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Signals in real life are continuous and analog.

Need to sample them to be able to process them digitally.

They become discrete-time digital signals.

Signals can be represented as sines/cosines with certain frequencies.

Many problems are specified or solved in the Fourier frequency
domain.

We can switch between time and frequency domain with the Fourier
Transform.
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Last week

Filters remove certain frequencies from a signal.

Filters have a transfer function often specified in the frequency
domain.

We can implement the filter in the discrete-time domain by using the
IDTFT (Inverse Discrete Time Fourier Transform).

(Discrete-time) filters have several characteristic such as response shape
(LP, HP, BP, BS), cut-off frequency and others.

2 2

HOGESCHOOL
3 ROTTERDAM




TDS02

FIR FILTERS AND WINDOWS




FIR Filter

e Last week we obtained a general formula for an FIR filter:

n=0 \Vector with samples

x[k — N] to x[k].

Vector with
coefficients b to by.

e How to get the coefficients?
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FIR filter coefficients

e Many methods:
— Window Design Method (via IDTFT)
— Frequency Sampling (also involves IDTFT)
— Weighted Least Squares Method (need statistics :-( )
— Some other methods

Fourier transform l

H(z)

L _| |
Inverse Fourier transform "
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filterDesigner(1)

#1 Filter Design & Analysis Tool

Eile Edit Analysis  Targets View Window Help

e MATLAB can apply the PEE&R a<«i0 0 EENE2+0- BHONE W
IDTFT for us. | — Current Filter Information — Fitter Specifications

° (It Can also do many Structure: Direct-Form FIR
other methods) =1

Source: De=igned

e Use e
filterDesigner: e 5 =

[ Fitter Manager ...

¢ SEt re I eva nt p a ra m Ete rS e — Response Typg———— — Fitter Order — Freguency Specifications. — Magnitude Specifications

@ |Lowpass | Units: |Hz
. {4 * * V4 - 3 )
« Click “Design Filt
IC ESI n I er see ) e J Minimum order Fs: |42000 The attenuation at cutoff
) Bandpaszs freqguencies iz fixed at & dB

(half the pas=zband gain}

(7) Bandstop __ Options Fc: 2400

_) | Differentiator [E1] Scale Passband

| Design Method— || Window: Rectangular =

VIR |Butterworth

@ FIR |Window




filterDesigner (2)

21 Filter Design & Analysis Tool

File Edit Analysis Targets Yiew Window Help

e Resulting magnitude NEEaER | a<il [yl ENE+0 BHOE W
response iS ShOWﬂ: — Current Fitter Information — Magnitude Rezponse (dB)

A wild sidelobe 7]
appears!

Structure: Direct-Form FIR
Order: 50

o But Wait... Stable:  Yes

Source: Designed

P
=

=
=

Magnitude (dB)

i
(=3
=]

[ Store Filter ... 10

( Fitter Manager ... Frequency (kHz)

— Response Type——  Filter Order

— Freguency Specifications — Magnitude Specifications.
@ Lowpass | |5 Unitz: |Hz '

Highpass

Minimum order Fs: |48000 The attenuation at cutoff

frequencies is fixed at 6 dB
") Bandstop __ Options Fo: 2400 (half the pas=zband gain}
- 1 |:| Scale Passband

(") Bandpass

Differentiator |
| Design Method—[| Window: Rectangular

VIR |Butterworth

@ FIR |window

[ view |

Computing Fesponse ... Done




Windowing (1)

e The IDTFT is as follows: 1
2T .
x[n] — Tf_l X(f)e]ZTCTLfTSdf

2T

S

e But...n € Z. (n can be any integer)
 We have an infinite number of coefficients that represents our filter in time. :-(

 To implement a filter in practice , we need to have a finite number of
coefficients.

 The filter order specifies how many coefficients we use:

N
VK] = an-x[k—n] = b - 2[K]
n=0

(For an N-th order FIR filter we need N samples.) "/
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Windowing (2)

— Impulse Response

................ = This would go on

* Windowingis limitingthe |
to infinity

number of coefficients (to the /

=
=
im

desired filter order) in a certain

way.
0

For example with a “rectangular”
window:

Amplitude

Windowed filter: | .. E—— e e
i L L] i E

« We adjust the filter in time, | I |
what is the effect in frequency? U%‘T ; qw*. 5
: v |:]iime [msecgnﬁds} o 1 "

Amplitude
[ )
=
[r
——
—:_.
—
—. 1
e
’ e
E i
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Windowing (3)

e A rectangular
window is not the
only window:

* We can let the
coefficients at the
edges go to zero
more smoothly:

— Window Viewer

Amplitude

0.2

Time domain
Rectangular
1II3 EIE E'IE -‘-IE a0
Samples

Leakage Factor: 9.25 %

Magnitude (dB)

40

Relative sidelobe attenuation: -13.3 dB

Frequency domain

o 0.2 0.4 0.5 0.8

MNormalized Frequency (== radisample}

Mainlobe width (-3dB}): 0.035156

Amplitude

— Window Viewer

Time domain

M agnitude (dB)

