

<u>brojz@hr.nl</u> <u>muiko@hr.nl</u>

Training Digital Signal Processing

ELETDS02

Fixed point calculations

Last week

- The IDTFT gives us an infinite number of coefficients of our **FIR filter**.
- To implement the filter in practice we need to apply **windowing**.
- Rectangular windowing might introduce **unwanted effects** in the frequency domain.
- **Different window formulas** exist that try to keep certain unwanted effects to a minimum. (Experiment with these!)
- **IIR filters** contain feedback (or are recursive).
- With only a few coefficients good results can be achieved .
- Might be unstable.

FIXED POINT CALCULATIONS

Fixed point versus floating point

• Floating point numbers:

- Standardized in IEEE Standard for Floating-Point Arithmetic (IEEE 754)
- Supported in almost any programming language
- Big dynamic range, e.g. 32-bit single precision (float in C): 1.2E-38 to 3.4E+38
- Precision varies with value, e.g. float has 23 significant bits, the precision depends on the position of the binary point which varies
- Calculations take more time / chip area / power than integer calculations

• Fixed point numbers:

- Not standardized and unsupported in almost any programming language
- Small dynamic range (watch out for overflows)
- Fixed precision
- Calculations are almost the same as integer calculations

FIXED POINT EXAMPLES 1

Integer numbers are almost always represented in two's complement binary

 $x = 010010000011000_b = 18456_d$

Fixed point numbers are often represented in Qm.n format Qm.n = a two's complement number with m bits before and n bits behind the binary point and an implicit sign bit

Q0. 15:
$$x = 0.100100000011000_b$$

 $x = 2^{-1} + 2^{-4} + 2^{-11} + 2^{-12} = 0.56323_d$
Q2. 13: $x = 010.0100000011000_b$
 $x = 2^1 + 2^{-2} + 2^{-9} + 2^{-10} = 2.25293_d$
Q5. 10: $x = 010010.0000011000_b$
 $x = 2^4 + 2^1 + 2^{-6} + 2^{-7} = 18.02344_d$

FIXED POINT EXAMPLES 2

2's complement integer: $y = 1100111111111000_{h} = (-)0011000000001000_{h} = -12296_{d}$ **Q0.15**: $y = (-)0.01100000001000_h$ $v = -(2^{-2} + 2^{-3} + 2^{-12}) = -0.37524414_d$ **Q2.** 13: $y = (-)001.100000001000_{h}$ $y = -(2^0 + 2^{-1} + 2^{-10}) = -1.500976563_d$ **Q5.** 10: $y = (-)001100.000001000_{h}$ $x = -(2^3 + 2^2 + 2^{-7}) = -12.0078125_d$

FIXED POINT MATLAB NOTATION

General notation	Matlab
Q0.15	s16,15
Q2.13	<i>s</i> 16,13
Q5.10	s16,10
16 bits total of which bits right of the po	
	ts left of the point ling signbit)

Targets -> Generate C Header

承 Generate C	Header		٢		
Variable nam	Variable names in C header file				
Numerator:	В	Numerator length: BL			
Data type to	use in export		_		
	Export suggested:	Signed 16-bit integer with 16-bit fractional length			
	Export as:	Signed 16-bit integer Fractional length: 16			
		Generate Close Help			

C-HEADER

1/*	,		
د د د - د/ا د	Generated by MATLAN Generated on: 15-Se / / Discrete-Time FIR N	Filter (real)	16 bit fixed point number with 16 bits right of the point. (2's complement!)
	Filter Structure		
		: 21	
		: Yes	
		: Yes (Type 1) : fixed For example:	
			00 0110 0110 0111
		$1639_d = 00$	$000\ 0110\ 0110\ 0111_b$
	Filter Internals		fixed point:
*	Output	$: s33.31 \rightarrow [-2, 2]$ (auto determined)	
*	Product	: s31,31 -> [-5.000000e-01 5.000000e-01) (auto determined) 0.0000	0011001100111_{b}
*		: s33,31 -> [-2 2) (auto determined)	-
*		: No rounding	
*	Overflow Mode	: No overflow	
/* #i]/*	nclude "tmwtypes.h"	≈ 0	$a^{0} + 2^{-11} + 2^{-14} + 2^{-15} + 2^{-16})$.025009155 _d
	Expected path to tr		
	C:\Program Files\M4	ATLAB_2016a\extern\include\tmwtypes.h	
C 0	nst int BL = 21;		
	onst int16 T B[21] =	1	
	2086, 1639,	0, -2107, -3477, -2950, 0, 4917, 10430,	
		4751, 10430, 4917, 0, -2950, -3477, -2107,	
	0, 1639, 2		
};			

