Source

ocaml / experimental / frisch / ast_mapper.ml

frisch cf0f77f 







frisch d1cf29e 
frisch 5dac341 

frisch cf0f77f 
frisch 0d1da73 





































































































































































































frisch 5dac341 



frisch 0d1da73 

frisch 5dac341 







frisch cf0f77f 


frisch 0d1da73 
frisch cf0f77f 

frisch 5dac341 

frisch 0d1da73 
frisch 5dac341 
frisch 0d1da73 

frisch 5dac341 


frisch 0d1da73 
frisch 5dac341 
























frisch cf0f77f 
frisch 0d1da73 

frisch 5dac341 



frisch 0d1da73 
frisch 5dac341 
frisch 0d1da73 

frisch 5dac341 


frisch 0d1da73 
frisch 5dac341 
frisch 0d1da73 
frisch 5dac341 





















frisch cf0f77f 

frisch fe06051 








frisch 0d1da73 
frisch fe06051 







frisch 5dac341 
frisch 0d1da73 
frisch 5dac341 
frisch 0d1da73 
















frisch cf0f77f 

frisch 0d1da73 

frisch cf0f77f 
frisch 0d1da73 
frisch 5dac341 
frisch 0d1da73 




















































frisch 5dac341 
frisch cf0f77f 






































frisch 5dac341 


frisch 0d1da73 
frisch 5dac341 


frisch 0d1da73 

















frisch 5dac341 

frisch 0d1da73 

frisch 5dac341 
frisch 0d1da73 

frisch cf0f77f 
frisch fe06051 





















  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
open Location
open Config
open Parsetree
open Asttypes

(* First, some helpers to build AST fragments *)

let map_flatten f l = List.flatten (List.map f l)
let map_snd f (x, y) = (x, f y)
let map_tuple f1 f2 (x, y) = (f1 x, f2 y)
let map_opt f = function None -> None | Some x -> Some (f x)

module T = struct
  (* Type expressions for the core language *)

  let mk ?(loc = Location.none) x = {ptyp_desc = x; ptyp_loc = loc}
  let any ?loc () = mk ?loc Ptyp_any
  let var ?loc a = mk ?loc (Ptyp_var a)
  let arrow ?loc a b c = mk ?loc (Ptyp_arrow (a, b, c))
  let tuple ?loc a = mk ?loc (Ptyp_tuple a)
  let constr ?loc a b = mk ?loc (Ptyp_constr (a, b))
  let object_ ?loc a = mk ?loc (Ptyp_object a)
  let class_ ?loc a b c = mk ?loc (Ptyp_class (a, b, c))
  let alias ?loc a b = mk ?loc (Ptyp_alias (a, b))
  let variant ?loc a b c = mk ?loc (Ptyp_variant (a, b, c))
  let poly ?loc a b = mk ?loc (Ptyp_poly (a, b))
  let package ?loc a b = mk ?loc (Ptyp_package (a, b))

  let field_type ?(loc = Location.none) x = {pfield_desc = x; pfield_loc = loc}
  let field ?loc s t =
    let t =
      (* The type-checker expects the field to be a Ptyp_poly. Maybe
         it should wrap the type automatically... *)
      match t.ptyp_desc with
      | Ptyp_poly _ -> t
      | _ -> poly ?loc [] t
    in
    field_type ?loc (Pfield (s, t))
  let field_var ?loc () = field_type ?loc Pfield_var

  let core_field_type sub = function
    | {pfield_desc = Pfield (s, d); pfield_loc = loc} -> field ~loc s (sub # typ d)
    | x -> x

  let row_field sub = function
    | Rtag (l, b, tl) -> Rtag (l, b, List.map (sub # typ) tl)
    | Rinherit t -> Rinherit (sub # typ t)

  let map sub {ptyp_desc = desc; ptyp_loc = loc} =
    match desc with
    | Ptyp_any -> any ~loc ()
    | Ptyp_var s -> var ~loc s
    | Ptyp_arrow (lab, t1, t2) -> arrow ~loc lab (sub # typ t1) (sub # typ t2)
    | Ptyp_tuple tyl -> tuple ~loc (List.map (sub # typ) tyl)
    | Ptyp_constr (lid, tl) -> constr ~loc lid (List.map (sub # typ) tl)
    | Ptyp_object l -> object_ ~loc (List.map (core_field_type sub) l)
    | Ptyp_class (lid, tl, ll) -> class_ ~loc lid (List.map (sub # typ) tl) ll
    | Ptyp_alias (t, s) -> alias ~loc (sub # typ t) s
    | Ptyp_variant (rl, b, ll) -> variant ~loc (List.map (row_field sub) rl) b ll
    | Ptyp_poly (sl, t) -> poly ~loc sl (sub # typ t)
    | Ptyp_package (lid, l) -> package ~loc lid (List.map (map_snd (sub # typ)) l)

