

<u>brojz@hr.nl</u> <u>muiko@hr.nl</u>

Training Digital Signal Processing

ELETDS02

FIR / IIR filters

Original author: Johan Peltenburg

2 weeks ago

- Signals in real life are continuous and analog.
- Need to sample them to be able to process them digitally.
- They become **discrete-time digital signals**.
- Signals can be represented as sines/cosines with certain **frequencies**.
- Many problems are specified or solved in the Fourier frequency domain.
- We can switch between time and frequency domain with the Fourier Transform.

Last week

- Filters remove certain frequencies from a signal.
- Filters have a transfer function often specified in the frequency domain.
- We can implement the filter in the discrete-time domain by using the **IDTFT** (Inverse Discrete Time Fourier Transform).
- (Discrete-time) filters have several characteristic such as response shape (LP, HP, BP, BS), cut-off frequency and others.

FIR FILTERS AND WINDOWS

FIR Filter

• Last week we obtained a general formula for an FIR filter:

• How to get the coefficients?

FIR filter coefficients

- Many methods:
 - Window Design Method (via IDTFT)
 - Frequency Sampling (also involves IDTFT)
 - Weighted Least Squares Method (need statistics :-()
 - Some other methods

filterDesigner(1)

- MATLAB can apply the IDTFT for us.
- (It can also do many other methods)
- Use filterDesigner:
- Set relevant parameters.
- Click "Design Filter" ...

filterDesigner (2)

- Resulting magnitude response is shown:
- But wait...

Windowing (1)

- The IDTFT is as follows: $x[n] = T \int_{\frac{-1}{2T_s}}^{\frac{1}{2T_s}} X(f) e^{j2\pi n fTs} df$
- But... $n \in \mathbb{Z}$. (n can be any integer)
- We have an infinite number of coefficients that represents our filter in time. :-(
- To implement a filter in practice , we need to have a *finite* number of coefficients.
- The filter order specifies how many coefficients we use:

$$y[k] = \sum_{n=0}^{N} b_n \cdot x[k-n] = \vec{b} \cdot \vec{x}[k]$$

(For an N-th order FIR filter we need N samples.)

Windowing (2)

- Windowing is limiting the number of coefficients (to the desired filter order) in a certain way.
 - For example with a "rectangular" window:

Windowed filter:

• We adjust the filter in time, what is the effect in frequency?

Windowing (3)

 A rectangular window is not the only window:

 We can let the coefficients at the edges go to zero more smoothly:

Windowing (4)

• LP filter with rectangular window:

• Same filter with Hamming window:

IIR FILTERS

IIR filters

- FIR is a non-recursive filter (no feedback).
- Discrete-Time filters with feedback exist:

$$y[n] = \sum_{k=0}^{N} b_k \cdot x[n-k] - \sum_{i=1}^{M} a_i \cdot y[n-i]$$

- We call them Infinite Impulse Response filters (why?).
- The filter is some kind of difference equation.
- We have a special frequency domain for this called the Z-domain.
- It is very closely related to the Fourier frequency domain.

Even more transforms

- IIR filters are much more effective with the same number of calculations (coefficients).
- However, because they contain feedback, the output can become **unstable**.
- They are often designed by looking at their well studied continuous-time equivalents.

IIR in filterDesigner

• filterDesigner does the math.

(A simple example is given in the lab handbook if you're interested.)

Comparison of FIR and IIR (1)

Comparison of FIR and IIR (2)

of calculations

IIR filter structures

- For IIR filters different implementation structures exist (see lab handbook).
- Simplest form (Direct Form I):

19

Summary

- The IDTFT gives us an infinite number of coefficients of our **FIR filter**.
- To implement the filter in practice we need to apply **windowing**.
- Rectangular windowing might introduce **unwanted effects** in the frequency domain.
- **Different window formulas** exist that try to keep certain unwanted effects to a minimum. (Experiment with these!)
- **IIR filters** contain feedback (or are recursive).
- With only a few coefficients good results can be achieved .
- Might be unstable.

