• You are not really using a LEGv7 Pinky assembler but you are actually using an ARMv7
Thumb assembler7. For this assembly assignment you are only allowed to use
Pinky instructions [2].

• In the ARMv7 architecture registers R0 to R7 (low registers) and R8 to R12 (high
registers) are available, in the LEGv7 architecture only the low registers (R0 to R7) are
available.

• To ensure that you only use 16-bit instructions add the suffix .N after each assembly
instruction.

• ARMv7 software is required to have the stack pointer aligned to double word (8 byte)
addresses at a public interface8, see [5, paragraph 6.2.1.2].

In Listing 2.4 a C program is given which calls your assembly code to test it. The GNU C
compiler9 which is used by STM32CubeIDE conforms to the Procedure Call Standard for the
Arm Architecture [5]. So, you can assume that the value of parameter a is present in argument
register R0 and that parameter b is present in argument register R1. Also, the return value
should be saved in result register R0.

7 See https://sourceware.org/binutils/docs/as/. To generate Thumb instructions you have to use the
.thumb assembler directive as shown in Listing 2.2.

8 For example, when calling a C function from assembly.
9 See https://gcc.gnu.org/onlinedocs/gcc/.

Rotterdam University Real-Time Systems 9

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/mulOne.c
https://sourceware.org/binutils/docs/as/
https://gcc.gnu.org/onlinedocs/gcc/

RTS10 Chapter 2. Assignments

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

unsigned int a[] = {0, 1, 0, 1, 2000, 2, 10000, ←-
,→ 1 , 65535 };

unsigned int b[] = {0, 0, 1, 1, 2, 65535, 65535, ←-
,→ 4294967295u, 65535 };

unsigned int r[] = {0, 0, 0, 1, 4000, 131070 , 655350000 , ←-
,→ 4294967295u, 4294836225u};

for (size_t i = 0; i != sizeof(a)/sizeof(a[0]); i++)

{

printf("%u x %u: ", a[i], b[i]);

unsigned int result = multiply(a[i], b[i]);

unsigned int correct = r[i];

if (result != correct)

{

printf("Failed , function returned %u but the correct ←-
,→ answer is %u\n", result , correct);

}

else

{

printf("Passed , %u\n", result);

}

}

return 0;

}

Listing 2.4: A program to test your assembly code: mulOne.c.

How many instructions does it take your procedure to run the code:
multiply(65535, 65535)?

Rotterdam University Real-Time Systems 10

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/mulOne.c

RTS10 Chapter 2. Assignments

2.3 Assignment 3. A smarter multiply algorithm

As we have seen in Section 2.2, the multiply routine takes a lot of time in the worst case.
There is a smarter method to multiply two values. It is given in C for your convenience in
Listing 2.5.

unsigned int multiply(unsigned int a, unsigned int b)

{

unsigned int m = 0;

while (b != 0)

{

if ((b & 1) == 1) /* b is odd */

{

m = m + a;

}

a = a << 1;

b = b >> 1;

}

return m;

}

Listing 2.5: A smarter multiply algorithm mulTwo.c.

Adjust the multiply function you wrote for Section 2.2 to work like the code given in Listing 2.5
and test all the cases listed in Listing 2.4 again.

How many instructions does it take your procedure to run the code:
multiply(65535, 65535)?

Rotterdam University Real-Time Systems 11

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/mulTwo.c

RTS10 Chapter 2. Assignments

2.4 Assignment 4. A smarter, recursive multiply algorithm

As we have seen in Section 2.2, the multiply routine takes a lot of time in the worst case.
There is a smarter method to multiply two values. It is given in C for your convenience in
Listing 2.6.

unsigned int multiply(unsigned int a, unsigned int b)

{

if (b == 0) return 0;

if (b == 1) return a;

if ((b & 1) == 0) /* b is even */ return multiply(a << 1, b >> ←-
,→ 1);

else /* b is odd */ return a + multiply(a << 1, b >> 1);

}

Listing 2.6: A smarter, recursive multiply algorithm mulThree.c.

Adjust the multiply function you wrote for Section 2.2 to work like the code given in Listing 2.6
and test all the cases listed in Listing 2.4 again.

