ocaml / typing / printtyp.ml

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id$ *)

(* Printing functions *)

open Misc
open Ctype
open Format
open Longident
open Path
open Asttypes
open Types
open Btype
open Outcometree

(* Print a long identifier *)

let rec longident ppf = function
  | Lident s -> fprintf ppf "%s" s
  | Ldot(p, s) -> fprintf ppf "%a.%s" longident p s
  | Lapply(p1, p2) -> fprintf ppf "%a(%a)" longident p1 longident p2

(* Print an identifier *)

let unique_names = ref Ident.empty

let ident_name id =
  try Ident.find_same id !unique_names with Not_found -> Ident.name id

let add_unique id =
  try ignore (Ident.find_same id !unique_names)
  with Not_found ->
    unique_names := Ident.add id (Ident.unique_toplevel_name id) !unique_names

let ident ppf id = fprintf ppf "%s" (ident_name id)

(* Print a path *)

let ident_pervasive = Ident.create_persistent "Pervasives"

let rec tree_of_path = function
  | Pident id ->
      Oide_ident (ident_name id)
  | Pdot(Pident id, s, pos) when Ident.same id ident_pervasive ->
      Oide_ident s
  | Pdot(p, s, pos) ->
      Oide_dot (tree_of_path p, s)
  | Papply(p1, p2) ->
      Oide_apply (tree_of_path p1, tree_of_path p2)

let rec path ppf = function
  | Pident id ->
      ident ppf id
  | Pdot(Pident id, s, pos) when Ident.same id ident_pervasive ->
      fprintf ppf "%s" s
  | Pdot(p, s, pos) ->
      fprintf ppf "%a.%s" path p s
  | Papply(p1, p2) ->
      fprintf ppf "%a(%a)" path p1 path p2

(* Print a recursive annotation *)

let tree_of_rec = function
  | Trec_not -> Orec_not
  | Trec_first -> Orec_first
  | Trec_next -> Orec_next

(* Print a raw type expression, with sharing *)

let raw_list pr ppf = function
    [] -> fprintf ppf "[]"
  | a :: l ->
      fprintf ppf "@[<1>[%a%t]@]" pr a
        (fun ppf -> List.iter (fun x -> fprintf ppf ";@,%a" pr x) l)

let rec safe_kind_repr v = function
    Fvar {contents=Some k}  ->
      if List.memq k v then "Fvar loop" else
      safe_kind_repr (k::v) k
  | Fvar _ -> "Fvar None"
  | Fpresent -> "Fpresent"
  | Fabsent -> "Fabsent"

let rec safe_commu_repr v = function
    Cok -> "Cok"
  | Cunknown -> "Cunknown"
  | Clink r ->
      if List.memq r v then "Clink loop" else
      safe_commu_repr (r::v) !r

let rec safe_repr v = function
    {desc = Tlink t} when not (List.memq t v) ->
      safe_repr (t::v) t
  | t -> t

let rec list_of_memo = function
    Mnil -> []
  | Mcons (priv, p, t1, t2, rem) -> p :: list_of_memo rem
  | Mlink rem -> list_of_memo !rem

let print_name ppf = function
    None -> fprintf ppf "None"
  | Some name -> fprintf ppf "\"%s\"" name