Freguency domain

_______ Different effecton
frequency!

Hamming
! ! ! H a0 i H ! H
10 20 30 &0 50 0 0.2 0.4 0.6 0.3
Samples Normalized Freguency (== radizample)
Leakage Factor: 0.04 % Relative sidelobe attenuation: -42.3 dB Mainlobe width (-3dB): 0.050721
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Windowing (4)

— Magnitude Response (dB)

0

-20

-------------------------------------------------------------------

e LP filter with rectangular window:

Magnitude (dB)

|
0 J 10 15

Frequency (kHz)

— Magnitude Response (dB)

| e———— s - T -
N What did we gain? |
: : : : = = What did we lose?
e Same filter with Hamming window: |2, \ . . . |
£

Ty | A Pl

| ;Wﬂmﬂﬂr‘m\wﬂmﬂ
Frequency (kHz) "
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lIR filters

 FIR is a non-recursive filter (no feedback).

e Discrete-Time filters with feedback exist:

a; - yln —i]

=

N
ylnl = ) by~ xln— k] -
k=0

=1

 We call them Infinite Impulse Response filters (why?).

 The filter is some kind of difference equation.

 We have a special frequency domain for this called the Z-domain.
e |tisvery closely related to the Fourier frequency domain.
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Even more transforms

e |IR filters are much more effective with the same number of calculations
(coefficients).

e However, because they contain feedback, the output can become unstable.
e They are often designed by looking at their well studied continuous-time

equivalents.
Continuous- Discrete-time
— time domain Sampling »  domain
X(t) x[n]
Inverse Laplace Laplace 7 transform Inverse Z
transform transform transform
v v
:aplac,e' Bilinear Transform Z-domain
omain
(frequency) <—Forward/Backward Euler—{ (frequency) "
X(S) Etc... X(Z) HOGESCHOOL
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lIR in filterDesigner

# Filter Design & Analysis Tool

File Edit Analysis Targets View Window Help

« filterDesigner
does the math.

(A simple example is given in the
lab handbook if you're interested.)

NedESk a<id D HEYd2:0 BhLRIE| W

— Current Fitter Information

Structure: Direct-Form I,
Second-Order
Sections

Order: 5

Sections 3

Stable: Yes

Source: Designed

— Magnitude Response (dB)

Magnitude (dB)

P M N ———

| R [

| U Uy | UG U IO [

[ Store Filter ...

[ Fitter Manager ...

[Sp]

—
[Sp]

Frequency (kHz)

— Response Type
@ |Low pass
o |H ighpass

(7) Bandpass

(") Bandstop

Differentiator
|- De=ign Method

@ IR |Butterworth

D) FR | Window

— Filter Order

@ Specify order: |5

() Minimum order

— Options

There are no optional
parameters for this design
method.

— Frequency Specifications
Units: |Hz

Fs: 48000

Fe: 2400

— Magnitude Specifications.

The attenuation at cutoff
frequencies is fixed at 3 dB
(half the passband power)

Designing Filter ... Done




Comparison of FIR and IIR (1)

FIR:

5t order

Fc = 2.4 kHz
Magnitude (d

~ -3 dB

lIR (Butterworth):

5t order
Fc=2.4kH

Magnitude (gB)

~ -15 dB

— Magnitude Response (dB)

dh\
P
— []

=
=

"""""""""""""""""""""""""""""""""""""""

Magnitu

___________________________________________________________________

i
(g ]
=

..................................................................

0 5 10 15 20
quency (kHz)
— Magnitude Response (dB)

—

-------------- SN SO SN D W

0 5 10 15 20

Frequency (kHz)
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Comparison of FIR and IIR (2)

— Magnitude Responze

FIR (Hamming window):

Fc=2.4 kHz ___________
20t order |2 N

""""""""""""""""""""""""""""""""""""""""

---------------------------------------------------------------------

Magnitude

10 15 20

Frequency (kHz)

IR (Butterworth): | .\ . . & |
Fe=24KHz |30

"""""""""""""""""""""""""""""""""""""""""""""""

10t order .

Magnitude

10 15 20
Frequency (kHz)
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Roughly the
same number
of calculations

2 2

HOGESCHOOL
ROTTERDAM




lIR filter structures

* For IR filters different implementation structures exist (see lab handbook).

e Simplest form (Direct Form 1):

N M
Y[n] = z bk . X[Tl — k] — z a; - y[n — i] Addition (watch the signs!)

-— "W @ s - —Ir~|:++k }—h@ » >-—H+_L i—l— W —IP
L T
S Z pe
Multiplication — e
k.
1

P bi2]

r

#[n-2] - [n-2]

Delay of Fis v v
#[n-k] z z [n-]
\—>{boo am}<—‘ "
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Summary

The IDTFT gives us an infinite number of coefficients of our FIR filter.

To implement the filter in practice we need to apply windowing.

Rectangular windowing might introduce unwanted effects in the
frequency domain.

Different window formulas exist that try to keep certain unwanted
effects to a minimum. (Experiment with these!)

lIR filters contain feedback (or are recursive).
With only a few coefficients good results can be achieved .
Might be unstable.
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