  let map_type_declaration sub td =
    {td with
     ptype_cstrs =
     List.map
       (fun (ct1, ct2, loc) -> sub # typ ct1, sub # typ ct2, loc)
       td.ptype_cstrs;
     ptype_kind = sub # type_kind td.ptype_kind;
     ptype_manifest = map_opt (sub # typ) td.ptype_manifest;
    }

  let map_type_kind sub = function
    | Ptype_abstract -> Ptype_abstract
    | Ptype_variant l -> Ptype_variant (List.map (fun (s, tl, t, loc) -> (s, List.map (sub # typ) tl, map_opt (sub # typ) t, loc)) l)
    | Ptype_record l -> Ptype_record (List.map (fun (s, flags, t, loc) -> (s, flags, sub # typ t, loc)) l)
end

module CT = struct
  (* Type expressions for the class language *)

  let mk ?(loc = Location.none) x = {pcty_loc = loc; pcty_desc = x}

  let constr ?loc a b = mk ?loc (Pcty_constr (a, b))
  let signature ?loc a = mk ?loc (Pcty_signature a)
  let fun_ ?loc a b c = mk ?loc (Pcty_fun (a, b, c))

  let map sub {pcty_loc = loc; pcty_desc = desc} =
    match desc with
    | Pcty_constr (lid, tys) -> constr ~loc lid (List.map (sub # typ) tys)
    | Pcty_signature x -> signature ~loc (sub # class_signature x)
    | Pcty_fun (lab, t, ct) ->
        fun_ ~loc lab
          (sub # typ t)
          (sub # class_type ct)

  let mk_field ?(loc = Location.none) x = {pctf_desc = x; pctf_loc = loc}

  let inher ?loc a = mk_field ?loc (Pctf_inher a)
  let val_ ?loc a b c d = mk_field ?loc (Pctf_val (a, b, c, d))
  let virt ?loc a b c = mk_field ?loc (Pctf_virt (a, b, c))
  let meth ?loc a b c = mk_field ?loc (Pctf_meth (a, b, c))
  let cstr ?loc a b = mk_field ?loc (Pctf_cstr (a, b))

  let map_field sub {pctf_desc = desc; pctf_loc = loc} =
    match desc with
    | Pctf_inher ct -> inher ~loc (sub # class_type ct)
    | Pctf_val (s, m, v, t) -> val_ ~loc s m v (sub # typ t)
    | Pctf_virt (s, p, t) -> virt ~loc s p (sub # typ t)
    | Pctf_meth (s, p, t) -> meth ~loc s p (sub # typ t)
    | Pctf_cstr (t1, t2) -> cstr ~loc (sub # typ t1) (sub # typ t2)

  let map_signature sub {pcsig_self; pcsig_fields; pcsig_loc} =
    {
     pcsig_self = sub # typ pcsig_self;
     pcsig_fields = List.map (sub # class_type_field) pcsig_fields;
     pcsig_loc;
    }
end

module MT = struct
  (* Type expressions for the module language *)

  let mk ?(loc = Location.none) x = {pmty_desc = x; pmty_loc = loc}
  let ident ?loc a = mk ?loc (Pmty_ident a)
  let signature ?loc a = mk ?loc (Pmty_signature a)
  let functor_ ?loc a b c = mk ?loc (Pmty_functor (a, b, c))
  let with_ ?loc a b = mk ?loc (Pmty_with (a, b))
  let typeof_ ?loc a = mk ?loc (Pmty_typeof a)

  let map sub {pmty_desc = desc; pmty_loc = loc} =
    match desc with
    | Pmty_ident s -> ident ~loc s
    | Pmty_signature sg -> signature ~loc (sub # signature sg)
    | Pmty_functor (s, mt1, mt2) -> functor_ ~loc s (sub # module_type mt1) (sub # module_type mt2)
    | Pmty_with (mt, l) -> with_ ~loc (sub # module_type mt) (List.map (map_snd (sub # with_constraint)) l)
    | Pmty_typeof me -> typeof_ ~loc (sub # module_expr me)

