
RTS10 Week 2

REAL-TIME SYSTEMS

Leerdoelen Week 2 Theoriedeel

Leerdoelen week 2 theoriedeel. Je leert:
• hoe een vereenvoudigde versie van de ARMv7-M

architectuur, de LEGv7-M architectuur, in hardware
geïmplementeerd kan worden;

• deze implementatie versnelt kan worden door het
toepassen van:
• een pipeline;
• branch prediction;
• cache geheugen. 2

REAL-TIME SYSTEMS

Source Reference

The material in this presentation is
inspired by chapter 4 of the book:
• Computer Organization and Design

• The Hardware / Software Interface
• ARM Edition
• David A. Patterson, John L. Hennessy
• ISBN: 9780128017333

3

Main differences:
• The book uses ARMv8 Cortex-A , I use ARMv7 Cortex-M
• The book uses ARM instructions, I use Thumb instructions

REAL-TIME SYSTEMS

Agenda

• A one cycle implementation of LEGv7-M
• A pipelined implementation of LEGv7-M
• Branch prediction
• Cache memory

4

REAL-TIME SYSTEMS

Agenda

• A one cycle implementation of LEGv7-M
• A pipelined implementation of LEGv7-M
• Branch prediction
• Cache memory

5

REAL-TIME SYSTEMS

Introduction
CPU performance factors
• Instruction count

• Determined by Instruction Set Architecture (ISA) and compiler
• Clocks per instruction (CPI) and Cycle time

• Determined by CPU hardware

We will examine two LEGv7-M implementations
• A simplified version
• A more realistic pipelined version
Simple subset of Pinky instruction set, shows most aspects
• Memory reference: LDR, STR
• Arithmetic/logical: ADDS, SUBS, EORS, ANDS, ORRS
• Control transfer: CBZ

6

https://bitbucket.org/HR_ELEKTRO/rts10/wiki/LEGv7/LEGv7-Pinky_ebook.pdf

REAL-TIME SYSTEMS

Pinky subset to implement

7

R(egister)-type

M(emory)-type

C(ompare)B(ranch)-type

REAL-TIME SYSTEMS

Instruction Execution
• PC → instruction memory, fetch instruction
• Register numbers → register file, read registers
• Depending on instruction type:

• Use Arithmetic and Logic Unit (ALU) to calculate
• Arithmetic or logic result for Register-type (ADDS, SUBS, EORS, ANDS, ORRS)
• Memory address for Memory-type instructions (LDU, STU)
• Register equals zero for CB-type (CBZ)

• For CB-type (CBZ) calculate branch target address
• Access data memory for M-type (LDU, STU)
• Write to register file for R-type (ADDS, SUBS, EORS, ANDS, ORRS) and load (LDR)

• PC ← PC + 2 or PC ← Branch target address 8

REAL-TIME SYSTEMS

CPU Overview

9

Details will follow…

What’s wrong?

REAL-TIME SYSTEMS

Can’t join output signals

10

• Can’t just join
wires together
• Use multiplexers

REAL-TIME SYSTEMS

Control

11

Details will follow…

REAL-TIME SYSTEMS

Logic Design Basics

Information encoded in binary
• Low voltage = 0, High voltage = 1
• One wire per bit
• Multi-bit data encoded on multi-wire buses
Combinational element
• Operate on data
• Output is a function of input
State (sequential) elements
• Store information

12

>>

REAL-TIME SYSTEMS

Combinational Elements

AND gate
Y = A & B

13

>>
A
B Y

Multiplexer
Y = S ? I1 : I0

A

B
Y+

Adder
Y = A + B

I0
I1 Y

M
u
x

S

Arithmetic/Logic Unit
Y = F(A, B)

A

B

YALU

F

REAL-TIME SYSTEMS

Sequential Elements

Register: stores data in a circuit
• Uses a clock signal to determine when to update the stored

value
• Edge-triggered: update when Clk changes from 0 to 1

14

>>

D

Clk

Q
Clk

D

Q

REAL-TIME SYSTEMS

Sequential Elements

Register with write control
• Only updates on clock edge when write control input is 1
• Used when stored value is required later

15

>>

D

Clk

Q
Write

Write

D

Q

Clk

REAL-TIME SYSTEMS

Clocking Methodology

Combinational logic transforms data during clock
cycles
• Between clock edges
• Input from state elements, output to state element
• Longest delay determines clock period

16

>>

REAL-TIME SYSTEMS

Building a Datapath

Datapath
• Elements that process data and addresses in the CPU
• Registers, ALUs, mux’s, memories, …