How many instructions does it take your procedure to run the code:
multiply(65535, 65535)?

Rotterdam University Real-Time Systems 12

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/mulThree.c

RTS10 Chapter 2. Assignments

2.5 Assignment 5. A smarter, tail recursive multiply algo-

rithm

As we have seen in Section 2.2, the multiply routine takes a lot of time in the worst case.
There is a smarter method to multiply two values. It is given in C for your convenience in
Listing 2.7.

unsigned int multiply2(unsigned int m, unsigned int a, unsigned ←-
,→ int b)

{

if (b == 0) return 0;

if (b == 1) return m + a;

if ((b & 1) == 0) /* b is even */ return multiply2(m, a << 1, ←-
,→ b >> 1);

else /* b is odd */ return multiply2(m + a, a << 1, b >> 1);

}

unsigned int multiply(unsigned int a, unsigned int b)

{

return multiply2(0, a, b);

}

Listing 2.7: A smarter, tail recursive multiply algorithm mulFour.c.

Adjust the multiply function you wrote for Section 2.2 to work like the code given in Listing 2.7
and test all the cases listed in Listing 2.4 again.

Please note that the function multiply2 uses tail recursion10. You can use this fact to simplify
your assembler code.

How many instructions does it take your procedure to run the code:
multiply(65535, 65535)?

10 See: https://en.wikipedia.org/wiki/Tail_call.

Rotterdam University Real-Time Systems 13

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/mulFour.c
https://en.wikipedia.org/wiki/Tail_call

RTS10 Chapter 2. Assignments

2.6 Assignment 6. Using your multiply function to calculate

a power

Now write an assembly function called power to calculate nm were n and m are 32-bit
unsigned integers. You may assume that the result fits into a 32-bit unsigned integer. You
have to call the multiply function you wrote for Section 2.2 from within your power function.
The algorithm is given in C for your convenience in Listing 2.8. Make sure your code is
properly tested.

unsigned int power(unsigned int n, unsigned int m)

{

unsigned int p = 1;

for (unsigned int i = 0; i != m; i++)

{

p = p * n;

}

return p;

}

Listing 2.8: A simple power algorithm powerOne.c.

Rotterdam University Real-Time Systems 14

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/powerOne.c

RTS10 Chapter 2. Assignments

2.7 Assignment 7. A smarter power algorithm

A simple implementation of the power function, see Section 2.6 performs m multiplications
to calculate nm. There is a smarter method to calculate a power. This method is called
exponentiation by squaring11. Now write an assembly function called power to calculate nm

were n and m are 32-bit unsigned integers. You may assume that the result fits into a 32-bit
unsigned integer. You have to call the multiply function you wrote for Section 2.2, 2.3 or
2.5 from within your power function. The algorithm is given in C for your convenience in
Listing 2.9. Make sure your code is properly tested.

unsigned int power(unsigned int n, unsigned int m)

{

if (m == 0) return 1;

unsigned int p = 1;

while (m != 1)

{

if ((m & 1) == 1) /* m is odd */

{

p = p * n;

}

n = n * n;

m = m >> 1;

}

return p * n;

}

Listing 2.9: A powerTwo power algorithm powerTwo.c.

The simple calculation of 711, using the algorithm given in Section 2.6, performs 11 mul-
tiplication. How many multiplications are needed in your implementation of the power

function.

11 See: https://en.wikipedia.org/wiki/Exponentiation_by_squaring.

Rotterdam University Real-Time Systems 15

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/powerTwo.c
https://en.wikipedia.org/wiki/Exponentiation_by_squaring

RTS10 Chapter 2. Assignments

2.8 Assignment 8. A smarter, recursive power algorithm

A simple implementation of the power function, see Section 2.6 performs m multiplications
to calculate nm. There is a smarter method to calculate a power. This method is called
exponentiation by squaring12. Now write an assembly function called power to calculate nm

were n and m are 32-bit unsigned integers. You may assume that the result fits into a 32-bit
unsigned integer. You have to call the multiply function you wrote for Section 2.2, 2.3 or
2.5 from within your power function. The algorithm is given in C for your convenience in
Listing 2.10. Make sure your code is properly tested.

unsigned int power(unsigned int n, unsigned int m)

{

if (m == 0) return 1;

if (m == 1) return n;

if ((m & 1) == 0) /* m is even */ return power(n * n, m >> 1);

else /* m is odd */ return n * power(n * n, m >> 1);

}

Listing 2.10: A powerThree power algorithm powerThree.c.