  let map_with_constraint sub = function
    | Pwith_type d -> Pwith_type (sub # type_declaration d)
    | Pwith_module s -> Pwith_module s
    | Pwith_typesubst d -> Pwith_typesubst (sub # type_declaration d)
    | Pwith_modsubst s -> Pwith_modsubst s

  let mk_item ?(loc = Location.none) x = {psig_desc = x; psig_loc = loc}

  let value ?loc a b = mk_item ?loc (Psig_value (a, b))
  let type_ ?loc a = mk_item ?loc (Psig_type a)
  let exception_ ?loc a b = mk_item ?loc (Psig_exception (a, b))
  let module_ ?loc a b = mk_item ?loc (Psig_module (a, b))
  let rec_module ?loc a = mk_item ?loc (Psig_recmodule a)
  let modtype ?loc a b = mk_item ?loc (Psig_modtype (a, b))
  let open_ ?loc a = mk_item ?loc (Psig_open a)
  let include_ ?loc a = mk_item ?loc (Psig_include a)
  let class_ ?loc a = mk_item ?loc (Psig_class a)
  let class_type ?loc a = mk_item ?loc (Psig_class_type a)

  let map_signature_item sub {psig_desc = desc; psig_loc = loc} =
    match desc with
    | Psig_value (s, vd) -> value ~loc s (sub # value_description vd)
    | Psig_type l -> type_ ~loc (List.map (map_snd (sub # type_declaration)) l)
    | Psig_exception (s, ed) -> exception_ ~loc s (sub # exception_declaration ed)
    | Psig_module (s, mt) -> module_ ~loc s (sub # module_type mt)
    | Psig_recmodule l -> rec_module ~loc (List.map (map_snd (sub # module_type)) l)
    | Psig_modtype (s, Pmodtype_manifest mt) -> modtype ~loc s (Pmodtype_manifest  (sub # module_type mt))
    | Psig_modtype (s, Pmodtype_abstract) -> modtype ~loc s Pmodtype_abstract
    | Psig_open s -> open_ ~loc s
    | Psig_include mt -> include_ ~loc (sub # module_type mt)
    | Psig_class l -> class_ ~loc (List.map (sub # class_description) l)
    | Psig_class_type l -> class_type ~loc (List.map (sub # class_type_declaration) l)

end


module M = struct
  (* Value expressions for the module language *)

  let mk ?(loc = Location.none) x = {pmod_desc = x; pmod_loc = loc}
  let ident ?loc x = mk ?loc (Pmod_ident x)
  let structure ?loc x = mk ?loc (Pmod_structure x)
  let functor_ ?loc arg arg_ty body = mk ?loc (Pmod_functor (arg, arg_ty, body))
  let apply ?loc m1 m2 = mk ?loc (Pmod_apply (m1, m2))
  let constraint_ ?loc m mty = mk ?loc (Pmod_constraint (m, mty))
  let unpack ?loc e = mk ?loc (Pmod_unpack e)

  let map sub {pmod_loc = loc; pmod_desc = desc} =
    match desc with
    | Pmod_ident x -> ident ~loc x
    | Pmod_structure str -> structure ~loc (sub # structure str)
    | Pmod_functor (arg, arg_ty, body) -> functor_ ~loc arg (sub # module_type arg_ty) (sub # module_expr body)
    | Pmod_apply (m1, m2) -> apply ~loc (sub # module_expr m1) (sub # module_expr m2)
    | Pmod_constraint (m, mty) -> constraint_ ~loc (sub # module_expr m) (sub # module_type mty)
    | Pmod_unpack e -> unpack ~loc (sub # expr e)

