
TDS02
Training Digital Signal Processing

Lab Work Handbook

Version 2.2b

J.W. Peltenburg

J.Z.M. Broeders

TDS02

Version History

Date Version Description Author

27-08-20191 2.2b2 Updated for Code Composer Studio
version 9. Corrected some errors.

BroJZ

16-10-2018 2.1a Changed sample frequency for IIR
filter from 48 kHz to 8 kHz.

BroJZ

15-05-2018 2.0 Adapted to CC3220 LAUNCHXL and
CC3200AUDBOOST development
boards.

BroJZ

17-11-2016 1.5 Removed bonus assignments. BroJZ

26-08-2016 1.4 Added appendix about fixed point
arithmetic.

BroJZ

25-09-2016 1.3 Fixed issues #6, #7, #8 and #9. BroJZ

25-09-2016 1.2 Clarified some assignments. BroJZ EijTJ

12-09-2016 1.1a Fixed issues #1, #2, #3 and #5. BroJZ

26-08-2016 1.1 Corrected some errors.
Removed paragraph about Amplitude
Modulation.

BroJZ

Continued on next page.

Rotterdam University Training Digital Signal Processing 2

mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
https://bitbucket.org/HR_ELEKTRO/tds02/issues/6/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/7/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/8/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/9/
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:EijTJ@hr.nl
https://bitbucket.org/HR_ELEKTRO/tds02/issues/1/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/2/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/3/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/5/
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl

TDS02

Date Version Description Author

22-06-2015 1.0 First LATEX version.

• Converted to Code Composer
Studio version 6.

• Adapted to C5505 eZdsp
development board.

• Added a new assignment to explore
architectural features of a DSP and
some bonus assignments.

• Replaced Von Hann window with
Hamming window.

BroJZ

13-11-2013 0.7 Converted to Code Composer Studio
version 5.
Assuming tools are pre-installed.

PelJH

13-03-2012 0.6 Made union code multiple lines with
indenting.
Response of von Hann window image
scale made consistent.

PelJH

15-06-2011 0.5 Some additions and clarifications to
IIR text.

PelJH

01-06-2011 0.4 Minor corrections on student feedback.
Added IIR filter structures and final
assignment.
Added bonus assignments.

PelJH

25-05-2011 0.3 Minor corrections on student feedback.
Added IIR BLT Theory.

PelJH

18-05-2011 0.2 Added FIR Assignment. PelJH

Continued on next page.

Rotterdam University Training Digital Signal Processing 3

mailto:BroJZ@hr.nl

TDS02

Date Version Description Author

01-01-2011 0.1 Initial Version of the new Lab
Handbook, large portions from old
handbook by E.H.W. van de Logt.

• All new assignments instead of the
assignments from the old TDS book
by Chassaing.

• Some corrections and contributions
by J.F. Theinert.

PelJH

Lab Work Handbook Training Digital Signal Processing from Rotterdam University
of Applied Sciences is licensed by a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Netherlands license.

1 Dates are formated in the Gregorian way (dd-mm-y y y y).
2 Explanation version coding A.Bc: A= major change, B = minor change, c = linguistic or mathe-

matical corrections.

Rotterdam University Training Digital Signal Processing 4

https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en

TDS02 Contents

Contents

1 Introduction 7
1.1 Purpose and Prerequisites . 10
1.2 Course Planning . 11
1.3 Document Organization . 11

2 Preliminary Assignments 12
2.1 Assignment 0: Introduction to the CC3200AUDBOOST and CC3220

LAUNCHXL Boards . 13
2.1.1 TLV320AIC3254 Codec . 13
2.1.2 CC3220S SoC . 16
2.1.3 Electrostatic Discharge . 20

2.2 Assignment 1: Working with Code Composer Studio 21
2.2.1 Installing Software and Configure Hardware 21
2.2.2 Running the Demo Program . 22

2.3 Assignment 2: Generating Output . 23
2.3.1 Polling-based Output . 23
2.3.2 Interrupt-based Output . 27

2.4 Assignment 3: Receiving Input . 32
2.4.1 Interrupt-based Input . 32
2.4.2 Audio Input . 32

2.5 Assignment 4: Delays . 33

Rotterdam University Training Digital Signal Processing 5

TDS02 Contents

3 FIR Filters 35
3.1 Determination of the Coefficients . 35
3.2 Example . 39
3.3 Windowing . 40
3.4 MATLAB Filter Designer . 45
3.5 Assignment 5: Finite Impulse Response Filter 50

4 IIR Filters 53
4.1 Determination of the Coefficients . 54
4.2 Example of a Simple Recursive Low-Pass Filter 55
4.3 MATLAB’s Filter Designer . 64
4.4 Filter Structures . 64
4.5 Assignment 6: Infinite Impulse Response Filter 68

5 Optimizing Your Filter 69
5.1 How to Optimize C Code for the Cortex-M4 69
5.2 Assignment 7: Profile and Optimize your Filter 70

Bibliography 71

A Fixed-point Arithmetic 73
A.1 Add and Subtract . 73
A.2 Multiply and Divide . 75

Rotterdam University Training Digital Signal Processing 6

TDS02 Chapter 1. Introduction

1

Introduction

Digital Signal Processing (DSP) is an important aspect in the field of Embedded
Systems Engineering. For many years the huge interests and developments in the
industry signify the importance of DSP techniques. Important applications of DSP
can be found in consumer electronics, e.g. media boxes, hearing aids, synthesizers,
sound-cards and especially mobile phones. In the industrial and research sector,
DSP techniques are extensively used in motor and motion control, and in complex
systems such as large sensor networks, machine vision systems, telecommunication
systems, control plants and satellite arrays for astronomical purposes (such as the
LOFAR3 in 2012).

The course is meant for final year students of the minor Embedded Systems. In
this course, a short introduction (or refreshment) to DSP theory will be given. If
you want more background information or detailed information we recommend
the books Digital Signal Processing Using the ARM® Cortex®-M4 [12] and Real-Time
Digital Signal Processing: Fundamentals, Implementations and Applications [10].

Electrical signals can be directly processed by analog components such as opera-
tional amplifier. It is not possible to directly use DSP in an analog environment. To

3 http://www.lofar.org/.

Rotterdam University Training Digital Signal Processing 7

http://www.lofar.org/

TDS02 Chapter 1. Introduction

enable DSP, the analog electrical input signals must first be sampled and digitalized
by an Analog to Digital Converter (ADC). After processing the digital output signal
can be transfered back to the analog domain by using a Digital to Analog Converter
(DAC). A typical digital processing system, used in an analog environment, is
shown in Figure 1.1. In which x(t) is the analog input signal which is a function
of the time t, y(t) is the analog output signal, x[n] is the digital, discrete input
signal indexed by the sample number n, and y[n] is the digital, discrete output
signal.

x(t) ADC DSP DAC y(t)
x[n] y[n]

Figure 1.1: Digital signal processing in an analog environment.

The advantages of DSP compared to analog signal processing are [10]:

• Flexibility. The behavior of a DSP system is mainly determined by its software.
The behavior of analog systems, on the other hand, is entirely determined by
its hardware. This makes digital systems much easier to adapt to changing
functional requirements or to enhance their performance.

• Reliability. The characteristics of analog components change when the
environment (e.g. the temperature) changes and also deteriorate with age.
Therefore, the performance of analog signal processing systems will drift
with changing environmental conditions and over time. The performance of
DSP systems will not drift.

• Reproducibility. Due to the tolerances of analog components two identically
produced analog signal processing units will not have completely the same
characteristics. Therefore analog units often need fine-tuning before being
taken into use. Two identically produced and programmed DSP units will
always have exactly the same characteristics so fine-tuning is not needed.

• Complexity. Using digital processing, complex applications which are not
possible with analog techniques are feasible. For example: face and speech
recognition, data compression, MRI scanners, and radar tracking.

Rotterdam University Training Digital Signal Processing 8

TDS02 Chapter 1. Introduction

• Costs. Because many DSP systems can share the same hardware (the behavior
is implemented in software), a DSP system almost always costs less than its
analog counterpart.

The disadvantages of DSP compared to analog signal processing are:

• Bandwidth. DSP systems have a limited bandwidth determined by the sample
rate. The bandwidth is limited to half of the sample frequency. This limit is
called the Nyquist frequency or folding frequency. Analog signal processing
systems have, in theory, unlimited bandwidth.

• Precision. DSP systems have a limited precision determined by the number
of bits used for the ADC and DAC. Analog signal processing systems have, in
theory, unlimited precision.

An example of a simple algorithm that can be implemented in the DSP block shown
in Figure 1.1 is a so called Finite Impulse Response (FIR) filter. The equation for a
Finite Impulse Response (FIR) filter is:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

In which y[n] represents the output sample with index n and x[n− k] stands for
the input sample with index n−k. The constant N is the so called order of the filter.
The constants, so called coefficients of the filter, bk determine the characteristics
of the filter.

As can be seen in Equation (1.1) the calculation of y[n] uses N +1 multiplications
and N additions. The accumulation of the results of multiplications is a frequently
used operation in many DSP algorithms. Also note that the calculation of y[n]
consist of a small loop. Small loops frequently occur in DSP algorithms. We will
explore FIR filters and their implementation further in Chapter 3.

There are two types of DSP applications: non-real-time and real-time. For real-
time systems the value of output sample y[n] must be calculated before a certain
deadline. In most real-time DSP systems, the output samples must be produced
at the same rate as the input signal is sampled. Tools which run on a PC like

Rotterdam University Training Digital Signal Processing 9

TDS02 Chapter 1. Introduction

MATLAB can be used for non-real-time DSP. For real-time DSP we can use specific
hardware (e.g. a digital signal processor). For relatively slow sample rates (e.g.
audio applications) we can also use a modern generic processor. For example, in
this course we will use an ARM® Cortex®-M4 MCU to implement our DSP (audio)
algorithms. As we will discover in Section 3.4, MATLAB can also be used to design
real-time DSP algorithms that will be executed on an embedded processor.

This course will consist mainly of working on practical assignments within the
field of DSP. A DSP application development board is available for the lab. The
goals of this course are mainly to teach the students to apply DSP algorithms in
practice and to learn to work with the specialized hardware (i.e. a codec) that is
available on the market today. The codec (coder-decoder) will be introduced in
Section 2.1.1.

1.1 Purpose and Prerequisites

The purpose of this course is to teach you to:

• work with several important components of a DSP system,

• write simple C programs to implement a filter using an ARM processor and
a codec,

• design filters in MATLAB and use them with your own C code,

• design, implement and test a FIR and IIR filter, and

• optimize your C code and exploit the specific features of a modern codec.

The prerequisites of this course are:

• know how to program, and

• know how to program microcontrollers.

Rotterdam University Training Digital Signal Processing 10

TDS02 Chapter 1. Introduction

1.2 Course Planning

The module Training Digital Signal Processing (TDS02) is awarded with 3 ECTS-
credits. Passing this module will take about 80 working hours which consist
of:

• 8 lab sessions of about 2.5 hours each = 20 hours total.

• about 60 hours of homework (prepare, write code, use MATLAB, write
reports) (about 5.5 hours per week).

1.3 Document Organization

This document consists of several parts:

• Chapter 2 is an introduction to working with the course specific development
boards.

• Chapter 3 will refresh your knowledge about FIR filters and windowing and
introduce you to the MATLAB filter toolbox. It also contains the first of the
assignment that counts for your grade.

• Chapter 4 will refresh your knowledge about IIR filter. It introduces several
IIR filter structures that can be programmed. This chapter also contains the
second assignment that counts for your grade.

• Chapter 5 will teach you how to profile your code and how to take advantage
of the specific features provided by a modern codec to speed up your code.
This chapter also contains the third, and last, assignment that counts for
your grade.

• Appendix A introduces fixed-point arithmetic.

Rotterdam University Training Digital Signal Processing 11

TDS02 Chapter 2. Preliminary Assignments

2

Preliminary Assignments

This chapter provides an introduction to working with the course specific DSP
development boards and software development environment. It contains:

• An introduction to the most important components of the DSP development
boards: ARM® Cortex®-M4 MCU processor and the coder-decoder (codec).

