
RTS10 Real-Time Systems 1 – Cyclic executive and coöperative scheduler

Introduction

The focus for the next four weeks of this course will be on real-time task scheduling. We
start with a simple cyclic executive and end up using a Real-Time Operating System (RTOS).
At the end of week 6 you have to submit a short report of the assignments of week 3 to 5
in a task created for this purpose in Brightspace. In this report, formatted in .pdf, you will
discuss the code you wrote and answer the questions posed in the assignments.

In these assignments we will not use the LL and HAL APIs from STM because we want to
develop software that will run on any Cortex-M4 microcontroller1.

Assignments week 3 – Cyclic executive and coöperative sched-

uler

This week you will learn how to:

• manage time by using the SysTick timer with:

◦ polling;

◦ interrupt.

• implement these methods for managing time:

◦ without using an API;

◦ by using the CMSIS API.

• save power by putting the processor to sleep when there is nothing to do except to
wait until the time passes;

• develop a cyclic executive;

• develop a cooperative scheduler;

Cyclic Executive

3.1 In this assignment you will create (again) a program which will blink the user LEDs of
the STM32F411E-DISCO development board. But instead of using a for-loop to pass
time, you will use the so called SysTick timer. This timer is part of the Cortex-M4 core
and is therefore present in every Cortex-M4 microcontroller. It is not documented in

1 The only part which will not, and can not, be portable will be the use of the peripherals.

Rotterdam University Assignments week 3 – Version 1.1 1

RTS10 Real-Time Systems 1 – Cyclic executive and coöperative scheduler

RM0383 (STM32F411xC/E advanced Arm-based 32-bit MCUs reference manual) but
in PM0214 (STM32 Cortex-M4 MCUs and MPUs programming manual).

A Copy the project opdr_2_1 to opdr_3_1 in the Project Explorer of STM32CubeIDE.
Delete in this new project the Debug folder and the .launch file.

B Read section 4.5 of PM0214. Configure the SysTick timer to set the COUNTFLAG

in the STK_CTRL register every 0.5 s. Replace the for-loop with the following C
code:

while ((STK_CTRL & (1 << 16)) == 0);

You have to properly define the symbol STK_CTRL yourself to make this work.
Build and debug the project. If all is well, the user LEDs will blink with a frequency
of 1 Hz.

3.2 In this assignment you will repeat assignment 3.1 but this time you will use the CMSIS
API.

A Copy the project opdr_2_2 to opdr_3_2 in the Project Explorer of STM32CubeIDE.
Delete in this new project the Debug folder and the .launch file.

B Configure the SysTick timer to set the COUNTFLAG in the STK_CTRL register every
0.5 s using the CMSIS API. Replace the for-loop with the following C code:

while ((SysTick ->CTRL & (1 << 16)) == 0);

The symbol SysTick is defined in the CMSIS API. Build and debug the project. If
all is well, the user LEDs will blink with a frequency of 1 Hz.

3.3 In this assignment you will repeat assignment 3.1 but instead of polling the COUNTFLAG

you will use an interrupt.

A Copy the project opdr_3_1 to opdr_3_3 in the Project Explorer of STM32CubeIDE.
Delete in this new project the Debug folder and the .launch file.

B Configure the SysTick timer to generate an interrupt (also called an exception)
every 0.5 s. Read section 2.3 of PM0214. The exception vectors are already
defined in the file startup_stm32f411vetx.s that you can find in the Core

Startup folder of the project. On line 142 of this file, the SysTick vector is filled
with the symbol SysTick_Handler which is defined using the .weak assembler

Rotterdam University Assignments week 3 – Version 1.1 2

https://www.st.com/resource/en/reference_manual/rm0383-stm32f411xce-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf#%5B%7B%22num%22%3A439%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C67%2C754%2Cnull%5D
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf#%5B%7B%22num%22%3A55%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C67%2C754%2Cnull%5D

RTS10 Real-Time Systems 1 – Cyclic executive and coöperative scheduler

directive2 on line 263. This will define the symbol if it is not already defined.
On line 264 this symbol is made an alias for the Default_Handler function
by using the .thumb_set assembler directive3. This ensures that the function
Default_Handler is called when the function SysTick_Handler is not defined.
The function Default_Handler is defined on line 111 and contains an infinite
loop. So the only thing you have to do, to handle the SysTick interrupt, is to
define a function named SysTick_Handler.

Define a global boolean flag in main.c like this:

#include <stdbool.h>

volatile bool flag = false;

Define a function SysTick_Handler which makes this flag true.