The simple calculation of 711, using the algorithm given in Section 2.6, performs 11 mul-
tiplication. How many multiplications are needed in your implementation of the power

function.

12 See: https://en.wikipedia.org/wiki/Exponentiation_by_squaring.

Rotterdam University Real-Time Systems 16

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/powerThree.c
https://en.wikipedia.org/wiki/Exponentiation_by_squaring

RTS10 Chapter 2. Assignments

2.9 Assignment 9. A smarter, tail recursive power algorithm

A simple implementation of the power function, see Section 2.6 performs m multiplications
to calculate nm. There is a smarter method to calculate a power. This method is called
exponentiation by squaring13. Now write an assembly function called power to calculate nm

were n and m are 32-bit unsigned integers. You may assume that the result fits into a 32-bit
unsigned integer. You have to call the multiply function you wrote for Section 2.2, 2.3 or
2.5 from within your power function. The algorithm is given in C for your convenience in
Listing 2.11. Make sure your code is properly tested.

unsigned int power2(unsigned int p, unsigned int n, unsigned int m)

{

if (m == 0) return p;

if (m == 1) return p * n;

if ((m & 1) == 0) /* m is even */ return power2(p, n * n, m ←-
,→ >> 1);

else /* m is odd */ return power2(p * n, n * n, m >> 1);

}

unsigned int power(unsigned int n, unsigned int m)

{

return power2(1, n, m);

}

Listing 2.11: A powerFour power algorithm powerFour.c.

Please note that the function power2 uses tail recursion14. You can use this fact to simplify
your assembler code.

The simple calculation of 711, using the algorithm given in Section 2.6, performs 11 mul-
tiplication. How many multiplications are needed in your implementation of the power

function.

13 See: https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
14 See: https://en.wikipedia.org/wiki/Tail_call.

Rotterdam University Real-Time Systems 17

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/powerFour.c
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Tail_call

RTS10 Chapter 2. Assignments

2.10 Assignment 10. Using your multiply function to calcu-

late the dot product of two vectors

Now write an assembly function called dotProduct to calculate the dot product of two vectors
a ·b were a and b are both vectors which contain n 32-bit unsigned integers. The dot product
of two vectors of size n is defined in Equation (2.1).

a · b=
n−1
∑

i=0

ai bi = a0 b0 + a1 b1 + · · · + an−1 bn−1 (2.1)

You may assume that the result fits into a 32-bit unsigned number. You have to call the
multiply function you wrote for Section 2.2, 2.3 or 2.5 from within your dotProduct function.
Make sure your code is properly tested. A basic test program is shown in Listing 2.12.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.13.

Rotterdam University Real-Time Systems 18

RTS10 Chapter 2. Assignments

#include <stdio.h>

unsigned int dotProduct(unsigned int a[], unsigned int b[], size_t ←-
,→ n);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

unsigned int a[] = { 1, 2, 3, 4, 5};

unsigned int b[] = {10, 11, 12, 13, 14};

if (dotProduct(a, b, 5) == 190)

{

printf("OK\n");

}

else

{

printf("Error\n");

}

return 0;

}

Listing 2.12: A basic test program to test the function dotProduct, dotProduct.c.

unsigned int dotProduct(unsigned int a[], unsigned int b[], size_t n)

{

unsigned int p = 0;

for (size_t i = 0; i != n; i++)

{

p = p + a[i] * b[i];

}

return p;

}

Listing 2.13: A C implementation of the function dotProduct, dotProduct.c.

Rotterdam University Real-Time Systems 19

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/dotProduct.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/dotProduct.c

RTS10 Chapter 2. Assignments

2.11 Assignment 11. Using your multiply function to calcu-

late a square root

Now write an assembly function called sqrtFloor to calculate the floor of the square root of
a 32-bit unsigned integer. The floor of the square root means that the sqrt is rounded down
to the nearest integer. You may note that the result fits into a 32-bit unsigned number. You
have to call the multiply function you wrote for Section 2.2, 2.3 or 2.5 from within your
sqrtFloor function. Make sure your code is properly tested. A basic test program is shown
in Listing 2.14.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.15.