• A tutorial about working with the software development environment: Code
Composer Studio.

• An assignment to generate an output signal with the DSP development
boards.

• An assignment to capture an input signal with the DSP development boards.

• An assignment to recall some DSP basics and teach you how to create a time
delay by using a buffer.

Rotterdam University Training Digital Signal Processing 12

TDS02 Chapter 2. Preliminary Assignments

2.1 Assignment 0: Introduction to the CC3200AUD-

BOOST and CC3220 LAUNCHXL Boards

This lab work handbook uses the CC3200AUDBOOST Audio BoosterPack4 [3],
shown in Figure 2.1, in combination with the CC3220S LaunchPad development
board5 [5], shown in Figure 2.2.

Figure 2.1: The CC3200AUDBOOST Audio BoosterPack.

The two most important components on these boards are the CC3220S SimpleLink™
Wi-Fi® Wireless Microcontroller Unit and the TLV320AIC3254 Codec (coder-de-
coder). The CC3220S System-on-Chip (SoC) [4, 6] is a single-chip with two
separate execution environments: an user application dedicated ARM® Cortex®-
M4 MCU and a network processor MCU. The TLV320AIC3254 [14, 15] is a 20-bit
stereo audio codec with embedded miniDSP which can operate with a sample rate
of up to 192 ksps.

2.1.1 TLV320AIC3254 Codec

The two most important components within a codec are the Analog to Digital
Converter (ADC) and the Digital to Analog Converters (DAC). As can be seen in

4 See: http://www.ti.com/tool/CC3200AUDBOOST.
5 See: http://www.ti.com/tool/cc3220s-launchxl.

Rotterdam University Training Digital Signal Processing 13

http://www.ti.com/tool/CC3200AUDBOOST
http://www.ti.com/tool/cc3220s-launchxl

TDS02 Chapter 2. Preliminary Assignments

Figure 2.2: The CC3220 LAUNCHXL SimpleLink™ Wi-Fi® LaunchPad™ Development
Kit.

Figure 2.3 the TLV320AIC3254 stereo codec includes not only two ADCs and two
DACs but also includes several amplifiers and signal processing blocks.

As can be seen in the schematics of the CC3200AUDBOOST [2, Page 1] the stereo
LINE IN input of the board are connected to the IN1L and IN1R inputs of the codec,
and the HPL (HeadPhone Left) and HPR outputs of the codec are connected to the
stereo LINE OUT output of the board.

The codec is connected to the CC3220 Launchpad through two serial buses: an
I2C bus6 and an I2S bus7. The I2C bus is used to configure and control the codec
and the I2S bus is used to transfer the audio samples.

The codec contains an analog programmable gain amplifier before the ADC and a
digital volume control after the DAC. Despite its name, this digital volume control

6 I2C stands for Inter-Integrated Circuit, more information can be found at: https://en.wikipedia.
org/wiki/I%C2%B2C.

7 I2S stands for Inter-IC Sound, more information can be found at: https://en.wikipedia.org/
wiki/I%C2%B2S.

Rotterdam University Training Digital Signal Processing 14

http://www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf#page=1
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2S
https://en.wikipedia.org/wiki/I%C2%B2S

TDS02 Chapter 2. Preliminary Assignments

Figure 2.3: Simplified block diagram of the codec [14, Page 3].

is implemented as an analog amplifier with programmable gain. The amplification
factors are specified in decibels (dB), as can be seen in Figure 2.3. This is a
logarithmic unit which is frequently used in electrical engineering. The gain in dB
(GdB) of an amplifier can be calculated as follows:

GdB = 20 · log10
Vout

Vin
(2.1)

In which Vin and Vout are the input respectively the output voltages of the amplifier.

Rotterdam University Training Digital Signal Processing 15

http://www.ti.com/lit/an/slaa408a/slaa408a.pdf#page=3

TDS02 Chapter 2. Preliminary Assignments

Using a logarithmic scale for the amplification of audio signals makes sense because
the sensitivity of the human ear to sound pressure works on a logarithmic scale
too.

Besides the ADCs, DACs, and amplifiers the codec also contains:

• Two miniDSP cores. The first miniDSP core is tightly coupled to the ADC, the
second miniDSP core is tightly coupled to the DAC. They support application-
specific algorithms in the record and playback paths of the device. The
miniDSP cores are fully software controlled. Target algorithms, like active
noise cancellation, acoustic echo cancellation or advanced DSP filtering can
be loaded into the device after power-up.

• ADC and DAC signal-processing blocks for filtering and effects. These pro-
cessing blocks support different types of digital filtering.

• Automatic Gain Control (AGC). AGC can be used to maintain a nominally-
constant output level.

• Dynamic Range Compression (DRC). DRC automatically adjusts the gain of
the DAC to prevent hard clipping of peak signals.

• Beep generator. This generator can generate a sine wave signal.

• Digital Auto Mute. This feature switches of the output signal when the input
is constant. This eliminates high-frequency noise during silent periods of
music or speech.

• Headset Detection. The codec can determine which type of headset is plugged
in.

The codec is a complicated digital signal processing component on its own and it’s
documentation [14, 15] can be quite overwhelming at first.

2.1.2 CC3220S SoC

The functional block diagram of the CC3220S SimpleLink™ Wi-Fi® Wireless and
Internet-of-Things Solution, a Single-Chip Wireless MCU, is shown in Figure 2.4.

Rotterdam University Training Digital Signal Processing 16

TDS02 Chapter 2. Preliminary Assignments

Figure 2.4: Functional block diagram of the CC3220S SoC [6, Page 4].

The CC3220S System-on-Chip (SoC) is a single-chip with two separate execution
environments: an user application dedicated ARM® Cortex®-M4 MCU and a
network processor MCU.

The ARM Cortex-M4 has no hardware support for floating-point calculations.
Therefore, fixed-point calculations will be used to implement the DSP algorithms
discussed in this Lab Work Handbook. Floating-point numbers use a constant
number of significant bits (the significant) which are scaled by an exponent. The
decimal number 1234.56789 can be encoded in decimal floating-point notation as
1.23456789×103 and also as 123456789×10−5. As you can see the position of the
decimal point can “float” within the number by adjusting the value of the exponent.
In computing systems the IEEE754 standard [9] to represent real numbers is almost
always used. This standard defines several formats for example single precision
(which is used to implement the type float in the C programming language)

Rotterdam University Training Digital Signal Processing 17

http://www.ti.com/lit/ds/symlink/cc3220.pdf#page=4

TDS02 Chapter 2. Preliminary Assignments

and double precision (which is used to implement the type double in C). Double
precision numbers in the IEEE754 standard are 64 bits wide. One bit is used to
determine the sign, 52 bits are used for the significant and 11 bits are used for the
exponent8. The floating-point representation makes it possible to cover a wide,
dynamic range of values with a constant number of significant bits. A double
precision number has 52 significant bits which corresponds to about 16 significant
decimal digits.

Fixed-point numbers use a fixed number of digits after and before the radix point.
For example 12 bits before and 4 bits after the binary point. The format of a
fixed-point binary number can be specified by using the Qn.m notation. In which
n is the number of bits before the binary point (without the sign bit) and m is the
number of bits after the binary point. For example, a number in Q0.15 format
has one sign bit, zero bits before the binary point (a zero is implied) and 15 bits
after the binary point. If the number of bits before the binary point is zero the
Q format is sometimes abbreviated by omitting the n. For example Q0.15 can be
abbreviated as Q15. Fixed-point numbers can be used to represent a limited range
of values with a constant resolution. There is no direct support (build-in types)
for fixed-point numbers in the C programming language. MATLAB, on the other
hand, does support fixed point numbers. In Appendix A a small introduction into
fixed-point arithmetic is given.

The disadvantage of using floating-point numbers is that a significant amount of
hardware is needed to perform fast floating-point calculations. This hardware uses
a significant amount of power. Fixed-point calculations, on the other hand, only
need about the same amount of hardware as integer calculations do. Therefore, in
embedded systems where price and or power usage must be minimized, fixed-point
numbers are often preferred over floating-point numbers.

The ARM Cortex-M4 CPU has several specific features which enables it to execute
digital signal algorithms fast [13]:

8 See: https://en.wikipedia.org/wiki/Double-precision_floating-point_format.

Rotterdam University Training Digital Signal Processing 18

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

TDS02 Chapter 2. Preliminary Assignments

• As mentioned in the introduction, DSP algorithms frequently use multiply-
addition combinations. For example, in a FIR filter implementation input
samples are multiplied by coefficients and added together. The Cortex-M4
has specific MAC (Multiply ACcumulate) instructions. For example, it is
capable of a 16-bit x 16-bit multiplication and a 32-bit add in a single cycle.

• The Cortex-M4 also has a 16-bit SIMD vector processing unit. With this
SIMD (Single Instruction Multiple Data) unit the Cortex-M4 can execute
four 8-bit or two 16-bit calculations with only one instruction.

• In a general purpose CPU an overflow occurs when the result of an arithmetic
operation on two signed numbers overflows the sign bit. For example, when
the largest possible 16-bit signed value (215 − 1 = 32767 = 0x7FFF)9 is
incremented by one the result is 0x8000 = −32768 = −215. In a general
purpose CPU this overflow is signaled by a flag in some status register, but
it is the responsibility of the programmer to take appropriate actions. The
Cortex-M4 has instructions which will signal an overflow but it also has
an alternative set of instructions which are called saturating instructions.
When these instructions are used, the output of a calculation is clipped to its
maximum or minimum value when the sign bit overflows. For example, when
the largest possible 16-bit signed value (32767= 0x7FFF) is incremented
by one in a saturating addition instruction the result is 0x7FFF= 32767. In
many DSP algorithms saturation is the proper thing to do when the sign bit
threatens to overflow. When this is the case the programmer can use the
saturating instructions and does not has to check for overflows any more.

Besides these DSP specific features the Cortex-M4 also has features which will speed
up the execution of generic algorithms such as pipelining and branch prediction
[7].

To execute DSP algorithms even more efficiently Texas Instruments also provides
processors which are specialized for this task; so called DSP’s (Digital Signal Pro-
cessors). The C5000 family10 of DSPs is optimized for fixed-point calculations and

9 The prefix 0x is used to denote hexadecimal notation.
10 http://www.ti.com/processors/dsp/c5000-dsp/overview.html

Rotterdam University Training Digital Signal Processing 19

http://www.ti.com/processors/dsp/c5000-dsp/overview.html

TDS02 Chapter 2. Preliminary Assignments

is very energy efficient. They also offers a family of DSPs which are optimized for
floating-point calculations: the C6000 family11. Other companies which produce
DSPs are: Analog Devices12, NXP Semiconductors13, and others14.

2.1.3 Electrostatic Discharge

Before we continue there is one very important thing to know: The CC3220
LAUNCHXL and CC3200AUDBOOST development boards are sensitive to elec-
trostatic discharge (ESD)!

Figure 2.5: The CC3220 LAUNCHXL and CC3200AUDBOOST are sensitive to ESD.

Before you actually touch the board, observe the following precautions:

• Ground yourself by using a wrist-strap.

• Always use a shielded bag if you need to transport the board.

If you fail to comply with these precautions you can damage the board beyond
repair.

11 http://www.ti.com/processors/dsp/c6000-dsp/overview.html

12 http://www.analog.com/en/products/processors-dsp/dsp.html

13 https://www.nxp.com/products/processors-and-microcontrollers/additional-
processors-and-mcus/digital-signal-processors:Digital-Signal-Processors

14 https://en.wikipedia.org/wiki/Digital_signal_processor#Modern_DSPs

Rotterdam University Training Digital Signal Processing 20

http://www.ti.com/processors/dsp/c6000-dsp/overview.html
http://www.analog.com/en/products/processors-dsp/dsp.html
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://en.wikipedia.org/wiki/Digital_signal_processor#Modern_DSPs

TDS02 Chapter 2. Preliminary Assignments

2.2 Assignment 1: Working with Code Composer Stu-

dio

In this assignment you will run and test a demo program on your CC3220 LAUNCH-
XL and CC3200AUDBOOST development boards. You need a source to produce
an audio signal (preferable a signal generator) and a way to inspect the output
(preferable an oscilloscope). Alternatively you can use your smartphone and a
headset to test the demo program.

