
RTS10 Week 4

REAL-TIME SYSTEMS

Planning RTS10

Week 3: Cooperative Scheduling

Week 4: Pre-emptive Scheduling

Week 5: Using an RTOS

Week 6: Schedulability Analyses, Priority Assignment

Week 7/8: Introduction (embedded) Rust

2

REAL-TIME SYSTEMS

Overview

Scheduling

• Problem

• Goal

• Possible solution

3

REAL-TIME SYSTEMS

Scheduling

Problem

• Multiple processes require CPU time

• Some processes need it asap

• Some processes just need to happen at some point in time

• Multiple processes require bandwidth

• USB, Serial, SPI

• Prioritization?

Goal

• Create a framework that’ll ease (CPU) time management

• Easy to add new processes and to share resources

4

REAL-TIME SYSTEMS

Demo

Demonstration of pre-emptive project

5

REAL-TIME SYSTEMS

Cooperative versus Pre-emptive scheduling

Cooperative

• Tasks run sequentially

• High priority tasks have to wait till last task finishes

• Easy to set up

• Low overhead scheduler

Pre-emptive (Multi-tasking)

• Important tasks always finish first

• Danger of starvation and using hardware concurrently

• More overhead on resources(RAM) and CPU time

6

REAL-TIME SYSTEMS

Embedded system example

7

T

S

P

Switch

Screen

DAC

ADC
ADC

thermocouple pressure transducer

heater

pump/valve

REAL-TIME SYSTEMS

• Interrupting a task to execute a different task

Cooperative

Preemptive

• Scheduler decides next task and can interrupt existing

• Context switch, switches the tasks

Pre-emption

8

T P S T P S

REAL-TIME SYSTEMS

• What is context?

• What memory is used by code?

• Stack

• Heap (dynamic memory)

• CPU registers

• Stack and CPU registers describe the
context of a task

Context switch

9

REAL-TIME SYSTEMS

OS support in Cortex M4

• Banked stack pointers

• Privileged and non-privileged operation modes

• Advanced interrupt controller (NVIC)

• Has several interrupts specifically for RT kernels

• Fault handlers

• Memory Protection Unit (MPU)

10

REAL-TIME SYSTEMS

Banked stack pointers

• R13 can contain

• the Process Stack Pointer (PSP)

• the Main Stack Pointer (MSP)

• MSP is default

• PSP can be used for separating tasks from the OS

• Normal tasks do not share their stack with the kernel! Much
safer.

• Can only be used outside of interrupts

• Set using SPSEL bit in CONTROL register

• Thus far all we have used is the MSP

11

REAL-TIME SYSTEMS

Memory usage in a RTOS

• Each task gets own chunk of memory

• The OS uses the MSP

• The tasks use the PSP

• When a new task is selected, the PSP points to the stack of that task.

• Basically, a form of ‘Time division multiplexing’

• The scheduling algorithm picks the next task/stack

12

OS/SysTick
MSP

Task1
PSP

Task2
PSP

Task3
PSP

OS/SysTick
MSP

OS

Task 1

Task 2

Task N

MSP

PSP

REAL-TIME SYSTEMS

Banked stack pointers

• Two assembly instructions for accessing special registers

• MRS (move special register value to normal register)

• E.g. MRS R0, PSP ; move PSP value to R0

• MSR (Move normal register value to special register)

• E.g. MSR PSP, R0 ; move R0 value to PSP

• And CMSIS functions
• __get_PSP(void)

• __set_PSP(uint32_t topOfStack)

13

REAL-TIME SYSTEMS

Exception entry

14

• On exception several registers are automatically
pushed to the current stack pointer

• The CPU writes an EXC_RETURN value to the LR
which determines if the MSP or PSP stack was in use

• C functions are allowed to use R0-R3 and R12 inside
an exception.

REAL-TIME SYSTEMS

Exception return

15

• The CPU checks the EXC_RETURN value in the LR
which determines if the MSP or PSP stack is used

• The CPU pops the stackframe from the MSP or PSP

• The stack used determines the value for the
program counter and link register and thus where
code execution continues

EMBEDDED SYSTEMS

Exception flowchart

16

Exception entry

SP

LR = 0xFFFFFFFD

push stack frame to SP

LR = 0xFFFFFFF9

MSP PSP

SP = MSP

LR
0xFFFFFFF9 0xFFFFFFFD

pop stack frame from MSP

pop stack frame from PSP

Exception return

run ISR

REAL-TIME SYSTEMS

Example OS

17

OS/SysTick
MSP

Init
MSP

Task1
PSP

Task2
PSP

OS/SysTick
MSPLR = EXC_RETURN_MSP LR = EXC_RETURN_PSP

EMBEDDED SYSTEMS

Operation modes

• Security by:

• Separating stacks

• Separating access levels
between kernel and tasks.

