
RTS10 Week 6

REAL-TIME SYSTEMS

Planning

• Week 1: Introduction microcontroller architecture and
STM32F411E-DISCO

• Week 2: Microcontroller architecture and programming in C
• Week 3: Cyclic executive and cooperative scheduler
• Week 4: Pre-emptive scheduler
• Week 5: FreeRTOS and pthreads
• Week 6: Schedulability and response time analyses
• Week 7: Introduction Rust
• Week 8: Embedded Rust

2

REAL-TIME SYSTEMS

Free study material
• Chapters 3 and 4 of: Ken Tindell and Hans Hansson, Real Time

Systems by Fixed Priority Scheduling, Uppsala University, 1997.
• Chapter 12 of: Edward A. Lee and Sanjit A. Seshia, Introduction to

Embedded Systems, A Cyber-Physical Systems Approach, Second
Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.

• Original papers:
• C. L. Liu and J. W. Layland, Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment, JACM, Volume 20, Number1, pages 46 to 61, 1973
• M. Joseph and P. Pandya, Finding Response Times in a Real-Time System, The

Computer Journal, Volume 29, Number 5, pages 390-395, 1986 3

https://www.it.uu.se/edu/course/homepage/datsyst2/p2ht06/Realtime_Compendium.pdf
http://leeseshia.org/index.html

REAL-TIME SYSTEMS

Task scheduling

In how many ways can you schedule 10 tasks (without
preemption)?

• Choose one to start with (10 possibilities)
• Choose another to go second (9 possibilities)
• …

• Total of 10x9x8x7x6x5x4x3x2x1 = 10! = 3628800 possible
schedules 4

REAL-TIME SYSTEMS

Scheduling tasks

• N tasks can be scheduled in N! different ways
• For example, 10 tasks: 3628800 possible schedules
• With preemption there are many more possibilities

• The chosen schedule must meet all timing requirements
• A scheduling scheme (=plan) consists of:
• An algorithm to find the “best” schedule
• A method to predict the “worst-case” behavior of this schedule

5

REAL-TIME SYSTEMS

Scheduling tasks… When do we do it?
• Static: the schedule is determined before the tasks are started
• All task, their worst-case execution times and deadlines should be known

beforehand
• Using response time analysis, it is possible to prove that all deadlines are

met.
• All response times are predictable!
• Not able to react on “unforeseen” situations

• Dynamic: the schedule is determined when the tasks are running.
• Behavior is less predictable
• Can respond dynamically to unforeseen circumstances (e.g., a calculation

that takes longer than expected)
6

REAL-TIME SYSTEMS

Scheduling Real-Time systems

• Almost always a static scheduling method is used

• Most commonly used : Preemptive Priority Based
scheduling

• On each moment in time the ready task with the highest priority is
running

• Scheduling scheme:
• An algorithm to assign a priority to each task
• A method to predict the “worst-case” behavior of this schedule given the

assigned priorities and to prove that all timing requirements are met 7

REAL-TIME SYSTEMS

Scheduling - Simple model

• The number of task is known: N
• All tasks are periodical, and all period times are known: Ti

• The tasks are independent from each other (no
synchronization nor communication)

• System overhead is neglected
• The deadline of each task is equal to its period time: Di = Ti

• The worst-case execution time of each task is known: Ci

8This model is too simple (but difficult enough).
Later we will look at realistic models.

REAL-TIME SYSTEMS

Cyclic executive (Super loop)

• The schedule is determined upfront and is explicitly
programmed.

• Example:

9

// Set timer to wake-up CPU every 25 ms
while (1) {

sleep_until_wake_up(); a(); b(); c();
sleep_until_wake_up(); a(); b(); d(); e();
sleep_until_wake_up(); a(); b(); c();
sleep_until_wake_up(); a(); b(); d();

}

• How to determine the schedulability?
• How to find a schedule?