We will build a LEGv7-M datapath incrementally
• Refining the overview design

17

REAL-TIME SYSTEMS

Instruction Fetch

18

32-bit
register

Increment by 2
for next

instruction

REAL-TIME SYSTEMS

R-type Instructions ADDS, SUBS, ANDS, ORRS

• Read two register operands
• Perform arithmetic/logical operation
• Write register result

19

REAL-TIME SYSTEMS

M-type Instructions LDR, STR
• Read register operands
• Calculate address using 5-bit offset

• Shift left 2 places (word displacement)
• Use ALU

• LDR: Read memory and update register
• STR: Write register value to memory

20

REAL-TIME SYSTEMS

CB-type Instruction CBZ

• Read register operand
• Compare operand to zero
• Use ALU pass input and check Zero output

• Calculate target address
• 6-bit displacement field
• Shift left 1 place (half word displacement)
• Add to PC

21

REAL-TIME SYSTEMS

CB-type Instruction CBZ

22

Just
re-routes

wires

REAL-TIME SYSTEMS

Composing the Elements

First-cut data path does an instruction in one clock
cycle
• Each datapath element can only do one function at a time
• Hence, we need separate instruction and data memories
Use multiplexers where alternate data sources are
used for different instructions

23

REAL-TIME SYSTEMS

M-Type/D-Type Datapath

24

ADDS, SUBS, ANDS, EORS, ORRS, LDR, STR

Shift left 2

Just
re-routes

wires

REAL-TIME SYSTEMS

Full Datapath

25

ADDS, SUBS, ANDS, EORR, ORRS, LDR, STR, CBZ

Shift
left 2

REAL-TIME SYSTEMS

ALU Control

ALU used for
• R-type ADDS, SUBS, ANDS, EORS, ORRS:
• Function depends on opcode

• M-type LDR, STR:
• Function = add

• CB-type CBZ:
• Function = pass

26

A

B
YALU

F

Coding of F is not random,
will be explained later

zero

REAL-TIME SYSTEMS

ALU Control

How to determine instruction type from opcodes?

27

REAL-TIME SYSTEMS

ALU Control

Determine instruction type from opcodes

28

REAL-TIME SYSTEMS

ALU Control

How to determine F for R-type from opcodes?

29

REAL-TIME SYSTEMS

ALU Control

Determine F for R-type from opcodes

30
Only remaining code

REAL-TIME SYSTEMS

ALU Control

2-bit ALUOp derived from opcode
• Combinational logic derives ALU control (F)

31

REAL-TIME SYSTEMS

The Main Control Unit

32

All control signals are derived from machine codes

n
n
n

m
m
m

Make decoding simpler:
• Exchange Rm and Rn for logic instructions
• Use Rm for CBZ (ALU should pass input B)

m

REAL-TIME SYSTEMS

Datapath With Control

33
Shift
left 2

REAL-TIME SYSTEMS

Control signals

34

REAL-TIME SYSTEMS

Exercise

What are the values of control signals generated by
the control for the instructions:
• SUBS R0, R1, R2
• ANDS R0, R1
• LDR R0, [R1, #4]
• STR R0, [R1, #8]
• CBZ R0, label

35

REAL-TIME SYSTEMS

Exercise

When silicon chips are fabricated, defects in materials (e.g.,
silicon) and manufacturing errors can result in defective
circuits. A very common defect is for one signal wire to get
“broken” and always register a logical 0. This is often called a
“stuck-at-0” fault.
Which instructions fail to operate correctly:
• if the MemToReg wire is stuck at 0?
• if the ALUSrc wire is stuck at 0?
• if the Reg2Loc wire is stuck at 0? 36

REAL-TIME SYSTEMS

Implementing B-type (B)

• Branch uses half word (16-bit) offset
• PC  PC + (sign extended offset) x 2
• Need an extra control signal decoded from opcode

37

REAL-TIME SYSTEMS

Datapath With B Added

Changes:

• The imm8 two’s
complement offset
must be sign
extended to 31 bits
when B instruction
is detected

38

REAL-TIME SYSTEMS

Exercise
Problems in this exercise assume that the logic blocks used to implement a
processor’s datapath have the following latencies:

39

“Register read” is the time needed after the rising clock edge for the new register
value to appear on the output. This value applies to the PC only. “Register setup”
is the amount of time a register’s data input must be stable before the rising
edge of the clock. This value applies to both the PC and Register File.
• Although the control unit as a whole requires 50 ps, it so happens that we can

extract the correct value of the Reg2Loc control wire directly from the
instruction. Thus, the value of this control wire is available at the same time as
the instruction. Explain how we can extract this value directly from the
instruction. Hints: Exchange the inputs of the mux. Carefully examine the
opcodes.