Rotterdam University Real-Time Systems 20

RTS10 Chapter 2. Assignments

#include <stdio.h>

unsigned int sqrtFloor(unsigned int n);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

unsigned int a[] = {0, 1, 2, 3, 4, 152399025 , 152423715 , ←-
,→ 4294836225 , 4294967295};

unsigned int r[] = {0, 1, 1, 1, 2, 12345, 12345, ←-
,→ 65535, 65535};

for (size_t i = 0; i < sizeof(a)/sizeof(a[0]); i++)

{

printf("sqrtFloor (%u): ", a[i]);

unsigned int result = sqrtFloor(a[i]);

unsigned int correct = r[i];

if (result != correct)

{

printf("Failed , function returned %u but the correct ←-
,→ answer is %u\n", result , correct);

}

else

{

printf("Passed , %u\n", result);

}

}

return 0;

}

Listing 2.14: A basic test program to test the function sqrtFloor, sqrtFloor.c.

Rotterdam University Real-Time Systems 21

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/sqrtFloor.c

RTS10 Chapter 2. Assignments

unsigned int sqrtFloor(unsigned int n)

{

unsigned int p = 1u << 15;

unsigned int r = 0;

do

{

r = p | r;

if (r * r > n)

{

r = r & ~p;

}

p = p >> 1;

}

while (p != 0);

return r;

}

Listing 2.15: A C implementation of the function sqrtFloor, sqrtFloor.c.

Rotterdam University Real-Time Systems 22

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/sqrtFloor.c

RTS10 Chapter 2. Assignments

2.12 Assignment 12. Sorting an array of 32-bit integers by

using insertion sort

Write a insertionSort function in LEGv7 Pinky using the insertion sort algorithm15.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.16. A basic test program is shown in Listing 2.17. Your assembly function must call
the C function swap given in Listing 2.18.

void insertionSort(int a[], size_t n)

{

for (size_t i = 0; i != n; i++)

{

for (size_t j = i; j != 0 && a[j-1] > a[j]; j--)

{

swap(&a[j], &a[j-1]);

}

}

}

Listing 2.16: A C implementation of the function insertionSort, insertionSort.c.

15 See: https://en.wikipedia.org/wiki/Insertion_sort

Rotterdam University Real-Time Systems 23

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/insertionSort.c
https://en.wikipedia.org/wiki/Insertion_sort

RTS10 Chapter 2. Assignments

#include <stdio.h>

void insertionSort(int a[], size_t n);

int main(void)

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

insertionSort(a, sizeof(a)/sizeof(a[0]));

for (size_t i = 0; i != sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 1;

}

}

printf("OK\n");

return 0;

}

Listing 2.17: A basic test program to test the function insertionSort, insertionSort.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.18: A C implementation of the function swap, insertionSort.c.

Rotterdam University Real-Time Systems 24

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/insertionSort.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/insertionSort.c

RTS10 Chapter 2. Assignments

2.13 Assignment 13. Sorting an array of 32-bit integers by

using selection sort

Write a selectionSort function in LEGv7 Pinky using the selection sort algorithm16.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.19. A basic test program is shown in Listing 2.20. Your assembly function must call
the C function swap given in Listing 2.21.

void selectionSort(int a[], size_t n)

{

for (size_t j = 0; j != n - 1; j++)

{

size_t iMin = j;

for (size_t i = j + 1; i != n; i++)

{

if (a[i] < a[iMin])

{

iMin = i;

}

}

if (iMin != j)

{

swap(&a[j], &a[iMin]);

}

}

}

Listing 2.19: A C implementation of the function selectionSort, selectionSort.c.

16 See: https://en.wikipedia.org/wiki/Selection_sort

Rotterdam University Real-Time Systems 25

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/selectionSort.c
https://en.wikipedia.org/wiki/Selection_sort

RTS10 Chapter 2. Assignments

#include <stdio.h>

void selectionSort(int a[], size_t n);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

selectionSort(a, sizeof(a)/sizeof(a[0]));

for (size_t i = 0; i != sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 0;

}

}

printf("OK\n");

return 0;

}

Listing 2.20: A basic test program to test the function selectionSort, selectionSort.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.21: A C implementation of the function swap, selectionSort.c.