  let mk_item ?(loc = Location.none) x = {pstr_desc = x; pstr_loc = loc}
  let eval ?loc a = mk_item ?loc (Pstr_eval a)
  let value ?loc a b = mk_item ?loc (Pstr_value (a, b))
  let primitive ?loc a b = mk_item ?loc (Pstr_primitive (a, b))
  let type_ ?loc a = mk_item ?loc (Pstr_type a)
  let exception_ ?loc a b = mk_item ?loc (Pstr_exception (a, b))
  let exn_rebind ?loc a b = mk_item ?loc (Pstr_exn_rebind (a, b))
  let module_ ?loc a b = mk_item ?loc (Pstr_module (a, b))
  let rec_module ?loc a = mk_item ?loc (Pstr_recmodule a)
  let modtype ?loc a b = mk_item ?loc (Pstr_modtype (a, b))
  let open_ ?loc a = mk_item ?loc (Pstr_open a)
  let class_ ?loc a = mk_item ?loc (Pstr_class a)
  let class_type ?loc a = mk_item ?loc (Pstr_class_type a)
  let include_ ?loc a = mk_item ?loc (Pstr_include a)

  let map_structure_item sub {pstr_loc = loc; pstr_desc = desc} =
    match desc with
    | Pstr_eval x -> eval ~loc (sub # expr x)
    | Pstr_value (r, pel) -> value ~loc r (List.map (map_tuple (sub # pat) (sub # expr)) pel)
    | Pstr_primitive (name, vd) -> primitive ~loc name (sub # value_description vd)
    | Pstr_type l -> type_ ~loc (List.map (fun (s, d) -> (s, sub # type_declaration d)) l)
    | Pstr_exception (name, ed) -> exception_ ~loc name (sub # exception_declaration ed)
    | Pstr_exn_rebind (s, lid) -> exn_rebind ~loc s lid
    | Pstr_module (s, m) -> module_ ~loc s (sub # module_expr m)
    | Pstr_recmodule l -> rec_module ~loc (List.map (fun (s, mty, me) -> (s, sub # module_type mty, sub # module_expr me)) l)
    | Pstr_modtype (s, mty) -> modtype ~loc s (sub # module_type mty)
    | Pstr_open lid -> open_ ~loc lid
    | Pstr_class l -> class_ ~loc (List.map (sub # class_declaration) l)
    | Pstr_class_type l -> class_type ~loc (List.map (sub # class_type_declaration) l)
    | Pstr_include e -> include_ ~loc (sub # module_expr e)
end

module E = struct
  (* Value expressions for the core language *)

  let mk ?(loc = Location.none) x = {pexp_desc = x; pexp_loc = loc}

  let ident ?loc a = mk ?loc (Pexp_ident a)
  let constant ?loc a = mk ?loc (Pexp_constant a)
  let let_ ?loc a b c = mk ?loc (Pexp_let (a, b, c))
  let function_ ?loc a b c = mk ?loc (Pexp_function (a, b, c))
  let apply ?loc a b = mk ?loc (Pexp_apply (a, b))
  let match_ ?loc a b = mk ?loc (Pexp_match (a, b))
  let try_ ?loc a b = mk ?loc (Pexp_try (a, b))
  let tuple ?loc a = mk ?loc (Pexp_tuple a)
  let construct ?loc a b c = mk ?loc (Pexp_construct (a, b, c))
  let variant ?loc a b = mk ?loc (Pexp_variant (a, b))
  let record ?loc a b = mk ?loc (Pexp_record (a, b))
  let field ?loc a b = mk ?loc (Pexp_field (a, b))
  let setfield ?loc a b c = mk ?loc (Pexp_setfield (a, b, c))
  let array ?loc a = mk ?loc (Pexp_array a)
  let ifthenelse ?loc a b c = mk ?loc (Pexp_ifthenelse (a, b, c))
  let sequence ?loc a b = mk ?loc (Pexp_sequence (a, b))
  let while_ ?loc a b = mk ?loc (Pexp_while (a, b))
  let for_ ?loc a b c d e = mk ?loc (Pexp_for (a, b, c, d, e))
  let constraint_ ?loc a b c = mk ?loc (Pexp_constraint (a, b, c))
  let when_ ?loc a b = mk ?loc (Pexp_when (a, b))
  let send ?loc a b = mk ?loc (Pexp_send (a, b))
  let new_ ?loc a = mk ?loc (Pexp_new a)
  let setinstvar ?loc a b = mk ?loc (Pexp_setinstvar (a, b))
  let override ?loc a = mk ?loc (Pexp_override a)
  let letmodule ?loc (a, b, c)= mk ?loc (Pexp_letmodule (a, b, c))
  let assert_ ?loc a = mk ?loc (Pexp_assert a)
  let assertfalse ?loc () = mk ?loc Pexp_assertfalse
  let lazy_ ?loc a = mk ?loc (Pexp_lazy a)
  let poly ?loc a b = mk ?loc (Pexp_poly (a, b))
  let object_ ?loc a = mk ?loc (Pexp_object a)
  let newtype ?loc a b = mk ?loc (Pexp_newtype (a, b))
  let pack ?loc a = mk ?loc (Pexp_pack a)
  let open_ ?loc a b = mk ?loc (Pexp_open (a, b))

