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REAL-TIME SYSTEMS

Planning RTS10

Week 3: Cooperative Scheduling

Week 4: Pre-emptive Scheduling

Week 5: Using an RTOS

Week 6: Schedulability Analyses, Priority Assignment

Week 7/8: Introduction (embedded) Rust
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REAL-TIME SYSTEMS

Overview

Scheduling

• Problem

• Goal

• Possible solution
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REAL-TIME SYSTEMS

Scheduling

Problem

• Multiple processes require CPU time

• Some processes need it asap

• Some processes just need to happen at some point in time

• Multiple processes require bandwidth

• USB, Serial, SPI ....

• Prioritization?

Goal

• Create a framework that’ll ease (CPU) time management

• Easy to add new processes  and to share resources
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Demo

Demonstration of pre-emptive project
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Cooperative versus Pre-emptive scheduling

Cooperative

• Tasks run sequentially

• High priority tasks have to wait till last task finishes

• Easy to set up

• Low overhead scheduler

Pre-emptive (Multi-tasking)

• Important tasks always finish first

• Danger of starvation and using hardware concurrently

• More overhead on resources(RAM) and CPU time
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Embedded system example
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REAL-TIME SYSTEMS

• Interrupting a task to execute a different task

Cooperative

Preemptive

• Scheduler decides next task and can interrupt existing

• Context switch, switches the tasks

Pre-emption
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REAL-TIME SYSTEMS

• What is context?

• What memory is used by code?

• Stack

• Heap (dynamic memory)

• CPU registers

• Stack and CPU registers describe the
context of a task

Context switch
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OS support in Cortex M4

• Banked stack pointers 

• Privileged and non-privileged operation modes

• Advanced interrupt controller (NVIC)

• Has several interrupts specifically for RT kernels

• Fault handlers

• Memory Protection Unit (MPU)
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Banked stack pointers

• R13 can contain 

• the Process Stack Pointer (PSP)

• the Main Stack Pointer (MSP)

• MSP is default

• PSP can be used for separating tasks from the OS

• Normal tasks do not share their stack with the kernel! Much 
safer.

• Can only be used outside of interrupts

• Set using SPSEL bit in CONTROL register

• Thus far all we have used is the MSP
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Memory usage in a RTOS

• Each task gets own chunk of memory

• The OS uses the MSP

• The tasks use the PSP

• When a new task is selected, the PSP points to the stack of that task.

• Basically, a form of ‘Time division multiplexing’

• The scheduling algorithm picks the next task/stack
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REAL-TIME SYSTEMS

Banked stack pointers

• Two assembly instructions for accessing special registers

• MRS (move special register value to normal register)

• E.g. MRS R0, PSP ; move PSP value to R0

• MSR (Move normal register value to special register)

• E.g. MSR PSP, R0 ; move R0 value to PSP

• And CMSIS functions
• __get_PSP(void)

• __set_PSP(uint32_t topOfStack)
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Exception entry
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• On exception several registers are automatically 
pushed to the current stack pointer

• The CPU writes an EXC_RETURN value to the LR 
which determines if the MSP or PSP stack was in use

• C functions are allowed to use R0-R3 and R12 inside 
an exception.
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Exception return
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• The CPU checks the EXC_RETURN value in the LR 
which determines if the MSP or PSP stack is used

• The CPU pops the stackframe from the MSP or PSP

• The stack used determines the value for the 
program counter and link register and thus where 
code execution continues
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Exception flowchart
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Example OS
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EMBEDDED SYSTEMS

Operation modes

• Security by:

• Separating stacks

• Separating access levels 
between kernel and tasks.

• nPRIV bit in CONTROL register

• Handler mode

• Used by exceptions

• Privileged Thread mode

• OS intialisation

• OS kernel

• Unprivileged Thread mode

• Used by tasks

• Tasks have limited access to 
memory 

• MPU can be used to change 
access
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EMBEDDED SYSTEMS

Operation modes

• Abstraction
• Only OS can access 

important peripherals like 
Systick, NVIC, DMA, MPU, 
etc

• Tasks need to use the OS 
system calls to request 
changes
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OS Interrupts

• Systick

• Used by OS to periodically update everything

• PendSV (Pendable Service Call)

• Used by OS to request a context switch

• Software bit triggers this interrupt

• Lowest priority

• SVC (SuperVisor Call)

• Used by tasks to request a service from the OS 20
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Supervisor call

• Assembly call

• SVC #x

• Parameter X defines which 
action the OS performs, first byte 
of instruction

• Interrupt occurs immediately

• You can get and return 
parameters with stacked 
registers like normal function call
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Exception entry

Use PC to find used instruction

Check used stack pointer

Get parameter from first byte of 
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PendSV - Context switch

• R0-R3,R12,LR,PC,XPSr get pushed to current stack

• Push {R4-R11} CPU registers to PSP, update stack pointer

• Pick new task and change PSP

• Pop {R4-R11} from new PSP, update stack pointer

• R0-R3,R12,LR,PC,XPSr get popped from current stack
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Switching context

save context -> 
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1. Enter exception (PendSV)
2. Save context (CPU registers) to 

stack
3. Switch stack to new task
4. Load context from stack to CPU
5. Leave exception using new 

stack
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Memory Protection Unit

• Can set memory locations
• Inaccessible

• Read only

• Non-executable

• Possible use-case in RTOS
• Limit access to certain peripherals

• Only allow access to own task memory (and thus stack)

• Downside?

• Make RAM segments non-executable to prevent injection-type attacks

FreeRTOS-MPU - ARM Cortex-M3 and ARM Cortex-M4 Memory Protection Unit support in FreeRTOS

Why ARM MPU Has Become an Outcast in Embedded Systems
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https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiW8_-u0aD6AhXogP0HHflkCZIQFnoECDQQAQ&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1908.03638&usg=AOvVaw2U-zloup0OaYfMl-X8_62d
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Pre-emptive scheduling

Priority based

• Scheduler decides and update states of tasks

• When high priority task comes alive, it interrupts lower priority tasks

• When all tasks are suspended, the idle task can run

Round robin

• Every task gets equal CPU time

• When all tasks are suspended, the idle task can run

Demo

• Instructor demonstrates algorithms

25



REAL-TIME SYSTEMS

Problems with pre-emptive scheduling

Starvation

• Low priority tasks don’t get cpu time

• Possible solution: Aging

Sharing resources

• Tasks can’t use hardware ‘simultaneously’

• Waiting for hardware to come available can cause deadlock or 
priority inversion

• Next week
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Walkthrough VersdOS
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Next Week

Free-RTOS

• What is it

• Problems and challenges with 

• Threads and IPC (Inter Process Synchronization)

• POSIX API overview

Read assignment 5 before next week’s lesson!
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Aan de slag!

Aan de slag met Opdrachten_Week_4.pdf
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https://bitbucket.org/HR_ELEKTRO/rts10/wiki/Opdrachten/Opdrachten_Week_4.pdf