2.2.1 Installing Software and Configure Hardware

The website http://tds02.bitbucket.io/ explains how to:

• install the software needed for this course:

◦ Tera Term. A terminal emulator is needed because a lot of TI’s demo
programs use a (virtual) terminal connection to report statuses and
errors. Tera Term was chosen because it recognizes which (virtual)
serial ports are available.

◦ UniFlash. This program is used to program the flash memory on the
CC3220 LAUNCHXL board.

◦ Soundcard Oscilloscope. In the lab you can use a normal oscilloscope
but at home you can use this program to generate and measure signals.
You can also use this this program to generate frequency response
graphs.

◦ Code Composer Studio (CCS). This Integrated Development Environ-
ment (IDE) will be used to develop software for the CC3220S. This IDE
is provided for free by Texas Instruments and is based on the Eclipse
open source IDE which is widely used.

◦ SimpleLink Software Development Kit (SDK). This SDK contains soft-
ware libraries which make software development for the CC3220S more
easy. It is also contains many example projects.

Rotterdam University Training Digital Signal Processing 21

http://tds02.bitbucket.io/

TDS02 Chapter 2. Preliminary Assignments

• reconfigure the CC3220 LAUNCHXL to not start a Wi-Fi access point when
the board is powered up.

• recompile the driverlib (a part of the SimpleLink SDK). To properly debug
programs which use the driverlib, it must be recompiled.

• connect the CC3200AUDBOOST Audio BoosterPack to the CC3220 LAUNCH-
XL board.

2.2.2 Running the Demo Program

Follow the description given at: http://tds02.bitbucket.io/ to run the demo
program on your CC3220 LAUNCHXL and CC3200AUDBOOST boards.

Code Composer Studio is an Eclipse-based IDE. All Eclipse-base IDEs work from
a certain workspace. In this tutorial the workspace directory C:\workspace_v9\-

CC3220S is used.

Please note that after completing an assignment or at the end of the lab,
you have to move your complete workspace from the local C:\ drive to your
private network drive so that you will not lose your work when other students
use the computer!

Be sure to move, and not copy, your workspace to prevent others from using your
work without your consent. Whenever you start with the lab again, you can just
copy back your workspace to C:\. You may also place your workspace on your
private network drive H:\ and let CCS work from there, but this might slow down
the compilation process.

It is recommended to play a little bit with the demo program in the debug per-
spective. Try to add breakpoints and variables watches. If you think everything is
working fine, call your instructor. If everything works as expected, your instructor
will sign off assignment 1.

Rotterdam University Training Digital Signal Processing 22

http://tds02.bitbucket.io/

TDS02 Chapter 2. Preliminary Assignments

2.3 Assignment 2: Generating Output

For this assignment you need an oscilloscope to view the signal that is generated
by the CC3200AUDBOOST board. If you do not have a oscilloscope available
then you can use your PC using the program which can be found here: https:

//www.zeitnitz.eu/scms/scope_en.

2.3.1 Polling-based Output

The most straightforward method for sending samples to the codec is to use polling
which is explained in this section.

Open Code Composer Studio and copy the demo project line_in_2_line_out to
a new project called audioSine1kHz. Replace the code in the file main_nortos.c

with the code from audioSine1kHz/main_nortos.c shown in Listing 2.1.

6 #include <stdint.h>

7 #include <stddef.h>

8 #include <stdio.h>

9 #include <NoRTOS.h>

10

11 #include <ti/devices/cc32xx/inc/hw_memmap.h>

12 #include <ti/devices/cc32xx/inc/hw_types.h>

13 #include <ti/devices/cc32xx/driverlib/prcm.h>

14 #include <ti/devices/cc32xx/driverlib/i2s.h>

15 #include <ti/drivers/I2C.h>

16

17 #include "Board.h"

18 #include "config.h"

19

20 // You can select the sample rate here

21 #define SAMPLINGFREQUENCY 48000

22 #if SAMPLINGFREQUENCY < 8000 || SAMPLINGFREQUENCY > 48000 ←-
,→ || SAMPLINGFREQUENCY % 4000 != 0

23 #error Sampling Frequency must be between 8 kHz and 48 kHz ←-
,→ (included) and must be a multiple of 4 kHz.

Rotterdam University Training Digital Signal Processing 23

https://www.zeitnitz.eu/scms/scope_en
https://www.zeitnitz.eu/scms/scope_en
https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/audioSine1kHz/main_nortos.c

TDS02 Chapter 2. Preliminary Assignments

24 #endif

25

26 int main(void)

27 {

28 // Init CC3220S LAUNCHXL board.

29 Board_initGeneral ();

30 // Prepare to use TI drivers without operating system

31 NoRTOS_start ();

32

33 printf("1 kHz sine wave ==> Left HP LINE OUT.\n");

34

35 // Configure an I2C connection which is used to ←-
,→ configure the audio codec.

36 I2C_Handle i2cHandle = ConfigureI2C(Board_I2C0 , ←-
,→ I2C_400kHz);

37 // Configure the audio codec.

38 ConfigureAudioCodec(i2cHandle , SAMPLINGFREQUENCY);

39

40 // Configure an I2S connection which is use to ←-
,→ send/receive samples to/from the codec.

41 ConfigureI2S(PRCM_I2S , I2S_BASE , SAMPLINGFREQUENCY);

42

43 /* Pre -generated sine wave data , 16-bit signed fixed ←-
,→ point samples Q0.15 */

44 int16_t sinetable [48] = {

45 0x0000 , 0x10b4 , 0x2120 , 0x30fb , 0x3fff , 0x4dea ,

46 0x5a81 , 0x658b , 0x6ed8 , 0x763f , 0x7ba1 , 0x7ee5 ,

47 0x7ffd , 0x7ee5 , 0x7ba1 , 0x76ef , 0x6ed8 , 0x658b ,

48 0x5a81 , 0x4dea , 0x3fff , 0x30fb , 0x2120 , 0x10b4 ,

49 0x0000 , 0xef4c , 0xdee0 , 0xcf06 , 0xc002 , 0xb216 ,

50 0xa57f , 0x9a75 , 0x9128 , 0x89c1 , 0x845f , 0x811b ,

51 0x8002 , 0x811b , 0x845f , 0x89c1 , 0x9128 , 0x9a76 ,

52 0xa57f , 0xb216 , 0xc002 , 0xcf06 , 0xdee0 , 0xef4c

53 };

54

55 int16_t sec , msec , sampleNum;

56 int16_t dataLeft;

Rotterdam University Training Digital Signal Processing 24

TDS02 Chapter 2. Preliminary Assignments

57 size_t n = 0;

58

59 for (sec = 0; sec < 5 * 60; sec++) {

60 for (msec = 0; msec < 1000; msec ++) {

61 for (sampleNum = 0; sampleNum < ←-
,→ SAMPLINGFREQUENCY /1000; sampleNum ++) {

62 dataLeft = sinetable[n];

63 I2SDataPut(I2S_BASE , I2S_DATA_LINE_0 , ←-
,→ (unsigned long)dataLeft);

64 I2SDataPut(I2S_BASE , I2S_DATA_LINE_0 , 0);

65 n++;

66 if (n == 48) {

67 n = 0;

68 }

69 }

70 }

71 }

72

73 printf("\n*** Progam ended ***\n");

74

75 return 0;

76 }

Listing 2.1: Program to generate a 1 kHz sine wave on the left audio output channel.

Connect the LINE OUT output of the CC3200AUDBOOST board to the oscilloscope,
compile and run the program, and view the output signals on the scope.

The signal is quite noisy. You should select “HF Rejection” in the trigger menu to
properly trigger and measure the signal. First press the “Autoset” button on the
scope, then press the “MENU” button in the “TRIGGER” section of the scope. First
select “Slope/Coupling” and then press “Rejection Off” twice to select “Rejection
HF”. With this setting the scope will reject the high frequency noise in the signal
when triggering. Your scope should display something similar to Figure 2.6. The
colors are inverted in this figure to save some ink.

Rotterdam University Training Digital Signal Processing 25

TDS02 Chapter 2. Preliminary Assignments

Figure 2.6: 1 kHz sine wave.

Samples are transfered from the CC3220S chip to the TLV320AIC3254 codec by
using the I2S bus15.

Every time the function I2SDataPut [4, Page 382] is called, it will stay in some
loop that waits for the codec to be ready to accept new data. The codec expects
two new samples every sample time Ts. One sample for the left audio channel
and one sample for the right audio channel. In this case the sample frequency fs
is 48 kHz so the sample time Ts = 1/ fs is 20.833µs. So the function I2SDataPut

must be called every 10.417µs. If there is any spare time between two calls to
the function I2SDataPut, it keeps waiting until a new sample must be sent. When
the codec is ready to receive a new sample the function I2SDataPut will actually
send the sample. When the function I2SDataPut is called too late, a so called
underflow error is generated by the I2S hardware and the communication with
the codec comes to a halt.

The program in Listing 2.1 repeatedly waits (inside the function I2SDataPut) until
a new sample can be written to the codec. The implementation of the I2SDataPut

15 More information about the I2S bus can be found at https://en.wikipedia.org/wiki/I%C2%B2S

Rotterdam University Training Digital Signal Processing 26

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=382
https://en.wikipedia.org/wiki/I%C2%B2S

TDS02 Chapter 2. Preliminary Assignments

can be found in the driverlib16. The function repeatedly checks the XDATA bit in
the XSTAT register [4, Page 423] to check is the I2S controller is ready to send data.
This repeatedly checking is called “polling”. If our program has nothing else to do,
polling is fine. But if we want our program to perform some other actions we must
be very careful to provide the samples on time because when we do not provide a
new sample on time the signal communication with the codec will come to a halt.
Before we look into a different method to output samples, change the program
to generate a square wave of 1 kHz on the right audio channel while keeping the
1 kHZ sine on the left audio channel. The top-top amplitude of the square wave
should be equal to the top-top amplitude of the sine wave.

Change the sampling frequency to 8 kHz and explain to your instructor what
happens. If everything works as expected, your instructor will sign off assignment
2a.

2.3.2 Interrupt-based Output

Another way to output (and input) samples is interrupt-based. This way, our
processor will (instead of constantly waiting for the codec to demand a sample)
jump to a dedicated piece of code called an interrupt routine, whenever the codec
indicates that it wants a new sample. This has advantages over polling.

Here is a nice analogy. Suppose that you’re following a lecture on DSP and, between
every sentence, your lecturer will ask you and all of your class-mates: “Do you
have a question?” Your lecturer is now working polling-based, spending a lot of
time and effort in “polling” the students.

Instead of doing this, an agreement can be made that if the students have a question,
they raise their hand so they can “interrupt” the lecturer to ask a question (after
the lecturer finishes the current sentence). Then, the lecturer only has to answer
when a question arises. Now, the lecturer is working interrupt-based, which is
obviously much more efficient, since now the lecturer can keep talking when there
are no questions.

16 C:\ti\simplelink_cc32xx_sdk_3_20_00_06\source\ti\devices\cc32xx\driverlib\i2s.h

Rotterdam University Training Digital Signal Processing 27

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=423

TDS02 Chapter 2. Preliminary Assignments

This is somewhat the same for the processor and the codec. When the codec has a
question “Can I get a new sample?”, the processor finishes its current instruction,
and then only has to give some sample to the codec in a brief moment. Then the
processor can go back to its original task at hand.

To facilitate interrupt handling, we’ll make use of the driverlib [4, Page 383].
In Listing 2.2 a simple interrupt-based program is given. This program can be
downloaded from audioInterrupt/main_nortos.c.