Select imm field

REAL-TIME SYSTEMS

Exercise
Problems in this exercise assume that the logic blocks used to implement a
processor’s datapath have the following latencies:

40

• What is the latency of an R-type instruction (i.e., how long must the clock
period be to ensure that this instruction works correctly)?

• What is the latency of LDR? (Check your answer carefully. Many students
place extra muxes on the critical path.)

• What is the latency of STR? (Check your answer carefully. Many students
place extra muxes on the critical path.)

• What is the latency of CBZ?
• What is the latency of B?
• What is the minimum clock period for this CPU?

Select imm field

REAL-TIME SYSTEMS

Performance Issues

• Longest delay determines clock period
• Critical path: load instruction
• Instruction memory → register file → ALU → data memory →

register file

• Not feasible to vary period for different instructions
• Violates design principle
• Making the common case fast

• We will improve performance by pipelining
41

REAL-TIME SYSTEMS

Agenda

• A one cycle implementation of LEGv7-M
• A pipelined implementation of LEGv7-M
• Branch prediction
• Cache memory

42

REAL-TIME SYSTEMS

Pipelining Analogy

• Pipelined laundry: overlapping execution
• Parallelism improves performance

43

Speedup?
• Four loads:

• Speedup
= 8/3.5 = 2.3

• Non-stop:
• Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

REAL-TIME SYSTEMS

LEGv7M Pipeline

Five stages, one step per stage
1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

44ARMv7 Cortex-M4 Pipeline has only three stages

REAL-TIME SYSTEMS

Cortex-M4 Pipeline

45Bron: Arm Cortex-M4 Datasheet

https://documentation-service.arm.com/static/62053f0a0ca305732a3a5c17

REAL-TIME SYSTEMS

Pipeline Performance

Assume time for stages is
• 100 ps for register read or write
• 200 ps for other stages

Compare pipelined datapath with single-cycle datapath

46

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

LDR 200ps 100 ps 200ps 200ps 100 ps 800ps

STR 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

CBZ 200ps 100 ps 200ps 500ps

REAL-TIME SYSTEMS

Pipeline Performance

47

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

REAL-TIME SYSTEMS

Pipeline Speedup

If all stages are balanced
• i.e., all take the same time
• Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

If not balanced, speedup is less
Speedup due to increased throughput
• Latency (time for each instruction) does not decrease 48

REAL-TIME SYSTEMS

Pipelining and ISA Design

LEGv7-M ISA designed for pipelining
• All instructions are 16-bits
• Easier to fetch and decode in one cycle
• c.f. x86: 1- to 17-byte instructions

• Few and regular instruction formats
• Can decode and read registers in one step

• Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage

• Alignment of memory operands
• 32-bit Memory access takes only one cycle

49

REAL-TIME SYSTEMS

Hazards

Situations that prevent starting the next instruction in
the next cycle
• Structure hazards
• A required resource is busy

• Data hazard
• Need to wait for previous instruction to complete its data read/write

• Control hazard
• Deciding on control action depends on previous instruction

50

REAL-TIME SYSTEMS

Structure Hazards

Conflict for use of a resource
• In LEGv7-M pipeline with a single memory
• Load/store requires data access
• Instruction fetch would have to stall for that cycle

• Would cause a pipeline “bubble”

• Hence, pipelined datapaths require separate
instruction/data memories (Harvard architecture)

• Or separate instruction/data caches
51

REAL-TIME SYSTEMS

Structure Hazards

Conflict for use of a resource
• In LEGv7-M the registers are used in stages ID (read) and

WB (write)
• Assumed time for stages is
• 100 ps for register read or write
• 200 ps for other stages

• Hence, write and read can be combined in one pipeline slot
• write in first 100 ps, read in last 100 ps

52

REAL-TIME SYSTEMS

Data Hazards

An instruction depends on completion of data access by a
previous instruction
• ADDS R1, R2, R3

SUBS R4, R1, R5

53

Data can not move
backward in time!

REAL-TIME SYSTEMS

Stalling (aka insert bubbles)

Wait for the data to be stored in a register
• Requires extra control logic

54

Data now moves
forward in time!