  let lid ?(loc = Location.none) lid = ident ~loc (mkloc (Longident.parse lid) loc)
  let apply_nolabs ?loc f el = apply ?loc f (List.map (fun e -> ("", e)) el)
  let strconst ?loc x = constant ?loc (Const_string x)

  let map sub {pexp_loc = loc; pexp_desc = desc} =
    match desc with
    | Pexp_ident x -> ident ~loc x
    | Pexp_constant x -> constant ~loc x
    | Pexp_let (r, pel, e) -> let_ ~loc r (List.map (map_tuple (sub # pat) (sub # expr)) pel) (sub # expr e)
    | Pexp_function (lab, def, pel) -> function_ ~loc lab (map_opt (sub # expr) def) (List.map (map_tuple (sub # pat) (sub # expr)) pel)
    | Pexp_apply (e, l) -> apply ~loc (sub # expr e) (List.map (map_snd (sub # expr)) l)
    | Pexp_match (e, l) -> match_ ~loc (sub # expr e) (List.map (map_tuple (sub # pat) (sub # expr)) l)
    | Pexp_try (e, l) -> try_ ~loc (sub # expr e) (List.map (map_tuple (sub # pat) (sub # expr)) l)
    | Pexp_tuple el -> tuple ~loc (List.map (sub # expr) el)
    | Pexp_construct (lid, arg, b) -> construct ~loc lid (map_opt (sub # expr) arg) b
    | Pexp_variant (lab, eo) -> variant ~loc lab (map_opt (sub # expr) eo)
    | Pexp_record (l, eo) -> record ~loc (List.map (fun (id, e) -> (id, sub # expr e)) l) (map_opt (sub # expr) eo)
    | Pexp_field (e, lid) -> field ~loc (sub # expr e) lid
    | Pexp_setfield (e1, lid, e2) -> setfield ~loc (sub # expr e1) lid (sub # expr e2)
    | Pexp_array el -> array ~loc (List.map (sub # expr) el)
    | Pexp_ifthenelse (e1, e2, e3) -> ifthenelse ~loc (sub # expr e1) (sub # expr e2) (map_opt (sub # expr) e3)
    | Pexp_sequence (e1, e2) -> sequence ~loc (sub # expr e1) (sub # expr e2)
    | Pexp_while (e1, e2) -> while_ ~loc (sub # expr e1) (sub # expr e2)
    | Pexp_for (id, e1, e2, d, e3) -> for_ ~loc id (sub # expr e1) (sub # expr e2) d (sub # expr e3)
    | Pexp_constraint (e, t1, t2) -> constraint_ ~loc (sub # expr e) (map_opt (sub # typ) t1) (map_opt (sub # typ) t2)
    | Pexp_when (e1, e2) -> when_ ~loc (sub # expr e1) (sub # expr e2)
    | Pexp_send (e, s) -> send ~loc (sub # expr e) s
    | Pexp_new lid -> new_ ~loc lid
    | Pexp_setinstvar (s, e) -> setinstvar ~loc s (sub # expr e)
    | Pexp_override sel -> override ~loc (List.map (map_snd (sub # expr)) sel)
    | Pexp_letmodule (s, me, e) -> letmodule ~loc (s, sub # module_expr me, sub # expr e)
    | Pexp_assert e -> assert_ ~loc (sub # expr e)
    | Pexp_assertfalse -> assertfalse ~loc ()
    | Pexp_lazy e -> lazy_ ~loc (sub # expr e)
    | Pexp_poly (e, t) -> poly ~loc (sub # expr e) (map_opt (sub # typ) t)
    | Pexp_object cls -> object_ ~loc (sub # class_structure cls)
    | Pexp_newtype (s, e) -> newtype ~loc s (sub # expr e)
    | Pexp_pack me -> pack ~loc (sub # module_expr me)
    | Pexp_open (lid, e) -> open_ ~loc lid (sub # expr e)
end