6 #include <stdint.h>

7 #include <stddef.h>

8 #include <stdio.h>

9 #include <NoRTOS.h>

10

11 #include <ti/devices/cc32xx/inc/hw_memmap.h>

12 #include <ti/devices/cc32xx/inc/hw_types.h>

13 #include <ti/devices/cc32xx/driverlib/prcm.h>

14 #include <ti/devices/cc32xx/driverlib/i2s.h>

15 #include <ti/drivers/I2C.h>

16

17 #include "Board.h"

18 #include "config.h"

19

20 // Only define MAXOUTPUT when signal is viewed on a scope ←-
,→ (to protect your ears).

21 //#define MAXOUTPUT

22

23 // You can select the sample rate here

24 #define SAMPLINGFREQUENCY 48000

25 #if SAMPLINGFREQUENCY < 8000 || SAMPLINGFREQUENCY > 48000 ←-
,→ || SAMPLINGFREQUENCY % 4000 != 0

26 #error Sampling Frequency must be between 8 kHz and 48 kHz ←-
,→ (included) and must be a multiple of 4 kHz.

27 #endif

28

Rotterdam University Training Digital Signal Processing 28

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=383
https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/audioInterrupt/main_nortos.c

TDS02 Chapter 2. Preliminary Assignments

29 // ISR that will be called when I2S is ready to send a ←-
,→ sample to the codec.

30

31 void I2S_ISR(void)

32 {

33 static int n = 0;

34 #ifdef MAXOUTPUT

35 static unsigned long data = INT16_MAX;

36 #else

37 static unsigned long data = 100;

38 #endif

39 if (n % 2 == 0)

40 {

41 // write left channel

42 I2SDataPutNonBlocking(I2S_BASE , I2S_DATA_LINE_0 , ←-
,→ data >> 1);

43 }

44 else

45 {

46 // write right channel

47 I2SDataPutNonBlocking(I2S_BASE , I2S_DATA_LINE_0 , ←-
,→ -data);

48 }

49 n++;

50 if (n == 48) {

51 data = -data;

52 n = 0;

53 }

54 I2SIntClear(I2S_BASE , I2S_INT_XDATA);

55 }

56

57 int main(void)

58 {

59 // Init CC3220S LAUNCHXL board.

60 Board_initGeneral ();

61 // Prepare to use TI drivers without operating system

62 NoRTOS_start ();

Rotterdam University Training Digital Signal Processing 29

TDS02 Chapter 2. Preliminary Assignments

63

64 printf("1 kHz sinewave ==> Left HP LINE OUT.\n");

65

66 // Configure an I2C connection which is used to ←-
,→ configure the audio codec.

67 I2C_Handle i2cHandle = ConfigureI2C(Board_I2C0 , ←-
,→ I2C_400kHz);

68 // Configure the audio codec.

69 ConfigureAudioCodec(i2cHandle , SAMPLINGFREQUENCY);

70

71 // Configure an I2S connection which is use to ←-
,→ send/receive samples to/from the codec.

72 ConfigureI2S(PRCM_I2S , I2S_BASE , SAMPLINGFREQUENCY);

73

74 // Register I2S_ISR

75 I2SIntRegister(I2S_BASE , I2S_ISR);

76 // Enable interrupt to I2S_ISR when I2S is ready to ←-
,→ send a sample to the codec

77 I2SIntEnable(I2S_BASE , I2S_INT_XDATA);

78

79 while (1);

80

81 return 0;

82 }

Listing 2.2: A simple interrupt-based program.

As you can see on line 79 the main function of this program simply burns clock
cycles in a while (1)-loop after initializing the codec and the interrupt. In this
case, it is not useful to use an interrupt but in a real world application the main

function can perform other tasks without worrying about the “feeding” of the codec.
Normally, within this while loop there will be function calls to do all kinds of things
the application has to do (for example communicate with some network device, or
read data from storage). However, calculating and sending a new output sample
now happens in the interrupt service routine (ISR) called I2S_ISR(). Whenever
the codec needs a sample, it will interrupt the processor. The processor will jump

Rotterdam University Training Digital Signal Processing 30

TDS02 Chapter 2. Preliminary Assignments

into the ISR, send data to the codec, calculate a new sample, and continue with
the normal program. Keep in mind that interrupt service routines should be as
small and quick as possible and should not contain any polling themselves, hence
it might defeat the whole purpose of an interrupt.

The variables n and data which are defined inside the ISR, see Listing 2.2 line 33
to 38, are declared by using the static keyword. If we hadn’t done this, these
variables would have been freshly created each time the ISR is called. By declaring
these variables as static local variables17 their lifetime is extended to the time the
program ends. Although, their scope is still local to the function in which they are
declared.

On line 14 of Listing 2.2 the file i2s.h is included. This file declares the functions
we can use to initialize the interrupt vector table and to enable the interrupts. The
call to the function I2SIntRegister [4, Page 383] on line 75 defines the function
to be called when the I2S interrupt occurs. The call to I2SIntEnable on line 77
enables the I2S_INT_XDATA I2S interrupt source.

Now, first predict the output on the left and right LINE OUT channels and then
verify your predictions with the oscilloscope. Explain the output signals to your
instructor. If everything works as expected, your instructor will sign off assignment
2b.

The code shown in Listing 2.2 can be used as a base program for all the other
interrupt-based programs you will write during this course.

Write and test an interrupt-based program that outputs a sine on the left channel
and a cosine on the right channel. Use the XY function of the oscilloscope to display
a circle.

Make use of a the sine look-up table used in Listing 2.1. Note that you do not need
a separate cosine look-up table. The sine and cosine should have a frequency of

17 For more information about static local variables see: https://en.wikipedia.org/wiki/
Static_variable.

Rotterdam University Training Digital Signal Processing 31

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=383
https://en.wikipedia.org/wiki/Static_variable
https://en.wikipedia.org/wiki/Static_variable

TDS02 Chapter 2. Preliminary Assignments

1 kHz and the sample rate should be 48 kHz. The amplitudes should be as high as
possible.

Show the result to your instructor. If everything works as expected, your instructor
will sign off assignment 2c.

2.4 Assignment 3: Receiving Input

In Section 2.2.2 you already tested the demo project called line_in_2_line_out

which simply copies the signal from the LINE IN input to the LINE OUT output.
This demo program uses polling-based input.

2.4.1 Interrupt-based Input

Copy the project line_in_2_line_out to a new project called line_in_2_line-

_out_interrupt and modify the program to work interrupt-based. Use a sampling
rate of 48 kHz.

You can find the names of the individual I2S interrupt sources in Table 12-1 of the
CC3220 SimpleLink™ Wi-Fi® and Internet of Things Technical Reference Manual [4,
Page 385].

When your program is working, use a signal generator to apply a 1 kHz saw-tooth
shaped signal with an amplitude of 1 Vpp to the left channel of the LINE IN input
and verify that the signal on the LINE OUT output is similar. What is the delay
between the input and output signals?

Show your program and the result to your instructor. If everything works as
expected, your instructor will sign off assignment 3.

2.4.2 Audio Input

Connect an audio output (e.g. your smartphone) to the LINE IN input. Verify that
you hear the audio signal from the input on the output by connecting headphones
to the LINE OUT output.

Rotterdam University Training Digital Signal Processing 32

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=385

TDS02 Chapter 2. Preliminary Assignments

2.5 Assignment 4: Delays

When making filters, we will need a buffer. Recall the formulas of the preliminary
assignment.

One nice application of a buffer is an echo effect. For this assignment we will
create this effect on the CC3220 LAUNCHXL and CC3200AUDBOOST boards. You
should bring a headset to test it.

Suppose we have some circular buffer with N entries buffer[N]. A circular buffer
is a buffer that, if we want to fill the buffer at some time n, we fill it at index
buffer[n mod N]. This is a formal way of saying that we just let some variable
count up with 1 for every sample which indicates the buffer location, and when
the variable reaches the end of the buffer, we just reset that variable to 0 so it
“circulates” around the buffer from the end back to the start.

We can use this to create a nice echo effect, see Figure 2.7 At time n we want to
output the buffer value buffer[n] multiplied by some constant c, plus our current
input sample. After we output this sample, we put the sample in buffer location
buffer[n]. Now if c == 1, there will be an infinite echo which will make the
signal louder and louder (don’t try this, your ears will get hurt). If we make c

smaller than 1, say, 0.75, then every time the buffer index passes that entry again,
that original sample will become smaller (exponentially over time), and every time
a new sample is added to it (which in turn becomes smaller every time after that
as well).

Write and test a program that applies an echo effect on the audio input. Use a
sample frequency of 48 kHz and choose N so that the first echo will appear after
0.5 s. Choose c to be 0.5 to start with. Also set c to 0.75 and observe the difference.
The echo effect is best observed by using an audio fragment of spoken text.

Show the result to your instructor. If everything works as expected, your instructor
will sign off assignment 4.

Rotterdam University Training Digital Signal Processing 33

TDS02 Chapter 2. Preliminary Assignments

start

n = 0
fill buf fer with zeros

input sample

output sample =
input sample +
buf fer[n] × c

output sample

buf fer[n] =
output sample

n = (n + 1) mod N

Figure 2.7: Flow diagram to create a simple echo effect.

Rotterdam University Training Digital Signal Processing 34

TDS02 Chapter 3. FIR Filters

3

FIR Filters

In this chapter we will focus on designing and implementing a Finite Impulse
Response (FIR) filter. The formula for a FIR filter is:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

Where y[n] are the output samples, bk are the filter coefficients, x[n] are the input
samples, and N is the order of our filter.

3.1 Determination of the Coefficients

Usually we want to filter signals in the time domain, because signals are a function
of time in the real world and not of frequency. However, when we speak about
filters we often define their response in the frequency domain. We can use some
math to transform our filter back to the time domain.

We will now show how this is done. This is a summary of what you may have
learned in the DSP01 course (see [11, Chapter 5]).

Rotterdam University Training Digital Signal Processing 35

TDS02 Chapter 3. FIR Filters

The Inverse Discrete-Time Fourier Transform (IDTFT) is given by:

x[n] = Ts

∫
1

2Ts

−1
2Ts

X (f) · e j2πnf Ts d f (3.1)

Where X (f) is the spectrum of our signal, f is the frequency, and Ts is the period
of our discrete-time steps which is 1

fs
, where fs is the sample frequency.

This is an integral transformation which transforms a signal in the frequency
domain (X (f)) to the continuous-valued discrete-time domain (x[n]).

Since the Discrete-Time Fourier Transform (DTFT) is a linear transformation, we
may say convoluting two signals in the time domain is the same as multiplying their
spectra in the frequency domain. Therefore we can easily design the frequency
response in the frequency domain and then transform it back to the time domain
so we can implement it in, for example, a microcontroller.

Let’s look at the frequency response magnitudes of a low-pass filter:

�

�Hl p(f)
�

�=

1
− fs
a
≤ f ≤

fs
a

, a ≤ 2

0 otherwise
(3.2)

Note that a must be smaller than 2 because half the sample rate equals the Nyquist-
Frequency. The function is shown in Figure 3.1.

 | |
 -fs/2 -fs/a 0 fs/a fs/2 f

|H
(f

)|

 1

Figure 3.1: Low-pass filter frequency response.

Rotterdam University Training Digital Signal Processing 36

TDS02 Chapter 3. FIR Filters

Also recall that the function is symmetric around the origin of the graph due to
the complex conjugate properties of the Fourier Transform of some function. We
could also have drawn this figure from 0 to fs

2 , but this would make the integral
we have to solve, for the inverse transform, a bit more cumbersome.

We can transform the above function of frequency H(f) back to a function of time
using the IDTFT. Note that fc is the cut-off frequency of the filter, a = fs

fc
. So for

example, if we have a sample rate of 8000 Hz and we want our cut-off frequency
to be 1000 Hz, we take a = 8.