Rotterdam University Real-Time Systems 26

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/selectionSort.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/selectionSort.c

RTS10 Chapter 2. Assignments

2.14 Assignment 14. Sorting an array of 32-bit integers by

using cocktail shaker sort

Write a cocktailShakerSort function in LEGv7 Pinky using the cocktail shaker sort algo-
rithm17.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.22. A basic test program is shown in Listing 2.23. Your assembly function must call
the C function swap given in Listing 2.24.

void cocktailShakerSort(int a[], size_t n)

{

for (size_t j = 0; j != n/2; j++)

{

for (size_t i = j; i != n - 1 - j; i++)

{

if (a[i] > a[i+1])

{

swap(&a[i], &a[i+1]);

}

}

for (size_t i = n - 2 - j; i != j; i--)

{

if (a[i-1] > a[i])

{

swap(&a[i-1], &a[i]);

}

}

}

}

Listing 2.22: A C implementation of the function cocktailShakerSort, cocktailShakerSort.c.

17 See: https://en.wikipedia.org/wiki/Cocktail_shaker_sort

Rotterdam University Real-Time Systems 27

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/cocktailShakerSort.c
https://en.wikipedia.org/wiki/Cocktail_shaker_sort

RTS10 Chapter 2. Assignments

#include <stdio.h>

void cocktailShakerSort(int a[], size_t n);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

cocktailShakerSort(a, sizeof(a)/sizeof(a[0]));

for (size_t i = 0; i != sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 0;

}

}

printf("OK\n");

return 0;

}

Listing 2.23: A basic test program to test the function cocktailShakerSort,

cocktailShakerSort.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.24: A C implementation of the function swap, cocktailShakerSort.c.

Rotterdam University Real-Time Systems 28

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/cocktailShakerSort.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/cocktailShakerSort.c

RTS10 Chapter 2. Assignments

2.15 Assignment 15. Sorting an array of 32-bit integers by

using gnome sort

Write a gnomeSort function in LEGv7 Pinky using the gnome sort algorithm18.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.25. A basic test program is shown in Listing 2.26. Your assembly function must call
the C function swap given in Listing 2.27.

void gnomeSort(int a[], size_t n)

{

size_t i = 0;

while (i != n)

{

if (i == 0 || a[i] >= a[i-1])

{

i++;

}

else

{

swap(&a[i], &a[i-1]);

i--;

}

}

}

Listing 2.25: A C implementation of the function gnomeSort, gnomeSort.c.

18 See: https://en.wikipedia.org/wiki/Gnome_sort

Rotterdam University Real-Time Systems 29

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/gnomeSort.c
https://en.wikipedia.org/wiki/Gnome_sort

RTS10 Chapter 2. Assignments

#include <stdio.h>

void gnomeSort(int a[], size_t n);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

gnomeSort(a, sizeof(a)/sizeof(a[0]));

for (size_t i = 0; i != sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 0;

}

}

printf("OK\n");

return 0;

}

Listing 2.26: A basic test program to test the function gnomeSort, gnomeSort.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.27: A C implementation of the function swap, gnomeSort.c.

Rotterdam University Real-Time Systems 30

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/gnomeSort.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/gnomeSort.c

RTS10 Chapter 2. Assignments

2.16 Assignment 16. Sorting an array of 32-bit integers by

using stooge sort

Write a stoogeSort function in LEGv7 Pinky using the stooge sort algorithm19.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.28. A basic test program is shown in Listing 2.29. Your assembly function must call
the C function swap given in Listing 2.30.

In this assignment you are allowed to use the UDIV instruction from the Thumb instruction
set, see [4, paragraph 3.6.12]20.

void stoogeSort(int a[], size_t first , size_t last)

{

if (a[first] > a[last])

{

swap(&a[first], &a[last]);

}

if ((last - first + 1) > 2)

{

size_t third = (last - first + 1) / 3;

stoogeSort(a, first , last - third);

stoogeSort(a, first + third , last);

stoogeSort(a, first , last - third);

}

}

Listing 2.28: A C implementation of the function stoogeSort, stoogeSort.c.