HOGESCHOOL

ROTTERDAM

CHECK

✓ Filter Designer - [untitled.fda *] File Edit Analysis Targets View Window Help .	
□ 🛎 🖬 🚳 🔍 🔍 🗟 🖾 👘 🔚 🕟 💀 🐭 🕆 🗇 📼 🔀 😡 э 🕅 🦎 🕅 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓	$\approx 0.025009155_d$
Structure: Direct-Form FIR Order: 20 Stable: Yes Source: Designed (quantized) 0 0.0750274658203125 0.159149169921875 0.2250823974609375 0.2250823974609375 0.2250823974609375 0.2250823974609375 0.2250823974609375	Correct! Easier: $\frac{1639}{2^{16}} = 0.025009155_d$
Filter Structure: Sampling Frequency: Direct-Form II Transposed Numerator Import as second-order sections Denominator [1.000 -2.026 2.148 -1.159 0] Clear Fs: Fs: Import Filter	
Import Filter Ready	

MULTIPLICATION

0111 0001	= 0.875 = 0.125				<i>Q</i> 0.3	notation		
*		- *						
0111	4375							
0000	1750							
0000	875							
0000								
+		+						
0000111	109375							
==>								
3+3 number 0.000111 =	-	the p	point	SO	the	point	is	at:

MULTIPLY ACCUMULATE ARITHMETIC

ROTTERDAN

C-HEADER

```
1/*
 * Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
 * Generated by MATLAB(R) 9.0 and the DSP System Toolbox 9.2.
 * Generated on: 15-Sep-2016 15:23:37
 */
1/*
 * Discrete-Time FIR Filter (real)
 * _____
 * Filter Structure : Direct-Form FIR
 * Filter Length : 21
 * Stable
             : Yes
 * Linear Phase : Yes (Type 1)
 * Arithmetic : fixed
 * Numerator : s16,16 -> [-5.000000e-01 5.000000e-01)
              : s16,15 -> [-1 1)
 * Input
 * Filter Internals : Full Precision
             : s33,31 -> [-2 2) (auto determined)
    Output
    Product
               : s31,31 -> [-5.000000e-01 5.000000e-01) (auto determined)
    Accumulator : s33,31 \rightarrow [-2 2) (auto determined)
 4
     Round Mode
                  : No rounding
    Overflow Mode : No overflow
 */
                                                                      Why 31 bit right of the point?
/* General type conversion for MATLAB generated C-code */
 #include "tmwtypes.h"
1/*
                                                                      Why 33 bits total?
 * Expected path to tmwtypes.h
 * C:\Program Files\MATLAB 2016a\extern\include\tmwtypes.h
 */
const int BL = 21;
                                                                      How to implement this in C?
]const int16 T B[21] = {
    2086, 1639, 0, -2107, -3477, -2950, 0, 4917, 10430,
   14751, 16384, 14751, 10430, 4917, 0, -2950, -3477, -2107,
       0, 1639, 2086
};
```

HOGESCHOO

ROTTERDAM

Summary

- Fixed point versus Floating point:
 - Advantages:
 - less time / chip area / power
 - fixed precision
 - Disadvantages:
 - small dynamic range (watch out for overflows)
- Fixed point calculations:
 - Multiply: use integer multiplication, remember the position of the binary point yourself:
 - Q1.14 · Q2.13 → Q3.27
 - Addition: use integer addition, remember to align the binary points by shifting before adding:
 - $Q0.3 + Q1.2 \rightarrow (Q0.3 >> 1) + Q1.2 \rightarrow Q1.2 + Q1.2 \rightarrow Q2.2$