The IDTFT of a low-pass filter now becomes (substituting Ts =
1
fs

and changing
the integral limits to confirm with the frequency response of the low-pass filter,
since only at that interval our function H(f) = 1 and it is 0 anywhere else):

hl p[n] =
1
fs

∫

fs
a

− fs
a

e j2πn f
fs d f (3.3)

Then by solving the integral we find:

hl p[n] =
1

fs j2πn 1
fs

h

e j2πn f
fs

i

fs
a

− fs
a

(3.4)

Substituting the limits gives:

hl p[n] =
1

j2πn

�

e
j2πn

a − e
− j2πn

a

�

(3.5)

By using Euler’s Formula eα j = cos(α) + j sin(α) we find:

hl p[n] =
1

j2πn

�

cos
�

2πn
a

�

+ j sin
�

2πn
a

�

− cos
�

−2πn
a

�

− j sin
�

−2πn
a

��

(3.6)

Rotterdam University Training Digital Signal Processing 37

TDS02 Chapter 3. FIR Filters

Which simplifies to:

hl p[n] =
1

j2πn
2 j sin

�

2πn
a

�

(3.7)

Further simplification gives:

hl p[n] =
sin
�2

aπn
�

πn
=

2
a

sinc
�

2n
a

�

(3.8)

The function sinc(n) =
sin(nπ)

nπ
is called the normalized cardinal sine function and

is widely used in DSP techniques.

We can now determine any hl p[n] with this formula, except for the non-trivial case
of n= 0, because dividing by zero is not possible. We can determine the value of
hl p[0] by calculating the limit of hl p[n] for n→ 0. Because the limit of n→ 0 for
both the nominator and denominator are zero, L’Hôpital’s rule can be applied:

hl p[0] = lim
n→0

sin
�2

aπn
�

πn
= lim

n→0

d
�

sin
�2

aπn
��

dn
d (πn)

dn

= lim
n→0

2
aπ · cos

�2
aπn

�

π
=

2
a

(3.9)

In a similar way we can derive the responses of high-pass, band-pass and band-stop
filters as well:

High-pass:

hhp[n] =
− sin

�2
aπn

�

πn
(3.10)

with Hhp(f) = 1 for | f | ≥ fs
a , 0 otherwise.

Rotterdam University Training Digital Signal Processing 38

TDS02 Chapter 3. FIR Filters

Band-pass:

hbp[n] =
sin
� 2

bπn
�

− sin
�2

aπn
�

πn
(3.11)

with Hbp(f) = 1 for fs
a ≤ | f | ≤

fs
b , 0 otherwise.

Band-stop:

hbs[n] =
sin
�2

aπn
�

− sin
� 2

bπn
�

πn
(3.12)

with Hbs(f) = 0 for fs
a ≤ | f | ≤

fs
b , 1 otherwise.

3.2 Example

For example, in some digital system with a sample frequency of 8 kHz, we might
want to make a low-pass filter with pass-band 0 to 1000 Hz and stop-band 1000 Hz
to Fs/2 Hz.

For our cut-off frequency of 1000 Hz, first we calculate a, which is:

a =
fs
fc
=

8000
1000

= 8 (3.13)

Now we can calculate our first coefficient:

hl p[0] =
2
a
=

1
4
= 0.25 (3.14)

Now for n 6= 0:

hl p[n] =
sin
�

πn
4

�

πn
(3.15)

The first 10 coefficients on both sides of n= 0 of this filter are shown in Table 3.1
and Figure 3.2.

Rotterdam University Training Digital Signal Processing 39

TDS02 Chapter 3. FIR Filters

Table 3.1: Coefficients.

n h[n]

0 0.250

1, -1 0.225

2, -2 0.159

3, -3 0.075

4, -4 0.000

5, -5 -0.045

6, -6 -0.053

7, -7 -0.032

8, -8 0,000

9, -9 0.025

10, -10 0.032

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

h[n]

Figure 3.2: Discrete-time transfer function of a low-pass
filter.

Note that we should fill in any integer for n, not just -10 to 10. If the number of
coefficients gets very large, the delay will be very long. Even so, if we wish to fully
replicate the ideal filter response we’ve used in the previous example, we need to
let n go from −∞ to +∞. This would give an infinite delay, so our ideally filtered
signal will never appear on the output while the universe lasts, not to mention
that we need infinite memory in our DSP system.

3.3 Windowing

Because we cannot allow a real filter to have an infinite number of coefficients, we
will need to limit the response of our filter. In the above case, where we cut off all
|n| ≥ 11, we can see what result this has on the frequency response of our filter
if we transform it back to the frequency domain (using the DTFT). Because this

Rotterdam University Training Digital Signal Processing 40

TDS02 Chapter 3. FIR Filters

is a lot of work, we will do this in MATLAB. We can use the freqz() function in
MATLAB to calculate the frequency response, see lpfvbfreqresp.m. The result is
shown in Figure 3.3.

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000

M
ag

ni
tu

de
 (

dB
)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 3.3: Frequency response of an abruptly ended transfer function.

We can now see that our frequency response is not ideal anymore and that so-called
side-lobes are introduced where the desired frequency response should be 0. Also
the steepness of the filter is not as good as in the ideal case since we have a limited
number of coefficients. This is mainly due to the abrupt ending of the desired
discrete-time representation of our transfer function h[n].

As you must recall from the DSP01 course we can let the coefficients slowly but
more steadily approach to zero near the edges of our “window” (the part of the
filter we’re interested in), by somehow scaling the coefficients a bit using a method

Rotterdam University Training Digital Signal Processing 41

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfvbfreqresp.m

TDS02 Chapter 3. FIR Filters

called windowing. This way, the abrupt ending of coefficients (which results in the
occurrence of, among other things, the side-lobes) will be somewhat compensated
for. This is at the cost of our filter to be less like the ideal filter.

Recall the formula for the output of a non-recursive filter:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

Note that since our transfer function h[n] (and the window functions which we
will discuss later) are non-causal (they depend on values of the future), when
implementing the filters, we shift the transfer function h[n] backward in time
so that each coefficient bk = h

�

k− N
2

�

(assuming that N is even). For more
information, see [11, page 151].

We can expand this formula by taking the windowing function into account:

y[n] =
N
∑

k=0

wk · bk · x[n− k] (3.16)

Where wk are the coefficients of our window.

For example, we can take a simple window called the Hamming window (recall
DSP01). The formula for a Hamming window is:

w[n] = 0.54+ 0.46cos
�

2πn
N − 1

�

(3.17)

Where N is the order of the filter.

The Hamming window is one of the most commonly used windows [10]. The
window itself is shown in Figure 3.4.

When we apply this window to our desired, but abruptly ended discrete-time
transfer function we get the discrete-time transfer function shown in Figure 3.5.

Rotterdam University Training Digital Signal Processing 42

TDS02 Chapter 3. FIR Filters

0.000

0.200

0.400

0.600

0.800

1.000

1.200

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

w[n]

Figure 3.4: The Hamming window.

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

h[n]·w[n]

Figure 3.5: Discrete-time transfer function adjusted by the Hamming window.

Compare Figure 3.5 to Figure 3.2. Note that the coefficients and the edge of
the function slowly decrease to 0, therefore avoiding the abrupt ending of our
transfer function, and thus reducing unwanted effects such as side-lobes, etc. For

Rotterdam University Training Digital Signal Processing 43

TDS02 Chapter 3. FIR Filters

comparison, see Figure 3.6 which shows the frequency response of the filter with
and without the application of the Hamming window. The frequency response
graph shown in red is that of our original filter with the abrupt ending of coefficients
(also called a rectangular window), and the graph shown in blue is that of our
filter with the Hamming window applied.

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (

dB
)

Rectangular window applied
Hamming window applied

Figure 3.6: The effect of the application of the Hamming window on the frequency
response (blue) compared to applying a rectangular window (red).

Although the steepness of the filter is decreased, the side-lobes of our Hamming
windowed filter are smaller (note that the first side-lobe for the Hamming win-
dowed filter has a maximum magnitude of -50 dB, and for the rectangular window
this maximum magnitude is -20 dB).

There are many other window types, and the Hamming window is certainly not
one of the best windows. For your assignment you may use any other window type

Rotterdam University Training Digital Signal Processing 44

TDS02 Chapter 3. FIR Filters

as long as you give arguments for choosing a certain type and discuss its properties
in your report.

3.4 MATLAB Filter Designer

We have already shown that it takes a lot of work to derive the coefficients, not to
mention to analyse what happens with different windows. We can use a special
tool in MATLAB to do this easier and faster. We will give an example of the same
filter we specified above.

Start MATLAB and type in filterDesigner (previously known as FDA Tool). The
window shown in Figure 3.7 will open.

Figure 3.7: The Filter Designer main window.

Rotterdam University Training Digital Signal Processing 45

TDS02 Chapter 3. FIR Filters

In MATLAB’s Filter Designer we can design filters more easily than when we have
to calculate all the values by hand. We will give a short overview on the different
sections of this window.

• Current Filter Information:
Here we can see what type of filter implementation we’re aiming for (we
will discuss these types later). Also the order of the filter can be seen. We
can see whether the filter we’ve designed is stable (always stable for FIR
filters) as well. For IIR filters, if you want to change the structure, you can
right click on this section to change this option.

• Response Type:
Here we can select the different response types. We will only use low-pass,
high-pass, band-pass and band-stop. Also the design method can be selected.
For now we will use the FIR method with windowing, but note there are
many other ways to design a filter. In Section 4.5 we will design an IIR filter.

• Filter Order:
Here we can specify the order, or we can specify to let MATLAB determine
the minimum needed order of our filter based on the other specifications.

• Options:
Here we can select different options and specify parameters for different
filter types, windows types, etc.

• Frequency Specifications:
Here we can specify the frequency properties of our filter, like the sample
rate, pass frequencies and stop frequencies.

• Magnitude Specifications:
Here we can select the magnitude properties of our filter, like the magnitudes
in the pass- and stop-band.

• Filter Specifications:
This section gives a graphical overview of the selected filter and the designed
filter. Basically this gives us the frequency response, but we can also show
the phase response if we want.

Rotterdam University Training Digital Signal Processing 46

TDS02 Chapter 3. FIR Filters

Now use the tool to design a FIR low-pass filter of order 20, using a rectangular
window. The cut-off frequency should be 1 kHz and the sample rate should be
8 kHz. Make sure to deselect the “Scale Passband” option in the Options section
after you’ve selected the windowed method. When you push the “Design Filter”
you should see the same result as shown in Figure 3.8.

Figure 3.8: 1 kHz low-pass filter in MATLAB’s Filter Designer.

Now we are interested in the coefficients of the filter. In the menu, click “Analysis”
and then “Filter Coefficients”. Verify that they are the same as the coefficients we
presented earlier in Table 3.1. We can see the benefit of using a tool like MATLAB’s
Filter Designer now, since we won’t have to calculate all the values by hand.

Rotterdam University Training Digital Signal Processing 47

TDS02 Chapter 3. FIR Filters

We can even export the coefficients to a C header that we can use in our programs.
In the menu, select “Targets”, “Generate C header. . . ”. Now a new dialog is shown,
see Figure 3.9.

Figure 3.9: Generate C header dialog.

The numerator is the name your coefficients will get later on; the numerator length
is a variable which represents the order of your filter + 1. Because we use a
Cortex-M4 without floating-point support to implement the filter, we export the
coefficients as signed 16-bit integers.

If we open the exported file, we can see the filter coefficients at the bottom, and
the variable representing the order + 1 of our filter. Note that the order + 1 is the
number of coefficients, and thus the size of our buffer which we will have to use
to store delayed samples later on.

The lines that are actually useful are the last 6 ones, which define the variable
named BL which is initialized with the number of coefficients18 and the array
named B which is initialized with the values of the coefficients. Since we will
not make use of the header file tmwtypes.h from MATLAB, remove everything
except those last lines and modify the code so the file fdacoefs.h looks like the
one shown in Listing 3.1. The variable BL is replaced by a define so we can use
this identifier to declare the size of the array B. We have used the type int16_t

18 Note that the number of coefficients is one more than the order of the filter.

Rotterdam University Training Digital Signal Processing 48

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/fdacoefs.h

TDS02 Chapter 3. FIR Filters

to define the array B. The type int16_t is defined in the standard C include file
stdint.h19.

#define BL 21

const int16_t B[BL] = {

1043, 819, 0, -1054, -1738, -1475, 0, 2458,

5215, 7375, 8192, 7375, 5215, 2458, 0, -1475,

-1738, -1054, 0, 819, 1043

};

Listing 3.1: 16-bit signed integer coefficients generated by MATLAB.