module P = struct
  (* Patterns *)

  let mk ?(loc = Location.none) x = {ppat_desc = x; ppat_loc = loc}
  let any ?loc () = mk ?loc Ppat_any
  let var ?loc a = mk ?loc (Ppat_var a)
  let alias ?loc a b = mk ?loc (Ppat_alias (a, b))
  let constant ?loc a = mk ?loc (Ppat_constant a)
  let tuple ?loc a = mk ?loc (Ppat_tuple a)
  let construct ?loc a b c = mk ?loc (Ppat_construct (a, b, c))
  let variant ?loc a b = mk ?loc (Ppat_variant (a, b))
  let record ?loc a b = mk ?loc (Ppat_record (a, b))
  let array ?loc a = mk ?loc (Ppat_array a)
  let or_ ?loc a b = mk ?loc (Ppat_or (a, b))
  let constraint_ ?loc a b = mk ?loc (Ppat_constraint (a, b))
  let type_ ?loc a = mk ?loc (Ppat_type a)
  let lazy_ ?loc a = mk ?loc (Ppat_lazy a)
  let unpack ?loc a = mk ?loc (Ppat_unpack a)

  let map sub {ppat_desc = desc; ppat_loc = loc} =
    match desc with
    | Ppat_any -> any ~loc ()
    | Ppat_var s -> var ~loc s
    | Ppat_alias (p, s) -> alias ~loc (sub # pat p) s
    | Ppat_constant c -> constant ~loc c
    | Ppat_tuple pl -> tuple ~loc (List.map (sub # pat) pl)
    | Ppat_construct (l, p, b) -> construct ~loc l (map_opt (sub # pat) p) b
    | Ppat_variant (l, p) -> variant ~loc l (map_opt (sub # pat) p)
    | Ppat_record (lpl, cf) ->
        (*record ~loc (List.map (map_snd (sub # pat)) lpl) cf*)
        record ~loc
          (List.map (fun (s, p) -> (s, sub # pat p)) lpl) cf
    | Ppat_array pl -> array ~loc (List.map (sub # pat) pl)
    | Ppat_or (p1, p2) -> or_ ~loc (sub # pat p1) (sub # pat p2)
    | Ppat_constraint (p, t) -> constraint_ ~loc (sub # pat p) (sub # typ t)
    | Ppat_type s -> type_ ~loc s
    | Ppat_lazy p -> lazy_ ~loc (sub # pat p)
    | Ppat_unpack s -> unpack ~loc s
end

module CE = struct
  (* Value expressions for the class language *)

  let mk ?(loc = Location.none) x = {pcl_loc = loc; pcl_desc = x}

  let constr ?loc a b = mk ?loc (Pcl_constr (a, b))
  let structure ?loc a = mk ?loc (Pcl_structure a)
  let fun_ ?loc a b c d = mk ?loc (Pcl_fun (a, b, c, d))
  let apply ?loc a b = mk ?loc (Pcl_apply (a, b))
  let let_ ?loc a b c = mk ?loc (Pcl_let (a, b, c))
  let constraint_ ?loc a b = mk ?loc (Pcl_constraint (a, b))

  let map sub {pcl_loc = loc; pcl_desc = desc} =
    match desc with
    | Pcl_constr (lid, tys) -> constr ~loc lid (List.map (sub # typ) tys)
    | Pcl_structure s ->
        structure ~loc (sub # class_structure s)
    | Pcl_fun (lab, e, p, ce) ->
        fun_ ~loc lab
          (map_opt (sub # expr) e)
          (sub # pat p)
          (sub # class_expr ce)
    | Pcl_apply (ce, l) ->
        apply ~loc (sub # class_expr ce) (List.map (map_snd (sub # expr)) l)
    | Pcl_let (r, pel, ce) ->
        let_ ~loc r
          (List.map (map_tuple (sub # pat) (sub # expr)) pel)
          (sub # class_expr ce)
    | Pcl_constraint (ce, ct) ->
        constraint_ ~loc (sub # class_expr ce) (sub # class_type ct)