Replace the while-loop which polls the COUNTFLAG with the following C code:

while (!flag);

flag = false;

Build and debug the project. If all is well, the user LEDs will blink with a frequency
of 1 Hz.

C Why must the flag variable be defined as volatile?

D It seems that there is no good reason to prefer an interrupt above polling in this
case. But there is! The Cortex-M4 processor can be put in a low power mode
by executing the WFI assembler instruction. The core resumes execution when it
receives an interrupt. Read section 3.11.12 of PM0214.

Replace the while-loop which waits for the flag to become true with code which
will put the processor to sleep until the next SysTick interrupt. To execute an
assembly instruction, you can use the macro __asm__4:

__asm__(" ");

Make sure to include some space before the instruction itself. E.g.:

2 https://sourceware.org/binutils/docs/as/Weak.html#Weak

3 https://sourceware.org/binutils/docs/as/ARM-Directives.html#index-_002ethumb_005fset-
directive_002c-ARM

4 https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/Using-Assembly-Language-with-C.html

Rotterdam University Assignments week 3 – Version 1.1 3

https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf#%5B%7B%22num%22%3A355%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C67%2C754%2Cnull%5D
https://sourceware.org/binutils/docs/as/Weak.html#Weak
https://sourceware.org/binutils/docs/as/ARM-Directives.html#index-_002ethumb_005fset-directive_002c-ARM
https://sourceware.org/binutils/docs/as/ARM-Directives.html#index-_002ethumb_005fset-directive_002c-ARM
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/Using-Assembly-Language-with-C.html

RTS10 Real-Time Systems 1 – Cyclic executive and coöperative scheduler

__asm__(" nop");

The variable flag is now not needed anymore and can be removed. Build and
debug the project. If all is well, the user LEDs will blink with a frequency of 1 Hz.

3.4 In this assignment you will repeat assignment 3.3 but this time you will use the CMSIS
API.

A Copy the project opdr_3_2 to opdr_3_4 in the Project Explorer of STM32CubeIDE.
Delete in this new project the Debug folder and the .launch file.

B Configure the SysTick timer to generate an interrupt every 0.5 s. This can be
done by using the function SysTick_Config from the CMSIS API. Define an
empty function to handle this interrupt. Replace the while-loop which polls the
COUNTFLAG with code which will put the processor to sleep until the next SysTick
interrupt. There is a function defined in the CMSIS API to accomplish this, see
section 2.5.4 of PM0214.

3.5 Now based on project opdr_3_4 create a rotation loop which simulates a simple traffic
light: red (5 seconds), orange (1 second), green (4 seconds). The time each light is
on must be easily adjustable with a granularity of 0.5 s. The processor must be put
to sleep in between interrupts. Make use of an enumeration construct (enum) for the
colors and a switch-case-statement for the rotation.

You have just created a simple and efficient scheduler a so-called cyclic executive!

Coöperative Scheduler

You will expand on the simple scheduler by implementing a list to which functions can be
added to run at a specific period measured in ticks. A tick is a specific amount of time. In
this assignment you have to use ticks of 1 ms. We will thus need a struct in C to combine
a function pointer with a period, a counter and a possible initial delay. This struct will
describe a “task”. The goal is to be able to run a task at a specified period of e.g. 500 ticks.

3.6 • Create a copy of the previous project and rename it to opdr_3_6.

• Using the description of this assignment, define a struct for a “task” and create
a global array of 8 tasks.

Rotterdam University Assignments week 3 – Version 1.1 4

https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf#%5B%7B%22num%22%3A110%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C67%2C454%2Cnull%5D

RTS10 Real-Time Systems 1 – Cyclic executive and coöperative scheduler

• Create a function to initialize and add a task to this task list (the array).

• Create 4 functions (tasks) to toggle each led separately.

• Add each function (task) to the task list with periods of: 200 ticks, 500 ticks, 750
ticks, and 300 ticks for green, orange, red, and blue respectively.

• In the SysTick ISR, walk through the task list and decrement each of the task
counters.

• Think of, and expand on, the task struct to notify per task whether it is in a
WAITING or READY state. Set the state in the ISR depending on the task counter.

• Create a function runReadyTasks() that will walk through the task list and
execute any task in the READY state. Replace your switch-case rotation in the
function main with a call to this function.

• Make use of a logic analyzer to verify the timing of the tasks

3.7 Now add initial delays to your tasks. Use an initial delay of 100, 200, 300, and 400 for
green, orange, red, and blue respectively. Make use of a logic analyzer to verify the
timing.

Enjoy the show of your “advanced” cooperative scheduler.

Rotterdam University Assignments week 3 – Version 1.1 5