The const keyword actually means that we cannot change the values stored in the
array B during run-time.

Note that our coefficients have been scaled now from floating-point numbers in
MATLAB, to signed two’s complement fixed-point integers. The 16-bit numbers
generated by MATLAB have 15 fractional bits and one sign bit. This fixed-point
format is often referred to as Q0.15.

For example, the center coefficient B[10] is equal to 8192. This value is obtained
by multiplying the floating point value 0.25 by the largest signed 16-bit value + 1
which is 215.

To make the filter causal, the coefficients have been moved by order/2 samples to
the right, since we cannot grab samples in the future. Now the delay is a bit longer
but the filter output over a longer time will be the same. As before we define
the coefficients bk = h

�

k− N
2

�

(assuming that N is even) for k = 0 . . . N . So now
coefficient b0 (or B[0] in the C code) is equal to h[−10]. The center coefficient
h[0] is now referred to as B[10] in the C code.

Now we know how we can calculate the coefficients, a next assignment is given.

19 stdint.h is a header file in the C standard library introduced in the C99 standard library to allow
programmers to write more portable code by providing a set of typedefs that specify exact-width
integer types. See: http://en.cppreference.com/w/c/types/integer.

Rotterdam University Training Digital Signal Processing 49

http://en.cppreference.com/w/c/types/integer

TDS02 Chapter 3. FIR Filters

3.5 Assignment 5: Finite Impulse Response Filter

In Figure 3.10 we can see the flow diagram to implement the calculation of a new
FIR filter output sample. What is done, basically, is a buffer of size BL is filled with
a new sample, where BL is the number of coefficients and the size of our buffer
(so the order of the filter N is BL-1). Now, the new sample is calculated by using
the formula for a FIR filter:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

Note that N is the order of the filter here. Suppose we have a filter of order N = 2,
then our current output y[n] is:

y[n] = b0 · x[n] + b1 · x[n− 1] + b2 · x[n− 2] (3.18)

We change this so that the current sample x[n] is always stored in buffer[0], and
mirroring time because we will implement this in C, and we cannot use negative
offsets in arrays to store previous values. So a delayed sample in the buffer of
time n−5, will be stored in buffer[5] instead of buffer[-5]. So to calculate the
current output y[n], called output in the C code, we may now write:

output = B[0]* buffer [0] + B[1]* buffer [1] + ←-
,→ B[2]* buffer [2];

This is what is done in Figure 3.10 as well. Note that buffer[k] in the C code cor-
responds to x[n−k] in Equation (1.1) and that B[k] corresponds to the coefficient
bk in Equation (1.1).

After we’ve calculated the new output sample, we shift all the entries in the buffer
to create the delay on each sample. This is also shown in Figure 3.10. When we’re
done, we can send the output sample to the codec.

Here is your assignment: Implement a C program that executes a 1 kHz LP FIR
Filter with a sample rate of 8 kHz. Use the coefficients from Listing 3.1.

Rotterdam University Training Digital Signal Processing 50

TDS02 Chapter 3. FIR Filters

start

sample

buf fer[0] = sample

output = 0
k = 0

output = output +
B[k] × buf fer[k]

increase k

k ≤ N ?

i = N

buf fer[i] =
buf fer[i − 1]

decrease i

i ≥ 1 ?

output

end

no

yes

no

yes

Figure 3.10: Flow diagram for the calculation of a new FIR filter output sample.

Rotterdam University Training Digital Signal Processing 51

TDS02 Chapter 3. FIR Filters

After the implementation is complete, put different frequencies on the input and
verify the output to correspond with the designed filter in MATLAB using an
oscilloscope. You are advised to use the Soundcard Oscilloscope program20 on a
PC to generate a frequency response graph. The best result is obtained by using a
frequency sweep input signal generated by a signal generator.

Show the result to your instructor. If everything works as expected, your instructor
will sign off assignment 5a.

In the last loop of the flowchart shown in Figure 3.10 each sample in the buffer is
moved one place towards the end of the buffer. By using a circular buffer we can
make the filter implementation somewhat faster. If we use a circular buffer we
just keep track of the position of the oldest sample in the buffer and override this
value with the new input sample at the start of the flowchart. Now, change your
program to use a circular buffer21 and show the result to your instructor. Note that
you also have to change the code in the first loop shown in Figure 3.10 because
the most recent sample is no longer located at index 0 in the buffer. If everything
works as expected, your instructor will sign off assignment 5b.

When your code works, you will get a new filter specification from your instructor.
Create new coefficients using MATLAB’s Filter Designer yourself and write a report
about this assignment. The guidelines for the report can be found in the course
wiki.

When your new filter is implemented and has the proper characteristics, show the
result to your instructor. If everything works as expected, your instructor will sign
off assignment 5c.

20 https://www.zeitnitz.eu/scms/scope_en

21 More information about circular buffers can be found at https://en.wikipedia.org/wiki/
Circular_buffer.

Rotterdam University Training Digital Signal Processing 52

https://bitbucket.org/HR_ELEKTRO/tds02/wiki/Report%20Requirements/Report_Requirements_TDS02_ebook.pdf
https://www.zeitnitz.eu/scms/scope_en
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Circular_buffer

TDS02 Chapter 4. IIR Filters

4

IIR Filters

In this chapter we will focus on designing and implementing an Infinite Impulse
Response (IIR) filter. These filters are also called recursive filters. A FIR filter, which
was introduced in Chapter 3, uses a certain number of preceding input samples to
calculate the current output sample. An IIR filter not only uses preceding input
samples, but it also uses a certain number of previous output samples. Thus, the
formula for an IIR filter is:

y[n] =
N
∑

k=0

bk · x[n− k]−
M
∑

i=1

ai·y[n− i] (4.1)

Or:

y[n] = −a1 · y[n− 1]− a2 · y[n− 2]− · · · − aM · y[n−M]+

b0 · x[n] + b1 · x[n− 1] + · · · + bN · x[n− N] (4.2)

The output of an IIR filter depends not only on the current and past inputs, but
also on the previous outputs (hence it is recursive).

Rotterdam University Training Digital Signal Processing 53

TDS02 Chapter 4. IIR Filters

4.1 Determination of the Coefficients

Digital recursive filters (which we often specify in the z-domain) are relatively
young compared to analogue recursive filters (which we often specify in the
s-domain). Formulas for analogue filters are well known to designers. These
formulas often form the basis for digital recursive filter design as well, since there
are methods to transform a formula in the s-domain into a formula in the z-domain.
Using such a method, the properties of the filter in the time-domain and frequency-
domain are, approximately, preserved. One popular method is called the Bilinear
Transform (BLT). We will give a short recap on the BLT (as seen in DSP01) and
show a simple example.

The BLT is:

s ≈
2
Ts
·

z − 1
z + 1

(4.3)

Where Ts is the sample period which is 1
fs

where fs is the sample frequency.

Also, recall that the frequency response of a continuous-time filter can be deter-
mined by evaluating the transfer function H(s) at:

s = jωc (4.4)

Likewise, the frequency response of a discrete-time filter can be determined by
evaluating the transfer function H(z) at:

z = e jωd (4.5)

Whereωc are the continuous-time domain frequencies andωd are the discrete-time
domain frequencies.

Since the s-domain analyses a system for t →∞, but the z-domain only concerns
periodic signals, it is interesting to see the relation between ωc and ωd .

Rotterdam University Training Digital Signal Processing 54

TDS02 Chapter 4. IIR Filters

We can find this by using the BLT:

jωc ≈
2
Ts
·

e jωd − 1
e jωd + 1

(4.6)

This simplifies to:

ωc ≈
2
Ts

tan
�

ωd Ts

2

�

(4.7)

See [11, page 203] or https://en.wikipedia.org/wiki/Bilinear_transform#
Frequency_warping.

Note that this is not a linear relation. If you design a filter in the s-domain and
convert it to a filter in the z-domain, especially at the edges of the spectrum of the
discrete-time filter, the response will be “warped”. This is due to the tan function
defined in the relation. This effect is called frequency warping. Before you apply
the Z-transform, any frequencies used in the s-domain transfer functions should
therefore first be “pre-warped”.

Now we have all the tools needed to transform a function of s into a function of z.

4.2 Example of a Simple Recursive Low-Pass Filter

Suppose we want to make an IIR filter with sample rate of 8000 Hz similar to a
low-pass RC filter with a cut-off frequency of 1000 Hz. Recall the transfer function
of a simple low-pass RC filter:

H(s) =
1

1+
s
ωc

=
ωc

ωc + s
=

ωc

s+ωc
(4.8)

We can create this filter in MATLAB using: hs = tf(1000*2*pi, [1 1000*2*pi])

were tf stands for transfer function. We can plot its frequency and phase response

Rotterdam University Training Digital Signal Processing 55

https://en.wikipedia.org/wiki/Bilinear_transform#Frequency_warping
https://en.wikipedia.org/wiki/Bilinear_transform#Frequency_warping

TDS02 Chapter 4. IIR Filters

using the bodeplot command as has been done in the program lpfbodelog.m.
The result of this program is shown in Figure 4.1.

M
ag

ni
tu

de
 (

dB
)

-40

-35

-30

-25

-20

-15

-10

-5

0

101 102 103 104 105

P
ha

se
 (

de
g)

-90

-60

-30

0

Frequency (Hz)

System: hs
Frequency (Hz): 1e+03
Phase (deg): -45

System: hs
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

Figure 4.1: Bode plot of a low-pass filter with a cut-off frequency of 1000 Hz drawn
with a logarithmic frequency scale.

The filter shown in Figure 4.1 is clearly a low-pass filter with a cut-off frequency of
1000 Hz. As you may know22 the amplification at the cut-off frequency should be
20 log(1/

p
2)≈ −3.01 dB and the phase at the cut-off frequency should be −45°.

Both facts can be verified in Figure 4.1.

Note that the frequency is plotted with a logarithmic scale as is custom for Bode
plots. Also note that the frequency magnitude response of this filter will go to
minus infinity as the frequency goes to infinity.

22 See: https://en.wikipedia.org/wiki/Low-pass_filter

Rotterdam University Training Digital Signal Processing 56

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfbodelog.m
https://en.wikipedia.org/wiki/Low-pass_filter

TDS02 Chapter 4. IIR Filters

Because we are interested in the frequencies from 0 to 8000 Hz the Bode plot is
drawn again in Figure 4.1 for this frequency range with the program lpfbodelin.m.
This time a linear frequency scale is used.

M
ag

ni
tu

de
 (

dB
)

-20

-15

-10

-5

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

Frequency (Hz)

System: hs
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

System: hs
Frequency (Hz): 1e+03
Phase (deg): -45

Figure 4.2: Bode plot of a low-pass filter with a cut-off frequency of 1000 Hz drawn
with a linear frequency scale.

Now we can apply the BLT to the analog version of the transfer function to make
it discrete.

Again:

H(s) =
ωc

s+ωc
(4.8)

Rotterdam University Training Digital Signal Processing 57

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfbodelin.m

TDS02 Chapter 4. IIR Filters

Applying the BLT:

H(z)≈
ωc

2
Ts
·

z − 1
z + 1

+ωc

=
ωc Ts(z + 1)

2(z − 1) +ωc Ts(z + 1)
=

ωc Tsz +ωc Ts

2z − 2+ωc Tsz +ωc Ts

=
ωc Tsz +ωc Ts

(ωc Ts + 2) z +ωc Ts − 2
=

ωc Ts

ωc Ts + 2
· z +

ωc Ts

ωc Ts + 2

z +
ωc Ts − 2
ωc Ts + 2

(4.9)

By taking ωc = 1000 · 2π and Ts =
1

8000
we find:

H(z)≈
0.2820 z + 0.2820

z − 0.4361
(4.10)

We can also do this in MATLAB quickly:

>> hs = tf (1000*2*pi, [1 1000*2* pi])

hs =

6283

s + 6283

Continuous -time transfer function.

>> hz = c2d(hs, 1/8000 , 'tustin ')

hz =

0.282 z + 0.282

z - 0.4361

Sample time: 0.000125 seconds

Discrete -time transfer function.