REAL-TIME SYSTEMS

Exercise

Were must the processor insert bubbes (NOPs) when
the following code is run on the pipeline:

ADDS R1, R2, R3
ADDS R4, R1, R2
ADDS R5, R1, R6
ADDS R7, R1, R4

55

REAL-TIME SYSTEMS

Forwarding (aka Bypassing)

Use result when it is computed
• Don’t wait for it to be stored in a register
• Requires extra connections in the datapath and extra

control logic

56

REAL-TIME SYSTEMS

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
• If value not computed when needed
• Can’t forward backward in time!

57

REAL-TIME SYSTEMS

Load-Use Data Hazard

Can’t avoid stalls by forwarding
• Stall can be limited to one cycle by using forwarding.

58

REAL-TIME SYSTEMS

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next instruction
C code for A[3]=A[0]+A[1]; A[4]=A[0]+A[2]; // A in R0

59

LDR R1, [R0,#0]
LDR R2, [R0,#4]
ADDS R3, R1, R2
STR R3, [R0,#12]
LDR R4, [R0,#8]
ADDS R5, R1, R4
STR R5, [R0,#16]

stall

stall

LDR R1, [R0,#0]
LDR R2, [R0,#4]
LDR R4, [R0,#8]
ADDS R3, R1, R2
STR R3, [R0,#12]
ADDS R5, R1, R4
STR R5, [R0,#16]

7 cycles9 cycles

REAL-TIME SYSTEMS

Control Hazards

Branch determines flow of control
• Fetching next instruction depends on branch outcome
• Pipeline can’t always fetch correct instruction
• Still working on ID stage of branch

In LEGv7-M pipeline
• Need to compare registers and compute target early in the

pipeline
• Add hardware to do it in ID stage 60

REAL-TIME SYSTEMS

Stall on Branch

Wait until branch outcome determined before
fetching next instruction

61

REAL-TIME SYSTEMS

Agenda

• A one cycle implementation of LEGv7-M
• A pipelined implementation of LEGv7-M
• Branch prediction
• Cache memory

62

REAL-TIME SYSTEMS

Branch Prediction

Longer pipelines can’t readily determine branch
outcome early
• Stall penalty becomes unacceptable
Predict outcome of branch
• Only stall if prediction is wrong
In LEGv7-M pipeline
• Can predict branches not taken
• Fetch instruction after branch, with no delay 63

REAL-TIME SYSTEMS

More-Realistic Branch Prediction

Static branch prediction
• Based on typical branch behavior
• Example: loop and if-statement branches

• Predict backward branches taken
• Predict forward branches not taken

Dynamic branch prediction
• Hardware measures actual branch behavior

• e.g., record recent history of each branch

• Assume future behavior will continue the trend
• When wrong, stall while re-fetching, and update history

64

REAL-TIME SYSTEMS

Dynamic Branch Prediction

In deeper and superscalar pipelines, branch penalty is more
significant
Use dynamic prediction
• Branch prediction buffer (aka branch history table)
• Indexed by recent branch instruction addresses
• Stores outcome (taken/not taken)
• To execute a branch

• Check table, expect the same outcome
• Start fetching from fall-through or target
• If wrong, flush pipeline and flip prediction

65

REAL-TIME SYSTEMS

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!

66

• Mispredict as taken on last iteration of inner loop
• Then mispredict as not taken on first iteration of inner loop

next time around

outer: …
…

inner: …
…
BNE inner
…
BNE outer

REAL-TIME SYSTEMS

2-Bit Predictor

Only change prediction on two successive
mispredictions

67

REAL-TIME SYSTEMS

Calculating the Branch Target

Even with predictor, still need to calculate the target
address
• 1-cycle penalty for a taken branch
Branch target buffer
• Cache of target addresses
• Indexed by PC when instruction fetched
• If hit and instruction is branch predicted taken, can fetch target

immediately
68

REAL-TIME SYSTEMS

Agenda

• A one cycle implementation of LEGv7-M
• A pipelined implementation of LEGv7-M
• Branch prediction
• Cache memory

69

REAL-TIME SYSTEMS

Principle of Locality

• Programs access a small proportion of their address space
at any time

• Temporal locality
• Items accessed recently are likely to be accessed again soon
• e.g., instructions in a loop, induction variables

• Spatial locality
• Items near those accessed recently are likely to be accessed soon
• E.g., sequential instruction access, array data

70

https://en.wikipedia.org/wiki/Induction_variable

https://en.wikipedia.org/wiki/Induction_variable

REAL-TIME SYSTEMS

Example of Locality
int A[1024];
int B[1024];
int C[1024];

for (int i = 0; i < 1024; i++) {
A[i] = B[i] + C[i];

}

• Where is the temporal locality (if any)?
• Where is the spatial locality (if any)?

