## Training Digital Signal Processing

ELETDS02

Fixed point calculations

brojz@hr.nl muiko@hr.nl

## Last week

- The IDTFT gives us an infinite number of coefficients of our FIR filter.
- To implement the filter in practice we need to apply windowing.
- Rectangular windowing might introduce unwanted effects in the frequency domain.
- Different window formulas exist that try to keep certain unwanted effects to a minimum. (Experiment with these!)
- IIR filters contain feedback (or are recursive).
- With only a few coefficients good results can be achieved .
- Might be unstable.


## FIXED POINT CALCULATIONS

## Fixed point versus floating point

- Floating point numbers:
- Standardized in IEEE Standard for Floating-Point Arithmetic (IEEE 754)
- Supported in almost any programming language
- Big dynamic range, e.g. 32-bit single precision (float in C): 1.2E-38 to $3.4 \mathrm{E}+38$
- Precision varies with value, e.g. float has 23 significant bits, the precision depends on the position of the binary point which varies
- Calculations take more time / chip area / power than integer calculations
- Fixed point numbers:
- Not standardized and unsupported in almost any programming language
- Small dynamic range (watch out for overflows)
- Fixed precision
- Calculations are almost the same as integer calculations


## FIXED POINT EXAMPLES 1

Integer numbers are almost always represented in two's complement binary

$$
x=0100100000011000_{b}=18456_{d}
$$

Fixed point numbers are often represented in Qm.n format
Qm.n = a two's complement number with $m$ bits before and $n$ bits behind the binary point and an implicit sign bit
Q0.15: $x=0.100100000011000_{b}$

$$
x=2^{-1}+2^{-4}+2^{-11}+2^{-12}=0.56323_{d}
$$

Q2.13: $x=010.0100000011000_{b}$

$$
x=2^{1}+2^{-2}+2^{-9}+2^{-10}=2.25293_{d}
$$

Q5. 10: $x=010010.0000011000_{b}$

$$
x=2^{4}+2^{1}+2^{-6}+2^{-7}=1_{5} 8.02344_{d}
$$

## FIXED POINT EXAMPLES 2

2's complement integer:
$y=1100111111111000_{b}=(-) 0011000000001000_{b}=-12296_{d}$
Q0.15: $y=(-) 0.011000000001000_{b}$

$$
y=-\left(2^{-2}+2^{-3}+2^{-12}\right)=-0.37524414_{d}
$$

Q2.13: $y=(-) 001.1000000001000_{b}$

$$
y=-\left(2^{0}+2^{-1}+2^{-10}\right)=-1.500976563_{d}
$$

Q5.10: $y=(-) 001100.0000001000_{b}$

$$
x=-\left(2^{3}+2^{2}+2^{-7}\right)=-12.0078125_{d}
$$

## FIXED POINT MATLAB NOTATION

| General notation | Matiab |
| :---: | :---: |
| Q0.15 | s16,15 |
| Q2.13 | s16,13 |
| Q5.10 | s16,10 |
| 16 bits total of which 10 bits right of the point |  |
| So 6 bits left of the point (including signbit) |  |

## FIR FILTER COËFFICIENTS 1



## FIR FILTER COËFFICIENTS 2



## FIR FILTER COËFFICIENTS 3



## FIR FILTER COËFFICIENTS 4

Targets -> Generate C Header


## C-HEADER

* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
* Generated by MATLAB(R) 9.0 and the DSP System Toolbox 9.2
* Generated on: 15-Sep-2016 15:23:37
*/
16 bit fixed point number with 16 bits right of the point.
* Discrete-Time FIR Filter (real)
* Filter Structure : Direct-Form FIR
${ }^{*}$ Filter Length

$$
: 21
$$

* Stable
* Linear Phase
* Arithmetic
* Numerator
* Input

Yes (Type 1)

s16,15 -> [-1 1)
Full Precision
s33,31 -> [-2 2) (auto determined) s31,31 -> [-5.000000e-01 5.000000e-01) s33,31 -> [-2 2) (auto determined) No rounding
No overflow
/* General type conversion for MATLAB generated C-code \#include "tmwtypes.h"
1/*
Expected path to tmwtypes.h

* C: \Program Files $\backslash$ MATLAB_2016a \extern\include\tmwtypes.h
*/
const int $\mathrm{BL}=21$;
const int16_T $\mathrm{B}[21]=$

\};


## CHECK



## MULTIPLICATION

$$
\begin{array}{lcc}
0111 & = & 0.875 \\
0001 & = & 0.125 \\
----* & & -----* \\
0111 & & 4375 \\
0000 & & 1750 \\
0000 & & \text { Q0.3 notation } \\
0000 \\
-------+ & & ------+ \\
0000111 & 109375 \\
==> & \\
3+3 \text { numbers right of the point so the point is at: } \\
0.000111 & = & 0.109375
\end{array}
$$

## MULTIPLY ACCUMULATE ARITHMETIC



## C-HEADER

```
* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
    * Generated by MATLAB(R) 9.0 and the DSP System Toolbox 9.2
    * Generated on: 15-Sep-2016 15:23:37
    */
3/*
    * Discrete-Time FIR Filter (real)
    * Filter Structure : Direct-Form FI
    \ Filter Length : 21
    * Stable : Yes
    * Linear Phase : Yes (Type 1)
    Arithmetic : fixed
    * Numerator : s16,16 -> [-5.000000e-01 5.000000e-01)
    * Input
        s16,15 -> [ [-1 1)
    * Input Filter Internals : Full Precision
    * Output : s33,31 -> [-2 2) (auto determined)
    * Product 
1/*
    Expected path to tmwtypes.h
    * C:\Program Files\MATLAB_2016a\extern\include\tmwtypes.h
    */
const int BL = 21;
lconst int16_T в[21] = {
    2086,
};
Why 31 bit right of the point?
Why 33 bits total?
How to implement this in C?
```


## Summary

- Fixed point versus Floating point:
- Advantages:
- less time / chip area / power
- fixed precision
- Disadvantages:
- small dynamic range (watch out for overflows)
- Fixed point calculations:
- Multiply: use integer multiplication, remember the position of the binary point yourself:
-Q1.14•Q2.13 $\boldsymbol{\rightarrow}$ Q3.27
- Addition: use integer addition, remember to align the binary points by shifting before adding:
$\cdot Q 0.3+Q 1.2 \rightarrow(Q 0.3 \gg 1)+Q 1.2 \rightarrow Q 1.2+Q 1.2 \rightarrow Q 2.2$