19 See: https://en.wikipedia.org/wiki/Stooge_sort
20 https://documentation-service.arm.com/static/5f2ac76d60a93e65927bbdc5#G6.1094353

Rotterdam University Real-Time Systems 31

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/stoogeSort.c
https://en.wikipedia.org/wiki/Stooge_sort
https://documentation-service.arm.com/static/5f2ac76d60a93e65927bbdc5#G6.1094353

RTS10 Chapter 2. Assignments

#include <stdio.h>

void stoogeSort(int a[], size_t first , size_t last);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

stoogeSort(a, 0, sizeof(a)/sizeof(a[0]) - 1);

size_t i;

for (i = 0; i < sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 0;

}

}

printf("OK\n");

return 0;

}

Listing 2.29: A basic test program to test the function stoogeSort, stoogeSort.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.30: A C implementation of the function swap, stoogeSort.c.

Rotterdam University Real-Time Systems 32

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/stoogeSort.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/stoogeSort.c

RTS10 Chapter 2. Assignments

2.17 Assignment 17. Sorting an array of 32-bit integers by

using slow sort

Write a slowSort function in LEGv7 Pinky using the slow sort algorithm21.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.31. A basic test program is shown in Listing 2.32. Your assembly function must call
the C function swap given in Listing 2.33.

void slowSort(int a[], size_t first , size_t last)

{

if (first != last)

{

size_t middle = (first + last) >> 1;

slowSort(a, first , middle);

slowSort(a, middle + 1, last);

if (a[last] < a[middle])

{

swap(&a[last], &a[middle]);

}

slowSort(a, first , last - 1);

}

}

Listing 2.31: A C implementation of the function slowSort, slowSort.c.

21 See: https://en.wikipedia.org/wiki/Slow_sort

Rotterdam University Real-Time Systems 33

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/slowSort.c
https://en.wikipedia.org/wiki/Slow_sort

RTS10 Chapter 2. Assignments

#include <stdio.h>

void slowSort(int a[], size_t first , size_t last);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

slowSort(a, 0, sizeof(a)/sizeof(a[0]) - 1);

for (size_t i = 0; i < sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 0;

}

}

printf("OK\n");

return 0;

}

Listing 2.32: A basic test program to test the function slowSort, slowSort.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.33: A C implementation of the function swap, slowSort.c.

Rotterdam University Real-Time Systems 34

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/slowSort.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/slowSort.c

RTS10 Chapter 2. Assignments

2.18 Assignment 18. Sorting an array of 32-bit integers by

using optimized bubble sort

Write a bubbleSortOpt function in LEGv7 Pinky using the optimized bubble sort algorithm22.

A C implementation of the function you have to implement in LEGv7 Pinky is shown in
Listing 2.34. A basic test program is shown in Listing 2.35. Your assembly function must call
the C function swap given in Listing 2.36.

void bubbleSortOpt(int a[], size_t n)

{

size_t newn;

do

{

newn = 0;

for (size_t i = 1; i != n; i++)

{

if (a[i-1] > a[i])

{

swap(&a[i-1], &a[i]);

newn = i;

}

}

n = newn;

}

while (n != 0);

}

Listing 2.34: A C implementation of the function bubbleSortOpt, bubbleSortOpt.c.

22 See: https://en.wikipedia.org/wiki/Bubble_sort

Rotterdam University Real-Time Systems 35

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/bubbleSortOpt.c
https://en.wikipedia.org/wiki/Bubble_sort

RTS10 Chapter 2. Assignments

#include <stdio.h>

void bubbleSortOpt(int a[], size_t n);

int main()

{

extern void initialise_monitor_handles(void);

initialise_monitor_handles ();

int a[] = {1, -2, 7, -4, 5};

int b[] = {-4, -2, 1, 5, 7};

bubbleSortOpt(a, sizeof(a)/sizeof(a[0]));

for (size_t i = 0; i != sizeof(a)/sizeof(a[0]); i++)

{

if (a[i] != b[i])

{

printf("Error\n");

return 0;

}

}

printf("OK\n");

return 0;

}

Listing 2.35: A basic test program to test the function bubbleSortOpt, bubbleSortOpt.c.

void swap(int *p1, int *p2)

{

int t = *p1;

*p1 = *p2;

*p2 = t;

}

Listing 2.36: A C implementation of the function swap, bubbleSortOpt.c.