Taak T C

a 25 10
b 25 8
c 50 5
d 50 4
e 100 2

REAL-TIME SYSTEMS

Cyclic executive (Super loop)

• Minor cycle = gcd(T1, T2, … Tn). Major cycle = lcm(T1, T2, … Tn).
• How to determine the schedulability?
• How to find a schedule?

10

signal = systick
Utilization
U = 10/25+8/25+5/50+4/50+2/100

= 0,92

What is the maximum utilization in the
general case?

If Ce = 4 then U = 0,94 and the task set is
not schedulable!

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Least_common_multiple

REAL-TIME SYSTEMS

Cyclic executive (Super loop)
• Characteristics:

• There are no real tasks, only ordinary functions
• Shared memory can be used for communication without protection (mutex is not needed)

• All T ’s should be a multiple of the minor cycle time
• System is deterministic (predictable)

• Issues:
• Tasks with large differences in T ’s result in a large major cycle
• Sporadic tasks (interrupts) can not be included!
• Poorly maintainable, adaptable and expandable
• Determining the schedule is NP-hard! (read: very, very hard)

• Alternatives:
• Fixed-Priority Scheduling (FPS)
• Earliest Deadline First (EDF)

11

https://en.wikipedia.org/wiki/NP-hardness

REAL-TIME SYSTEMS

FPS Fixed-priority Preemptive Scheduling

• Each task runs with a statically determined fixed priority
• This priority is determined by the timing requirements of all

tasks
• The scheduling is preemptive:
• When a task with a higher priority becomes ready, the running task

will be preempted (interrupted)

12

REAL-TIME SYSTEMS

RMPA = Rate Monotonic Priority Assignment

• The period time of a task determines the priority of that
task

• The shorter the period time the higher the priority

• This (simple) method is optimal!
• if some fixed-priority preemptive schedule exists, then,

the rate monotonic fixed-priority preemptive schedule is also
feasible

13

P jPiT jT i >⇒<

REAL-TIME SYSTEMS

FPS-RMPA

Utilization based schedulability test:

14

)12(/1

1
−≤≡ ∑

=

N
N

i i

i N
T
CU

• If this test is true, then no deadlines
are missed!

• If this test is false, then maybe
some deadlines are missed!

N Test

1 U ≤ 1.000
2 U ≤ 0.828
3 U ≤ 0.780
4 U ≤ 0.757
5 U ≤ 0.743
10 U ≤ 0.718

infinite U ≤ 0.693

REAL-TIME SYSTEMS

FPS-RMPA

• Utilization based schedulability test for N → ∞:

15693.0
1
2lnlim

rule sHôpital'L' use
0
012lim

/1
12lim)12(lim

0

0

/1
/1

1

=≤

=
−

≤

−
=−≤≡

→

→

∞→∞→

∞

=
∑

M

M

M

N

N
N

N
i i

i

U

M
U

N
N

T
CU

L'Hôpital's rule

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

REAL-TIME SYSTEMS

FPS-RMPA Schedulability examples

• Possibilities:
• Does not meet the test and some deadlines are not met
• Does not meet the test but all deadlines are met
• Does meet the test and all deadlines are met

• Meeting the test is sufficient evidence that all deadlines are
met. But it is not necessary to satisfy the test in order to
meet all deadlines.

16

REAL-TIME SYSTEMS
FPS-RMPA Response time analysis
• In contrast to the utilization test, this analysis determines

the exact response times. So, we can say exactly whether
all deadlines are met (and by what margin).

17

j
ihpj j

i
ii C

T
RCR ∑

∈

+=

)(

Ri is the response time of task i
hp(i) is the set of tasks with a higher priority than task i

Ri appears on the left and the
right side of the equation. This

equation can not be simply
solved (because the ceiling
function is not invertible).