Rotterdam University Training Digital Signal Processing 58

TDS02 Chapter 4. IIR Filters

Now we can verify if the responses are the same using the program lpfzbodelin.m.
The result is shown in Figure 4.3. Note that the magnitude scale is extremely large
(−400 dB represents an attenuation of 1020).

M
ag

ni
tu

de
 (

dB
)

-400

-350

-300

-250

-200

-150

-100

-50

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

Frequency (Hz)

System: hz
Frequency (Hz): 1e+03
Magnitude (dB): -3.25

System: hz
Frequency (Hz): 1e+03
Phase (deg): -46.6

Figure 4.3: Bode plot of a discrete-time low-pass filter with a cut-off frequency of
1000 Hz and a sample frequency of 8000 Hz.

We can see several interesting properties of the BLT transform in Figure 4.3. Due
to the frequency warping, the whole frequency response of the analogue filter,
for which the frequency goes to infinity, is now “compressed” into the frequency
response of the digital filter for which the response only goes to fs/2. The non-
linear characteristic of the tangent is seen here. Also, due to this warping effect,
the cut-off frequency has somewhat shifted. As we can see, the amplification at
the intended cut-off frequency is −3.25 dB but should be −3.01 dB. The phase at
the intended cut-off frequency is −46.6° but should be −45°. If we want to correct
this, we have to apply the pre-warping.

Rotterdam University Training Digital Signal Processing 59

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfzbodelin.m

TDS02 Chapter 4. IIR Filters

We know that:

ωc ≈
2
Ts

tan
�

ωd Ts

2

�

(4.7)

Now, if our desired cut-off frequency in the discrete-time version of our filter
ωd = 2π · 1000, considering our sample rate of 8000 Hz, then in the analogue
domain, the pre-warped frequency is:

ωcprewarped
≈

2
1

8000

tan

2π · 1000 ·
1

8000
2

= 16000 tan

�

π ·
1000
8000

�

≈ 6627 rad/s

(4.11)

If we use this pre-warped frequency in our derived formula for the low-pass filter,
we find:

H(z)≈

ωcprewarped
Ts

ωcprewarped
Ts + 2

· z +
ωcprewarped

Ts

ωcprewarped
Ts + 2

z +
ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

≈
0.2929 · z + 0.2929

z − 0.4142
(4.12)

We can do this in MATLAB even quicker:

>> hs = tf (1000*2*pi, [1 1000*2* pi])

hs =

6283

s + 6283

Continuous -time transfer function.

Rotterdam University Training Digital Signal Processing 60

TDS02 Chapter 4. IIR Filters

>> hz = c2d(hs, 1/8000 , 'prewarp ', 1000*2* pi)

hz =

0.2929 z + 0.2929

z - 0.4142

Sample time: 0.000125 seconds

Discrete -time transfer function.

Now if we look at the Bode plot, shown in Figure 4.4, we see that the new filter
has the correct amplitude and phase response at the cut-off frequency.

M
ag

ni
tu

de
 (

dB
)

-400

-350

-300

-250

-200

-150

-100

-50

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

Frequency (Hz)

System: hz
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

System: hz
Frequency (Hz): 1e+03
Phase (deg): -45

Figure 4.4: Bode plot of a discrete-time low-pass filter with a cut-off frequency of
1000 Hz and a sample frequency of 8000 Hz.

Rotterdam University Training Digital Signal Processing 61

TDS02 Chapter 4. IIR Filters

In Figure 4.5 the Bode plot of the analog (H(s)) and digital (H(z)) filters are
shown.

M
ag

ni
tu

de
 (

dB
)

-40

-35

-30

-25

-20

-15

-10

-5

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

hs

hz

Frequency (Hz)

System: hz
Frequency (Hz): 1e+03
Phase (deg): -45

System: hz
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

Figure 4.5: Bode plots for H(s) and H(z).

Now that we have the right response, we can easily calculate the coefficients for
the filter. Since:

H(z) =
Y (z)
X (z)

≈

ωcprewarped
Ts

ωcprewarped
Ts + 2

· z +
ωcprewarped

Ts

ωcprewarped
Ts + 2

z +
ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

(4.13)

We can now solve Y (z).

Rotterdam University Training Digital Signal Processing 62

TDS02 Chapter 4. IIR Filters

For readability we substitute u=
ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

and w=
ωcprewarped

Ts

ωcprewarped
Ts + 2

.

Y (z) · z + u · Y (z) = w · X (z) · z +w · X (z) (4.14)

Now we make the filter causal by multiplying both sides with z−1:

Y (z) + u · Y (z) · z−1 = w · X (z) +w · X (z) · z−1 (4.15)

Thus:

Y (z) = −u · Y (z) · z−1 +w · X (z) +w · X (z) · z−1 (4.16)

Now we can convert this to the time domain:

y[n] = −u · y[n− 1] +w · x[n] +w · x[n− 1] (4.17)

If we substitute back u and w:

y[n] =
−ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

·y[n−1]+
ωcprewarped

Ts

ωcprewarped
Ts + 2

·x[n]+
ωcprewarped

Ts

ωcprewarped
Ts + 2

·x[n−1]

(4.18)

We find the coefficients for an implementable version of the recursive filter.

The design method described so far comes in handy when we want to design a filter
dynamically in software. For example when we do not now the cut-off frequency
which is required beforehand. If we now the requirements of the filter beforehand
it is much easier to use the MATLAB Filter Design and Analysis tool.

Rotterdam University Training Digital Signal Processing 63

TDS02 Chapter 4. IIR Filters

4.3 MATLAB’s Filter Designer

Calculating the recursive filter coefficients by hand takes a long time. Therefore
we will use MATLAB’s Filter Designer to calculate the coefficients for our Infinite
Impulse Response (IIR) filters.

IIR filters can have many different implementations. Most implementations (or
structures) can be selected in the Filter Designer. Your assignment will be to
implement one of these structures.

4.4 Filter Structures

The simplest form is the Direct-Form I Single Sections structure. If you right click in
the “Current Filter Information” section of the Filter Designer design window, you
can convert the structure of the filter, as can be seen in Figure 4.6. By default, the
structure for an IIR filter is: “Direct-Form II, Second Order Sections”.

The structures of the filter can be explored if you click Show Filter Structure. Now,
create a simple filter, convert its structure to “Direct-Form I”, and convert it to
“Single Section”. Select “Show Filter Structure” from the pop-up menu shown in
Figure 4.6 and verify that the structure which is shown, which is duplicated in
Figure 4.7, directly implements the formula for a recursive filter:

y[n] =
N
∑

k=0

bk · x[n− k]−
M
∑

i=1

ai·y[n− i] (4.1)

Note that even though MATLAB will generate coefficient a1, this coefficient is often
1, and signifies the total output gain of the filter. The direct-form I structure is the
most straightforward implementation. Also note that MATLAB begins the index of
an array with 1, and not with 0 as in C.

Another filter structure is the direct-form II structure shown in Figure 4.8.

Rotterdam University Training Digital Signal Processing 64

TDS02 Chapter 4. IIR Filters

Figure 4.6: Options provided in the “Current Filter Information” section of the Filter
Designer design window.

For this structure, the recursive and non-recursive part of the filter is swapped. This
has the advantage that the delay elements can be combined. For more information
see [8].

A disadvantage of these structures is that if there is only a small (e.g. rounding)
error in any of the coefficients the output value will be incorrect due to the recursive
nature of these filters. Every (e.g. rounding) error will be recursively applied to
the newly calculated samples.

Usually the higher coefficients have a smaller value than the lower coefficients.
If this is all stored in, for example, a 16-bit fixed-point number, then the very

Rotterdam University Training Digital Signal Processing 65

TDS02 Chapter 4. IIR Filters

Figure 4.7: Direct-form I single section filter structure.

Figure 4.8: Direct-form II single section filter structure.

Rotterdam University Training Digital Signal Processing 66

TDS02 Chapter 4. IIR Filters

small values have less significant bits, a lower precision, and thus the round-off
error is relatively big. Therefore, with a limited amount of bits, the effective range
of a coefficient value is low. Even with floating point numbers this range will
decrease exponentially (you might want to look up how floating-point numbers
are stored23).

A good solution to this is to cascade the filters in smaller, second-order (or sometimes
called biquadratic) sections. This can be applied to both the direct-form I and
direct-form II structures. Figure 4.9 shows an example of an IIR second-order
cascaded structure.

Figure 4.9: Direct-form II cascaded filter structure.

Note that the input of the section that is shown here is the output of a previous
section that looks exactly the same (namely like a second order IIR filter), only
with different coefficients. Again, the output of this section is the input for the
next section until there are no more sections for the sample to pass through. By
cascading multiple second-order filters, each filter coefficient will use most of the
range of a digitally stored number, thus making round-off errors less pronounced
in the final output.

Now that we’ve seen how the coefficients are calculated and how we can structure
IIR filters, a new assignment is given.

23 https://en.wikipedia.org/wiki/Floating_point

Rotterdam University Training Digital Signal Processing 67

https://en.wikipedia.org/wiki/Floating_point

TDS02 Chapter 4. IIR Filters

Use MATLAB to calculate the filter coefficients. Don’t attempt to derive the coeffi-
cients with the BLT yourself. This is outside the scope of the course, only mention
the properties of the original analog equivalent of your filter in your report.

4.5 Assignment 6: Infinite Impulse Response Filter

Choose an IIR structure to implement. This can be:

• direct-form I, or

• direct-form II.

The first part of the assignment is to implement a simple second order low-pass
filter to test the code for your chosen structure. Design a simple low-pass IIR filter
in MATLAB with a cut-off frequency of 1000 Hz and a sample frequency of 8000 Hz.
It is important that you first test your code implementation before continuing with
higher-order filters or cascaded structures.

Hint: First draw a flow diagram like the one in the FIR filter assignment, see
Figure 3.10, before you write your code.

Developing an IIR filter using MATLAB’s Filter Designer proves to be more difficult
than expected. See these notes: http://tds02.bitbucket.io/IIRfilter.htm.

Show the result to your instructor. If everything works as expected, your instructor
will sign off assignment 6a.

When your code works, you will get a new filter specification from your instructor.

You are free to choose between an implementation with a cascaded structure (of
second order sections) or a single section filter.

Show the result of your new filter to your instructor. If everything works as
expected, your instructor will sign off assignment 6b.

Write a report about this assignment. The guidelines for the report can be found
in the course repository.

Rotterdam University Training Digital Signal Processing 68

http://tds02.bitbucket.io/IIRfilter.htm
https://bitbucket.org/HR_ELEKTRO/tds02/wiki/Report%20Requirements/Report_Requirements_TDS02_ebook.pdf

TDS02 Chapter 5. Optimizing Your Filter

5

Optimizing Your Filter

In this chapter you will learn how to measure the execution time of your code
and how to take advantage of the specific features provided by the Cortex-M4 and
TLV320AIC3254 codec to speed up the implementation of your filter.

5.1 How to Optimize C Code for the Cortex-M4

In Section 2.1.2 several features which enable the Cortex-M4 to perform digital
signal algorithms faster are enumerated.

The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7 Processors [13] describes
how you can maximize the performance of your DSP code by using certain instruc-
tions, C code idioms and intrinsics, and the CMSIS DSP Library24. You can also
use the information provided in chapter 3 of ARM Optimizing C/C++ Compiler
v18.1.0.LTS User’s Guide [1, Page 55] to optimize your code.

It is also possible to implement a filter in the TLV320AIC3254 codec itself. This is
the most effective and efficient way to implement a FIR or IIR filter. The Cortex-M4

24 http://arm-software.github.io/CMSIS_5/DSP/html/index.html

Rotterdam University Training Digital Signal Processing 69

http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf#page=55
http://arm-software.github.io/CMSIS_5/DSP/html/index.html

TDS02 Chapter 5. Optimizing Your Filter

is now only used to initialize the codec. How to implement a filter in the codec is
explained in the TLV320AIC3254 Application Reference Guide [14].