• nPRIV bit in CONTROL register

• Handler mode

• Used by exceptions

• Privileged Thread mode

• OS intialisation

• OS kernel

• Unprivileged Thread mode

• Used by tasks

• Tasks have limited access to
memory

• MPU can be used to change
access

18

Handler mode
privileged

Thread mode
privileged

Thread mode
unprivileged

Interrupt request Interrupt request

Return
with MSP or PSP

Uses MSP

nPRIV = 0 nPRIV = 1

nPRIV = 1

EMBEDDED SYSTEMS

Operation modes

• Abstraction
• Only OS can access

important peripherals like
Systick, NVIC, DMA, MPU,
etc

• Tasks need to use the OS
system calls to request
changes

19

SVC
Handler

Drivers

Kernel

Tasks
Important
Peripherals

Unprivileged privileged

REAL-TIME SYSTEMS

OS Interrupts

• Systick

• Used by OS to periodically update everything

• PendSV (Pendable Service Call)

• Used by OS to request a context switch

• Software bit triggers this interrupt

• Lowest priority

• SVC (SuperVisor Call)

• Used by tasks to request a service from the OS 20

EMBEDDED SYSTEMS

Supervisor call

• Assembly call

• SVC #x

• Parameter X defines which
action the OS performs, first byte
of instruction

• Interrupt occurs immediately

• You can get and return
parameters with stacked
registers like normal function call

21

Exception entry

Use PC to find used instruction

Check used stack pointer

Get parameter from first byte of
instruction

REAL-TIME SYSTEMS

PendSV - Context switch

• R0-R3,R12,LR,PC,XPSr get pushed to current stack

• Push {R4-R11} CPU registers to PSP, update stack pointer

• Pick new task and change PSP

• Pop {R4-R11} from new PSP, update stack pointer

• R0-R3,R12,LR,PC,XPSr get popped from current stack

22

EMBEDDED SYSTEMS

Switching context

save context ->

23

1. Enter exception (PendSV)
2. Save context (CPU registers) to

stack
3. Switch stack to new task
4. Load context from stack to CPU
5. Leave exception using new

stack

REAL-TIME SYSTEMS

Memory Protection Unit

• Can set memory locations
• Inaccessible

• Read only

• Non-executable

• Possible use-case in RTOS
• Limit access to certain peripherals

• Only allow access to own task memory (and thus stack)

• Downside?

• Make RAM segments non-executable to prevent injection-type attacks

FreeRTOS-MPU - ARM Cortex-M3 and ARM Cortex-M4 Memory Protection Unit support in FreeRTOS

Why ARM MPU Has Become an Outcast in Embedded Systems

24

https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiW8_-u0aD6AhXogP0HHflkCZIQFnoECDQQAQ&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1908.03638&usg=AOvVaw2U-zloup0OaYfMl-X8_62d

REAL-TIME SYSTEMS

Pre-emptive scheduling

Priority based

• Scheduler decides and update states of tasks

• When high priority task comes alive, it interrupts lower priority tasks

• When all tasks are suspended, the idle task can run

Round robin

• Every task gets equal CPU time

• When all tasks are suspended, the idle task can run

Demo

• Instructor demonstrates algorithms

25

REAL-TIME SYSTEMS

Problems with pre-emptive scheduling

Starvation

• Low priority tasks don’t get cpu time

• Possible solution: Aging

Sharing resources

• Tasks can’t use hardware ‘simultaneously’

• Waiting for hardware to come available can cause deadlock or
priority inversion

• Next week
26

REAL-TIME SYSTEMS

Walkthrough VersdOS

27

REAL-TIME SYSTEMS

Next Week

Free-RTOS

• What is it

• Problems and challenges with

• Threads and IPC (Inter Process Synchronization)

• POSIX API overview

Read assignment 5 before next week’s lesson!

28

REAL-TIME SYSTEMS

Aan de slag!

Aan de slag met Opdrachten_Week_4.pdf

29

https://bitbucket.org/HR_ELEKTRO/rts10/wiki/Opdrachten/Opdrachten_Week_4.pdf