REAL-TIME SYSTEMS
FPS-RMPA Response time analysis

• The response time of the highest priority task is:
• All other tasks can be preempted. Their response time is:
• Where Ii is the maximum “interference” time. This will occur when all

tasks with a higher priority than i start at the same time as task i
• The number of times task j with a higher priority than i can preempt

task i is given by:

• So, Ii,j equals: 18

j
ihpj j

i
ii C

T
RCR ∑

∈

+=

)(

iii ICR +=
CR =

=

j

i

T
R Releases ofNumber

j
j

i C
T
R

REAL-TIME SYSTEMS

FPS-RMPA Response time analysis

19

• The total maximum interference time is the sum of the maximum interference time
of every task with a higher priority:

• Which can be solved by using a recurrence relation:

j
ihpj j

i
ii C

T
RCR

)(
∑
∈

+=

j
ihpj j

n
i

i
n
i C

T
wCw

)(

1 ∑
∈

+

+=

Start with = 0 and continue until:
0
iw 1+= n

i
n
i ww or

i
n
i Tw >+1

REAL-TIME SYSTEMS

FPS-RMPA Response time analysis

Further extension of the analysis method is necessary
to include:
• Sporadic tasks
• Tasks with D < T
• Interaction between tasks
• Release jitter
• Tasks with D > T
• Release offsets

20

REAL-TIME SYSTEMS

FPS-RMPA D < T and Sporadic tasks

• D < T:
• Use DMPA instead of RMPA:

• Use the following stop condition in the response time analysis:

• Sporadic tasks (interrupts):
• Use the minimum time between two “starts” of this task as the

period time T = minimum inter-arrival interval
• For most sporadic tasks D < T

21

jiji PPDD >⇒<

i
n

i DW >+1

REAL-TIME SYSTEMS

Assignment

22

Assignment_Week_6.pdf

https://bitbucket.org/HR_ELEKTRO/rts101/wiki/Opdrachten/Opdracht_Week_6.pdf

REAL-TIME SYSTEMS

Task States

23

runningready

Blocked on m

Lock mutex m which
is already lockedUnlock mutex m

Lock mutex m
which is unlocked

REAL-TIME SYSTEMS

FPS-DMPO Blocking
• When a task with a lower priority has to wait on a task with

a higher priority, the task is preempted.
• A preempted task is added to the ready queue before tasks

with the same priority.
• When a task with a high priority has to wait on a task with a

lower priority, the task is blocked (priority inversion).
• When a task is unblocked, it is added to the ready queue

after tasks with the same priority.
• To predict the real-time behavior of a task, the maximum

time a task can be blocked must be predictable (bound
blocking).

24

REAL-TIME SYSTEMS

Priority inversion example

• Four tasks (a, b, c, and d) share two resources (Q and V).
• Each resource can only be used mutually exclusive (so each

resource is protected with a mutex).

25

task prio execution release
time

d 4 EEQVE 4
c 3 EVVE 2
b 2 EE 2
a 1 EQQQQE 0

E = task only needs the
processor to run

Q = task needs processor
and resource Q to run

V = task needs processor
and resource V to run

REAL-TIME SYSTEMS

Priority inversion example

26

task prio execution release time

d 4 EEQVE 4

c 3 EVVE 2

b 2 EE 2

a 1 EQQQQE 0

t = 5t = 4t = 3t = 2t = 1

Finish this Gantt
chart yourself!

REAL-TIME SYSTEMS

FPS-DMPO Priority inversion

• Task d is being blocked by task a, b, and c (all tasks with a
lower priority)!

• Blocking (priority inversion) can not be avoided if we use
mutual exclusive recourses.

• Blocking can be bounded by using priority inheritance:
• When a task is blocked on a resource, then the task that owns the

recourse gets (inherits) the priority of the blocked task. 27

REAL-TIME SYSTEMS

Priority inheritance example

28

task prio execution release time

d 4 EEQVE 4

c 3 EVVE 2

b 2 EE 2

a 1 EQQQQE 0

t = 5

Finish this Gantt chart
yourself!

REAL-TIME SYSTEMS

Blocking Priority inheritance

• The blocked time of each task is now bounded.

• Bi = maximum blocking time for task i
• K = total number of resources
• usage(k, i) = Boolean function

• 1 if there is a task with a priority lower than Pi and a task with a priority higher
than or equal to Pi (this can be task i itself) which share resource k.