  let mk_field ?(loc = Location.none) x = {pcf_desc = x; pcf_loc = loc}

  let inher ?loc a b c = mk_field ?loc (Pcf_inher (a, b, c))
  let valvirt ?loc a b c = mk_field ?loc (Pcf_valvirt (a, b, c))
  let val_ ?loc a b c d = mk_field ?loc (Pcf_val (a, b, c, d))
  let virt ?loc a b c = mk_field ?loc (Pcf_virt (a, b, c))
  let meth ?loc a b c d = mk_field ?loc (Pcf_meth (a, b, c, d))
  let constr ?loc a b = mk_field ?loc (Pcf_constr (a, b))
  let init ?loc a = mk_field ?loc (Pcf_init a)

  let map_field sub {pcf_desc = desc; pcf_loc = loc} =
    match desc with
    | Pcf_inher (o, ce, s) -> inher ~loc o (sub # class_expr ce) s
    | Pcf_valvirt (s, m, t) -> valvirt ~loc s m (sub # typ t)
    | Pcf_val (s, m, o, e) -> val_ ~loc s m o (sub # expr e)
    | Pcf_virt (s, p, t) -> virt ~loc s p (sub # typ t)
    | Pcf_meth (s, p, o, e) -> meth ~loc s p o (sub # expr e)
    | Pcf_constr (t1, t2) -> constr ~loc (sub # typ t1) (sub # typ t2)
    | Pcf_init e -> init ~loc (sub # expr e)

  let map_structure sub {pcstr_pat; pcstr_fields} =
    {
     pcstr_pat = sub # pat pcstr_pat;
     pcstr_fields = List.map (sub # class_field) pcstr_fields;
    }
end

(* Now, a generic AST mapper class, to be extended to cover all kinds
   and cases of the OCaml grammar.  The default behavior of the mapper
   is the identity. *)

class create =
  object(this)
    method run fn_in fn_out =
      let ic = open_in_bin fn_in in
      let magic = String.create (String.length ast_impl_magic_number) in
      really_input ic magic 0 (String.length magic);
      if magic <> ast_impl_magic_number && magic <> ast_intf_magic_number then
        failwith "Bad magic";
      let input_name = input_value ic in
      let ast = input_value ic in
      close_in ic;

      let (input_name, ast) =
        if magic = ast_impl_magic_number
        then Obj.magic (this # implementation input_name (Obj.magic ast))
        else Obj.magic (this # interface input_name (Obj.magic ast))
      in
      let oc = open_out_bin fn_out in
      output_string oc magic;
      output_value oc input_name;
      output_value oc ast;
      close_out oc

    method main =
      try
        if Array.length Sys.argv > 2 then
          this # run Sys.argv.(1) Sys.argv.(2)
        else begin
          Printf.eprintf "Usage: %s <infile> <outfile>" Sys.executable_name;
          exit 1
        end
      with exn ->
        prerr_endline (Printexc.to_string exn);
        exit 2

    method implementation (input_name : string) ast = (input_name, this # structure ast)
    method interface (input_name: string) ast = (input_name, this # signature ast)
    method structure l = map_flatten (this # structure_item) l
    method structure_item si = [ M.map_structure_item this si ]
    method module_expr = M.map this

    method signature l = map_flatten (this # signature_item) l
    method signature_item si = [ MT.map_signature_item this si ]
    method module_type = MT.map this
    method with_constraint c = MT.map_with_constraint this c

    method class_declaration decl = {decl with pci_expr = this # class_expr decl.pci_expr}
    method class_expr = CE.map this
    method class_field = CE.map_field this
    method class_structure = CE.map_structure this

    method class_type = CT.map this
    method class_type_field = CT.map_field this
    method class_signature = CT.map_signature this

    method class_type_declaration decl = {decl with pci_expr = this # class_type decl.pci_expr}
    method class_description decl = {decl with pci_expr = this # class_type decl.pci_expr}

    method type_declaration = T.map_type_declaration this
    method type_kind = T.map_type_kind this
    method typ = T.map this

    method value_description vd = {vd with pval_type = this # typ vd.pval_type}
    method pat = P.map this
    method expr = E.map this

    method exception_declaration tl = List.map (this # typ) tl
  end


let set_loc loc = object
  inherit create as super

  method! expr x =
    if x.pexp_loc.loc_ghost then
      super # expr {x with pexp_loc = loc}
    else
      x

  method! typ x =
    if x.ptyp_loc.loc_ghost then
      super # typ {x with ptyp_loc = loc}
    else
      x

  method! pat x =
    if x.ppat_loc.loc_ghost then
      super # pat {x with ppat_loc = loc}
    else
      x
end