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2 weeks ago

• Signals in real life are continuous and analog.
• Need to sample them to be able to process them digitally.
• They become discrete-time digital signals.
• Signals can be represented as sines/cosines with certain frequencies.
• Many problems are specified or solved in the Fourier frequency 

domain.
• We can switch between time and frequency domain with the Fourier 

Transform. 
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Last week

• Filters remove certain frequencies from a signal.
• Filters have a transfer function often specified in the frequency 

domain.
• We can implement the filter in the discrete-time domain by using the 

IDTFT (Inverse Discrete Time Fourier Transform).
• (Discrete-time) filters have several characteristic such as response shape 

(LP, HP, BP, BS), cut-off frequency and others.
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FIR FILTERS AND WINDOWS
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FIR Filter

• Last week we obtained a general formula for an FIR filter:

• How to get the coefficients?
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𝑦𝑦 𝑘𝑘 = �
𝑛𝑛=0
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Vector with 
coefficients 𝑏𝑏0 to 𝑏𝑏𝑁𝑁.

Vector with samples 
𝑥𝑥[𝑘𝑘 − 𝑁𝑁] to 𝑥𝑥[𝑘𝑘].



FIR filter coefficients

• Many methods:
– Window Design Method (via IDTFT)
– Frequency Sampling (also involves IDTFT)
– Weighted Least Squares Method (need statistics :-( )
– Some other methods

6

Fourier transform

Inverse Fourier transform
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filterDesigner(1)

• MATLAB can apply the 
IDTFT for us.

• (It can also do many 
other methods)

• Use 
filterDesigner:

• Set relevant parameters.
• Click “Design Filter” ...
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filterDesigner (2)

• Resulting magnitude 
response is shown:

• But wait...
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A wild sidelobe
appears!



Windowing (1)

• The IDTFT is as follows:

• But... 𝑛𝑛 ∈ ℤ . (n can be any integer)
• We have an infinite number of coefficients that represents our filter in time. :-(
• To implement a filter in practice , we need to have a finite number of 

coefficients.
• The filter order specifies how many coefficients we use:

(For an N-th order FIR filter we need N samples.)

9

𝑦𝑦 𝑘𝑘 = �
𝑛𝑛=0

𝑁𝑁

𝑏𝑏𝑛𝑛 � 𝑥𝑥[𝑘𝑘 − 𝑛𝑛] = 𝑏𝑏 � 𝑥⃗𝑥[𝑘𝑘]

𝑥𝑥 𝑛𝑛 = 𝑇𝑇�
−1
2𝑇𝑇𝑠𝑠

1
2𝑇𝑇𝑠𝑠 𝑋𝑋 𝑓𝑓 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑



Windowing (2)

• Windowing is limiting the 
number of coefficients (to the 
desired filter order) in a certain 
way. 

For example with a “rectangular” 
window:

Windowed filter:

• We adjust the filter in time, 
what is the effect in frequency?
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This would go on 
to infinity



Windowing (3)

• A rectangular 
window is not the 
only window:

• We can let the 
coefficients at the 
edges go to zero 
more smoothly:
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Rectangular

Hamming

Different effect on 
frequency!



Windowing (4)

• LP filter with rectangular window:

• Same filter with Hamming window:
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What did we gain?
What did we lose?



IIR FILTERS
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IIR filters

• FIR is a non-recursive filter (no feedback).

• Discrete-Time filters with feedback exist:

• We call them Infinite Impulse Response filters (why?).
• The filter is some kind of difference equation.
• We have a special frequency domain for this called the Z-domain.
• It is very closely related to the Fourier frequency domain.
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Even more transforms
• IIR filters are much more effective with the same number of calculations 

(coefficients).
• However, because they contain feedback, the output can become unstable.
• They are often designed by looking at their well studied continuous-time 

equivalents.
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Bilinear Transform
Forward/Backward Euler

Etc...

Continuous-
time domain

x(t)

Laplace-
domain

(frequency)
X(s)

Discrete-time 
domain

x[n]

Z-domain 
(frequency)

X(z)

Laplace
transform

Z transformInverse Laplace
transform

Sampling

Inverse Z
transform



IIR in filterDesigner

• filterDesigner
does the math.

(A simple example is given in the 
lab handbook if you’re interested.)
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Comparison of FIR and IIR (1)

FIR:
5th order

Fc = 2.4 kHz
Magnitude (dB)

IIR (Butterworth):
5th order

Fc = 2.4 kHz
Magnitude (dB)
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Fc

≈ -3 dB

≈ -15 dB



Comparison of FIR and IIR (2)

FIR (Hamming window):
Fc = 2.4 kHz

20th order
Magnitude

IIR (Butterworth):
Fc = 2.4 kHz

10th order 
Magnitude
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Roughly the 
same number 
of calculations



IIR filter structures

• For IIR filters different implementation structures exist (see lab handbook).
• Simplest form (Direct Form I):
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Multiplication

Delay of  1
𝐹𝐹𝑠𝑠

Addition (watch the signs!)𝑦𝑦 𝑛𝑛 = �
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Summary

• The IDTFT gives us an infinite number of coefficients of our FIR filter.
• To implement the filter in practice we need to apply windowing.
• Rectangular windowing might introduce unwanted effects in the 

frequency domain.
• Different window formulas exist that try to keep certain unwanted 

effects to a minimum. (Experiment with these!)

• IIR filters contain feedback (or are recursive).
• With only a few coefficients good results can be achieved .
• Might be unstable.
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