• 0 otherwise.

• Ck = maximum time for which resource k is locked.
29

∑
=

=
K

k
ki CikusageB

1
),(

REAL-TIME SYSTEMS

Blocking Response time analyze

30

iiii IBCR ++=

j
ihpj j

i
iii C

T
RBCR

)(
∑
∈

++=

j
ihpj j

n
i

ii
n
i C

T
wBCw ∑

∈

+

++=

)(

1

REAL-TIME SYSTEMS

Priority inheritance example

Calculate the maximum blocking time (Bi) for all tasks
in the previous example

31

task prio execution release time

d 4 EEQVE 4
c 3 EVVE 2
b 2 EE 2
a 1 EQQQQE 0

∑
=

=
K

k
ki CikusageB

1
),(

usage(k, i) = 1 if there is a task with a priority lower than Pi and a
task with a priority higher than or equal to Pi (this can be task i itself)
which share resource k.

E = task only needs the processor to run
Q = task needs processor and resource Q to run
V = task needs processor and resource V to run

REAL-TIME SYSTEMS

CV = 2, CQ = 4

Solution

Table for usage(k, i) and Bi

32

i k = V k = Q Bi

d 1 1 6
c 0 1 4
b 0 1 4
a 0 0 0

task prio execution

d 4 EEQVE
c 3 EVVE
b 2 EE
a 1 EQQQQE

∑
=

=
K

k
ki CikusageB

1
),(

REAL-TIME SYSTEMS

Blocking Priority inheritance
• Priority inheritance can not be implemented for semaphores and

message queues!
• When using a semaphore, it is often not possible to determine which task is causing the blocking (which

task will call the post() for which a task blocked on wait() is waiting for)!
• Example: using a semaphore with an initial count value of zero for synchronization purposes.

• When using message passing it is often not possible to determine which task is causing the blocking
(which task will perform the send() for which a task blocked on receive() is waiting for)!

• Solution: e.g., Priority Ceiling Protocol

33

wait()

Task 1 Task 2 Task 3 Task 4Which task will
call post()?

post()
OS can not see into the future. Who can?

REAL-TIME SYSTEMS

Next weeks… Rust

Why Rust?
• Performance

• Rust is blazingly fast and memory-efficient: it can
power performance-critical services and run on
embedded devices.

• Reliability
• Rust’s rich type system and ownership model

guarantee memory-safety and thread-safety —
enabling you to eliminate many classes of bugs at
compile-time.

• Productivity 34

REAL-TIME SYSTEMS

Report Week 3 – 6
This report should include two parts:
• the relevant source codes of the weekly assignments for

week 3 to 5 and a short explanation per assignment, this
explanation should also include difficulties and decisions
made to finish the assignment;

• the elaboration of the calculation task (Dutch:
rekenopdracht) you will receive in week 6.

35

	RTS10 Week 6
	Planning
	Free study material
	Task scheduling
	Scheduling tasks
	Scheduling tasks… When do we do it?
	Scheduling Real-Time systems
	Scheduling - Simple model
	Cyclic executive (Super loop)
	Cyclic executive (Super loop)
	Cyclic executive (Super loop)
	FPS Fixed-priority Preemptive Scheduling
	RMPA = Rate Monotonic Priority Assignment
	FPS-RMPA
	FPS-RMPA
	FPS-RMPA Schedulability examples
	FPS-RMPA Response time analysis
	FPS-RMPA Response time analysis
	FPS-RMPA Response time analysis
	FPS-RMPA Response time analysis
	FPS-RMPA D < T and Sporadic tasks
	Assignment
	Task States
	FPS-DMPO Blocking
	Priority inversion example
	Priority inversion example
	FPS-DMPO Priority inversion
	Priority inheritance example
	Blocking Priority inheritance
	Blocking Response time analyze
	Priority inheritance example
	Solution
	Blocking Priority inheritance
	Next weeks… Rust
	Report Week 3 – 6