5.2 Assignment 7: Profile and Optimize your Filter

Measure the number of clock cycles which are needed to calculate a new output
sample for your implementation of the FIR filter (assignment 5) or IIR filter
(assignment 6). You can use the Profile Clock which is provided in CCS25 to do
this.

Use the techniques described in Section 5.1 to optimize your code and make it as
fast as you can.

You may also optimize your filter by implementing it inside the codec.

Write a report about this assignment. The guidelines for the report can be found
in the course repository.

25 See http://software-dl.ti.com/ccs/esd/documents/ccs_counting_cycles.html#
profile-clock.

Rotterdam University Training Digital Signal Processing 70

https://bitbucket.org/HR_ELEKTRO/tds02/wiki/Report%20Requirements/Report_Requirements_TDS02_ebook.pdf
http://software-dl.ti.com/ccs/esd/documents/ccs_counting_cycles.html#profile-clock
http://software-dl.ti.com/ccs/esd/documents/ccs_counting_cycles.html#profile-clock

TDS02 Bibliography

Bibliography

[1] ARM Optimizing C/C++ Compiler v18.1.0.LTS User’s Guide. Texas Instru-
ments. 2018. URL: http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf
(cit. on p. 69).

[2] CC3200AUDBOOST schematics. Texas Instruments Incorporated. 2014. URL:
http://www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf (cit. on
p. 14).

[3] CC3200AUDBOOST User’s Guide. Texas Instruments Incorporated. 2014. URL:
http://www.ti.com/lit/ug/swru383a/swru383a.pdf (cit. on p. 13).

[4] CC3220 SimpleLink™ Wi-Fi® and Internet of Things Technical Reference Man-
ual. Texas Instruments Incorporated. 2017. URL: http://www.ti.com/lit/
ug/swru465/swru465.pdf (cit. on pp. 13, 26, 27, 28, 31, 32).

[5] CC3220 SimpleLink™ Wi-Fi® LaunchPad™ Development Kit Hardware User’s
Guide. Texas Instruments Incorporated. 2018. URL: http://www.ti.com/
lit/ug/swru463b/swru463b.pdf (cit. on p. 13).

[6] CC3220 SimpleLink™ Wi-Fi® Wireless and Internet-of-Things Solution, a
Single-Chip Wireless MCU. Texas Instruments Incorporated. 2017. URL: http:
//www.ti.com/lit/ds/symlink/cc3220.pdf (cit. on pp. 13, 17).

[7] Cortex™-M4 Devices Generic User Guide. ARM. 2016. URL: https://static.
docs.arm.com/dui0553/b/DUI0553.pdf (cit. on p. 19).

Rotterdam University Training Digital Signal Processing 71

http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf
http://www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf
http://www.ti.com/lit/ug/swru383a/swru383a.pdf
http://www.ti.com/lit/ug/swru465/swru465.pdf
http://www.ti.com/lit/ug/swru465/swru465.pdf
http://www.ti.com/lit/ug/swru463b/swru463b.pdf
http://www.ti.com/lit/ug/swru463b/swru463b.pdf
http://www.ti.com/lit/ds/symlink/cc3220.pdf
http://www.ti.com/lit/ds/symlink/cc3220.pdf
https://static.docs.arm.com/dui0553/b/DUI0553.pdf
https://static.docs.arm.com/dui0553/b/DUI0553.pdf

TDS02 Bibliography

[8] A.W.M. van den Enden and N.A.M. Verhoeckx. Digitale Signaalbewerking.
MK Publishing, 2002. ISBN: 978-90-6674-649-7 (cit. on p. 65).

[9] “IEEE Standard for Floating-Point Arithmetic.” In: IEEE Std 754-2008 (2008),
pp. 1–70 (cit. on p. 17).

[10] Sen M. Kuo, Bob H. Lee, and Wenshun Tian. Real-Time Digital Signal Process-
ing: Fundamentals, Implementations and Applications. 3rd. MK Publishing,
2013. ISBN: 978-1-118-41432-3 (cit. on pp. 7, 8, 42).

[11] Paul A. Lynn and W. Fuerst. Inleiding Digitale Signaalbewerking met Maple
en Matlab. Ed. by J.W.M. Andriessen. ThiemeMeulenhof, 2004. ISBN: 978-
90-5574-448-0 (cit. on pp. 35, 42, 55).

[12] Donald S. Reay. Digital Signal Processing Using the ARM® Cortex®-M4. 1st.
John Wiley & Sons, Inc., 2015. ISBN: 978-1-118-85904-9 (cit. on p. 7).

[13] The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7 Processors. Thomas
Lorenser. 2016. URL: https://community.arm.com/cfs-file/__key/
communityserver-blogs-components-weblogfiles/00-00-00-21-42/

7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_

M4-and-Cortex_2D00_M7.pdf (cit. on pp. 18, 69).

[14] TLV320AIC3254 Application Reference Guide. Texas Instruments Incorpo-
rated. 2012. URL: http://www.ti.com/lit/an/slaa408a/slaa408a.pdf
(cit. on pp. 13, 15, 16, 70).

[15] TLV320AIC3254 Ultra Low Power Stereo Audio Codec with Embedded miniDSP.
Texas Instruments Incorporated. 2014. URL: http://www.ti.com/lit/ds/
symlink/tlv320aic3254.pdf (cit. on pp. 13, 16).

Rotterdam University Training Digital Signal Processing 72

https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
http://www.ti.com/lit/an/slaa408a/slaa408a.pdf
http://www.ti.com/lit/ds/symlink/tlv320aic3254.pdf
http://www.ti.com/lit/ds/symlink/tlv320aic3254.pdf

TDS02 Appendix A. Fixed-point Arithmetic

A

Fixed-point Arithmetic

This appendix gives a short introduction into fixed-point arithmetic. Floating-point
and fixed-point numbers were introduced in Section 2.1.2. The Qn.m notation
for fixed-point numbers was also explained in Section 2.1.2. In this appendix
we will see how arithmetic operations (add, subtract, multiply, and divide) with
fixed-point numbers can be performed. As already explained the processor which
we use is optimized for 16-bit fixed-point numbers. In this appendix we will use
8-bit fixed-point numbers instead. A Qn, m fixed-point value will be stored in a
1+ n+m-bit two’s complement integer variable.

A.1 Add and Subtract

If we want to add or subtract two fixed-point numbers we have to align their
radix points. For example if a is a Q5.2 encoded fixed point number with value
00001101 (000011.012 = 3.2510) and b is a Q4.3 encoded fixed point number
with value 00100101 (00100.1012 = 4.62510), then a+ b can not be calculated by
simply adding their values. The radix points must be aligned before the addition as
shown in Figure A.1. As can be seen in Figure A.1, the result is a Q5.3 fixed-point
number with value 000111110 (000111.1112 = 7.87510).

Rotterdam University Training Digital Signal Processing 73

TDS02 Appendix A. Fixed-point Arithmetic

000011.01 +
00100.101 =

000111.111

Figure A.1: Adding a Q4.3 to a Q5.2 fixed-point number.

In general, when we add a Qn1, m1 fixed-point number by a Qn2, m2 fixed-point
number, the result will be a Qmax(n1+ n2+ 1), max(m1+m2) fixed-point number.

When programming the number of bits we use for variables is most of the times
fixed (e.g. to 8-bit). In this case we can convert a from Q5.2 to Q4.3 by shifting
it one place to the left. Care must be taken, not to generate an overflow by this
operation. After the shift we can use an integer addition because both numbers are
Q4.3 and the result will also be Q4.3 (when we assume that no overflow occurs
when performing the integer addition). The C code is given in Listing A.1.

int8_t a = 0x0d; // Q5.2 with decimal value 3.25

int8_t b = 0x25; // Q4.3 with decimal value 4.625

int8_t sum = (a << 1) + b; // sum will be Q4.3 with ←-
,→ decimal value 7.875

Listing A.1: Adding a Q4.3 to a Q5.2 fixed-point number in C.

Alternatively it is also possible to convert b from Q4.3 to Q5.2 by shifting it one
place to the right. This operation can not cause an overflow but some precision is
lost. After the shift we can use an integer addition because both numbers are Q5.2
and the result will also be Q5.2 (when we assume that no overflow occurs when
performing the integer addition). The C code is given in Listing A.2.

int8_t a = 0x0d; // Q5.2 with decimal value 3.25

int8_t b = 0x25; // Q4.3 with decimal value 4.625

int8_t sum = a + (b >> 1); // sum will be Q5.2 with ←-
,→ decimal value 7.75

Listing A.2: Adding a Q4.3 to a Q5.2 fixed-point number in C. Please note the sum is

less precise than the sum calculated in Listing A.1.

Rotterdam University Training Digital Signal Processing 74

TDS02 Appendix A. Fixed-point Arithmetic

Fixed-point numbers can be subtracted in a similar way. For example we can
calculate a− b by converting a to Q4.3 and perform an integer subtraction. The
result will be Q4.3 in two’s complement notation (when we assume that no overflow
occurs when performing the integer subtraction). The operation is shown in
Figure A.2. The result is 11110.101two’s complement = −00001.0112 = −1.375,
which is the correct answer.

00011.010 -
00100.101 =
11110.101

Figure A.2: Subtracting two Q4.3 fixed-point numbers.

A.2 Multiply and Divide

If we multiply two fixed-point numbers we can just multiply them by using integer
multiplication. The only thing left to do, is figuring out where the radix point must
be placed in the result. Figure A.3 shows how a · b can be calculated.

000011.01 *
00100.101 =
000.01101 +

0000.0000 +
00001.101 +

000000.00 +
0000000.0 +

00001101 +
00000000 +

00000000 =
0000001111.00001

Figure A.3: Multiplying a Q5.2 with a Q4.3 fixed-point number.

As can be seen in Figure A.3, the result is a Q9.5 fixed-point number with value
0000001111.00001 (0000001111.000012 = 15.0312510), which is the correct
answer. The precision if the result is higher than the precision of the multiplier

Rotterdam University Training Digital Signal Processing 75

TDS02 Appendix A. Fixed-point Arithmetic

and multiplicand. We can convert the result to the same precision as the multiplier
(Q4.3) by shifting it two places to the right and truncating it to 8 bits. We obviously
will lose some precision and before the truncation we must check if the result can
be represented in 8 bits. This will yield a Q4.3 fixed-point number with value
01111000 (01111.0002 = 1510).

In general, when we multiply a Qn1, m1 fixed-point number by a Qn2, m2 fixed-
point number, the result will be a Qn1 + n2, m1 +m2 fixed-point number.

When we program in C it is important to prevent an overflow while calculating a
product. Most of the time the multiplier and the multiplicand must be casted to a
bigger data type before the multiplication is performed.

Divisions can be performed in a similar manner as multiplications. In general,
when we divide a Qn1, m1 fixed-point number by a Qn2, m2 fixed-point number,
the result will be a Qn1 +m2, m1 −m2 fixed-point number.

Rotterdam University Training Digital Signal Processing 76

	Introduction
	Purpose and Prerequisites
	Course Planning
	Document Organization

	Preliminary Assignments
	Assignment 0: Introduction to the CC3200AUDBOOST and CC3220 LAUNCHXL Boards
	TLV320AIC3254 Codec
	CC3220S SoC
	Electrostatic Discharge

	Assignment 1: Working with Code Composer Studio
	Installing Software and Configure Hardware
	Running the Demo Program

	Assignment 2: Generating Output
	Polling-based Output
	Interrupt-based Output

	Assignment 3: Receiving Input
	Interrupt-based Input
	Audio Input

	Assignment 4: Delays

	FIR Filters
	Determination of the Coefficients
	Example
	Windowing
	MATLAB Filter Designer
	Assignment 5: Finite Impulse Response Filter

	IIR Filters
	Determination of the Coefficients
	Example of a Simple Recursive Low-Pass Filter
	MATLAB's Filter Designer
	Filter Structures
	Assignment 6: Infinite Impulse Response Filter

	Optimizing Your Filter
	How to Optimize C Code for the Cortex-M4
	Assignment 7: Profile and Optimize your Filter

	Bibliography
	Fixed-point Arithmetic
	Add and Subtract
	Multiply and Divide