Rotterdam University Real-Time Systems 36

https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/bubbleSortOpt.c
https://bitbucket.org/HR_ELEKTRO/rts10/raw/master/Assembly_opdracht/bubbleSortOpt.c

RTS10 Bibliography

Bibliography

[1] Arm v7-M Architecture – Reference Manual. ARM, 2021, DDI 0403E.e. URL: https:
//documentation-service.arm.com/static/606dc36485368c4c2b1bf62f (cit. on
p. 4).

[2] Harry Broeders. De LEGv7 architectuur en de Pinky instructieset. Hogeschool Rotterdam,
2022. URL: https://bitbucket.org/HR_ELEKTRO/rts10/wiki/LEGv7/LEGv7-Pinky_
ebook.pdf (cit. on pp. 4, 5, 9).

[3] Cortex-M4 Datasheet. ARM, 2020. URL: https : / / www . arm . com/ - /media / Arm %

20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex- M4%

20Processor%20Datasheet.pdf (cit. on p. 4).

[4] Cortex-M4 Devices – Generic User Guide. ARM, 2011, DUI 0553. URL: https : / /

documentation - service . arm . com / static / 5f2ac76d60a93e65927bbdc5 (cit. on
pp. 4, 31).

[5] Procedure Call Standard for the Arm Architecture. ARM, 2022, AAPCS32-1. URL: https:
//github.com/ARM-software/abi-aa/releases (cit. on pp. 6, 9).

[6] STM32 microcontroller debug toolbox. STMicroelectronics, 2021, AN4989. URL:
https : / / www . st . com / resource / en / application _ note / dm00354244 - stm32 -

microcontroller-debug-toolbox-stmicroelectronics.pdf (cit. on p. 8).

Rotterdam University Real-Time Systems 37

https://documentation-service.arm.com/static/606dc36485368c4c2b1bf62f
https://documentation-service.arm.com/static/606dc36485368c4c2b1bf62f
https://bitbucket.org/HR_ELEKTRO/rts10/wiki/LEGv7/LEGv7-Pinky_ebook.pdf
https://bitbucket.org/HR_ELEKTRO/rts10/wiki/LEGv7/LEGv7-Pinky_ebook.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M4%20Processor%20Datasheet.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M4%20Processor%20Datasheet.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M4%20Processor%20Datasheet.pdf
https://documentation-service.arm.com/static/5f2ac76d60a93e65927bbdc5
https://documentation-service.arm.com/static/5f2ac76d60a93e65927bbdc5
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://www.st.com/resource/en/application_note/dm00354244-stm32-microcontroller-debug-toolbox-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00354244-stm32-microcontroller-debug-toolbox-stmicroelectronics.pdf

	Introduction
	Assignments
	Assignment 1. Testing a simple LEGv7 Pinky program
	Assignment 2. Writing a simple multiplication program
	Assignment 3. A smarter multiply algorithm
	Assignment 4. A smarter, recursive multiply algorithm
	Assignment 5. A smarter, tail recursive multiply algorithm
	Assignment 6. Using your multiply function to calculate a power
	Assignment 7. A smarter power algorithm
	Assignment 8. A smarter, recursive power algorithm
	Assignment 9. A smarter, tail recursive power algorithm
	Assignment 10. Using your multiply function to calculate the dot product of two vectors
	Assignment 11. Using your multiply function to calculate a square root
	Assignment 12. Sorting an array of 32-bit integers by using insertion sort
	Assignment 13. Sorting an array of 32-bit integers by using selection sort
	Assignment 14. Sorting an array of 32-bit integers by using cocktail shaker sort
	Assignment 15. Sorting an array of 32-bit integers by using gnome sort
	Assignment 16. Sorting an array of 32-bit integers by using stooge sort
	Assignment 17. Sorting an array of 32-bit integers by using slow sort
	Assignment 18. Sorting an array of 32-bit integers by using optimized bubble sort

	Bibliography