71

REAL-TIME SYSTEMS

Taking Advantage of Locality

• In many modern processors the processor is (much)
faster than RAM.

• Memory hierarchy
• Copy more recently accessed (and nearby) items from

main memory to smaller faster memory
• Cache memory attached to CPU

72

REAL-TIME SYSTEMS

Memory Hierarchy Levels
Block (aka line): unit of copying
• May be multiple words

If accessed data is present in upper
level
• Hit: access satisfied by upper level

• Hit ratio: hits/accesses

If accessed data is absent
• Miss: block copied from lower level

• Extra time taken: miss penalty
• Miss ratio: misses/accesses

= 1 – hit ratio

• Then accessed data supplied from
upper level

73

cache

main

Why?

REAL-TIME SYSTEMS

STM32F411VET6

Max clock speed = 100 MHz
• No cache needed for RAM.
• Contains Adaptive real-time memory accelerator for Flash

memory section 3.4.2 of RM0383
• To release the processor full performance, the accelerator

implements an instruction prefetch queue and branch cache
which increases program execution speed from the 128-bit Flash
memory.

• I-code bus (instructions): cache 64 lines of 128 bits
• D-code bus (literals): cache 8 lines of 128 bits

74

https://www.st.com/resource/en/reference_manual/rm0383-stm32f411xce-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#%5B%7B%22num%22%3A48%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C67%2C546%2Cnull%5D

REAL-TIME SYSTEMS

Advanced computer architecture

• SIMD instructions, Arm Cortex-M4

• Superscalar Wikipedia

• Out of order execution Wikipedia

• Speculative execution Wikipedia

• Simultaneous multithreading (SMT) Wikipedia

• Multi-core Wikipedia

75
Cyclone V FPGA (HWP01+CSC10) contains Arm Cortex-A9

which contains many of the features mentioned above

https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Multi-core_processor
https://developer.arm.com/Processors/Cortex-A9

REAL-TIME SYSTEMS

Volgende les…

Scheduling.

76

REAL-TIME SYSTEMS

Aan de slag!

Aan de slag met Opdrachten_Week_2.pdf

77

https://bitbucket.org/HR_ELEKTRO/rts10/wiki/Opdrachten/Opdrachten_Week_2.pdf

	RTS10 Week 2
	Leerdoelen Week 2 Theoriedeel
	Source Reference
	Agenda
	Agenda
	Introduction
	Pinky subset to implement
	Instruction Execution
	CPU Overview
	Can’t join output signals
	Control
	Logic Design Basics
	Combinational Elements
	Sequential Elements
	Sequential Elements
	Clocking Methodology
	Building a Datapath
	Instruction Fetch
	R-type Instructions ADDS, SUBS, ANDS, ORRS
	M-type Instructions LDR, STR
	CB-type Instruction CBZ
	CB-type Instruction CBZ
	Composing the Elements
	M-Type/D-Type Datapath
	Full Datapath
	ALU Control
	ALU Control
	ALU Control
	ALU Control
	ALU Control
	ALU Control
	The Main Control Unit
	Datapath With Control
	Control signals
	Exercise
	Exercise
	Implementing B-type (B)
	Datapath With B Added
	Exercise
	Exercise
	Performance Issues
	Agenda
	Pipelining Analogy
	LEGv7M Pipeline
	Cortex-M4 Pipeline
	Pipeline Performance
	Pipeline Performance
	Pipeline Speedup
	Pipelining and ISA Design
	Hazards
	Structure Hazards
	Structure Hazards
	Data Hazards
	Stalling (aka insert bubbles)
	Exercise
	Forwarding (aka Bypassing)
	Load-Use Data Hazard
	Load-Use Data Hazard
	Code Scheduling to Avoid Stalls
	Control Hazards
	Stall on Branch
	Agenda
	Branch Prediction
	More-Realistic Branch Prediction
	Dynamic Branch Prediction
	1-Bit Predictor: Shortcoming
	2-Bit Predictor
	Calculating the Branch Target
	Agenda
	Principle of Locality
	Example of Locality
	Taking Advantage of Locality
	Memory Hierarchy Levels
	STM32F411VET6
	Advanced computer architecture
	Volgende les…
	Aan de slag!