let visited = ref []
let rec raw_type ppf ty =
  let ty = safe_repr [] ty in
  if List.memq ty !visited then fprintf ppf "{id=%d}" ty.id else begin
    visited := ty :: !visited;
    fprintf ppf "@[<1>{id=%d;level=%d;desc=@,%a}@]" ty.id ty.level
      raw_type_desc ty.desc
  end
and raw_type_list tl = raw_list raw_type tl
and raw_type_desc ppf = function
    Tvar name -> fprintf ppf "Tvar %a" print_name name
  | Tarrow(l,t1,t2,c) ->
      fprintf ppf "@[<hov1>Tarrow(%s,@,%a,@,%a,@,%s)@]"
        l raw_type t1 raw_type t2
        (safe_commu_repr [] c)
  | Ttuple tl ->
      fprintf ppf "@[<1>Ttuple@,%a@]" raw_type_list tl
  | Tconstr (p, tl, abbrev) ->
      fprintf ppf "@[<hov1>Tconstr(@,%a,@,%a,@,%a)@]" path p
        raw_type_list tl
        (raw_list path) (list_of_memo !abbrev)
  | Tobject (t, nm) ->
      fprintf ppf "@[<hov1>Tobject(@,%a,@,@[<1>ref%t@])@]" raw_type t
        (fun ppf ->
          match !nm with None -> fprintf ppf " None"
          | Some(p,tl) ->
              fprintf ppf "(Some(@,%a,@,%a))" path p raw_type_list tl)
  | Tfield (f, k, t1, t2) ->
      fprintf ppf "@[<hov1>Tfield(@,%s,@,%s,@,%a,@;<0 -1>%a)@]" f
        (safe_kind_repr [] k)
        raw_type t1 raw_type t2
  | Tnil -> fprintf ppf "Tnil"
  | Tlink t -> fprintf ppf "@[<1>Tlink@,%a@]" raw_type t
  | Tsubst t -> fprintf ppf "@[<1>Tsubst@,%a@]" raw_type t
  | Tunivar name -> fprintf ppf "Tunivar %a" print_name name
  | Tpoly (t, tl) ->
      fprintf ppf "@[<hov1>Tpoly(@,%a,@,%a)@]"
        raw_type t
        raw_type_list tl
  | Tvariant row ->
      fprintf ppf
        "@[<hov1>{@[%s@,%a;@]@ @[%s@,%a;@]@ %s%b;@ %s%b;@ @[<1>%s%t@]}@]"
        "row_fields="
        (raw_list (fun ppf (l, f) ->
          fprintf ppf "@[%s,@ %a@]" l raw_field f))
        row.row_fields
        "row_more=" raw_type row.row_more
        "row_closed=" row.row_closed
        "row_fixed=" row.row_fixed
        "row_name="
        (fun ppf ->
          match row.row_name with None -> fprintf ppf "None"
          | Some(p,tl) ->
              fprintf ppf "Some(@,%a,@,%a)" path p raw_type_list tl)
  | Tpackage (p, _, tl) ->
      fprintf ppf "@[<hov1>Tpackage(@,%a@,%a)@]" path p
        raw_type_list tl

and raw_field ppf = function
    Rpresent None -> fprintf ppf "Rpresent None"
  | Rpresent (Some t) -> fprintf ppf "@[<1>Rpresent(Some@,%a)@]" raw_type t
  | Reither (c,tl,m,e) ->
      fprintf ppf "@[<hov1>Reither(%b,@,%a,@,%b,@,@[<1>ref%t@])@]" c
        raw_type_list tl m
        (fun ppf ->
          match !e with None -> fprintf ppf " None"
          | Some f -> fprintf ppf "@,@[<1>(%a)@]" raw_field f)
  | Rabsent -> fprintf ppf "Rabsent"

let raw_type_expr ppf t =
  visited := [];
  raw_type ppf t;
  visited := []

let () = Btype.print_raw := raw_type_expr

(* Print a type expression *)

let names = ref ([] : (type_expr * string) list)
let name_counter = ref 0
let named_vars = ref ([] : string list)

let reset_names () = names := []; name_counter := 0; named_vars := []
let add_named_var ty =
  match ty.desc with
    Tvar (Some name) | Tunivar (Some name) ->
      if List.mem name !named_vars then () else
      named_vars := name :: !named_vars
  | _ -> ()

let rec new_name () =
  let name =
    if !name_counter < 26
    then String.make 1 (Char.chr(97 + !name_counter))
    else String.make 1 (Char.chr(97 + !name_counter mod 26)) ^
           string_of_int(!name_counter / 26) in
  incr name_counter;
  if List.mem name !named_vars
  || List.exists (fun (_, name') -> name = name') !names
  then new_name ()
  else name

let name_of_type t =
  (* We've already been through repr at this stage, so t is our representative
     of the union-find class. *)
  try List.assq t !names with Not_found ->
    let name =
      match t.desc with
        Tvar (Some name) | Tunivar (Some name) ->
          (* Some part of the type we've already printed has assigned another
           * unification variable to that name. We want to keep the name, so try
           * adding a number until we find a name that's not taken. *)
          let current_name = ref name in
          let i = ref 0 in
          while List.exists (fun (_, name') -> !current_name = name') !names do
            current_name := name ^ (string_of_int !i);
            i := !i + 1;
          done;
          !current_name
      | _ ->
          (* No name available, create a new one *)
          new_name ()
    in
    (* Exception for type declarations *)
    if name <> "_" then names := (t, name) :: !names;
    name

let check_name_of_type t = ignore(name_of_type t)

let remove_names tyl =
  let tyl = List.map repr tyl in
  names := List.filter (fun (ty,_) -> not (List.memq ty tyl)) !names


let non_gen_mark sch ty =
  if sch && is_Tvar ty && ty.level <> generic_level then "_" else ""

let print_name_of_type sch ppf t =
  fprintf ppf "'%s%s" (non_gen_mark sch t) (name_of_type t)

let visited_objects = ref ([] : type_expr list)
let aliased = ref ([] : type_expr list)
let delayed = ref ([] : type_expr list)

let add_delayed t =
  if not (List.memq t !delayed) then delayed := t :: !delayed

let is_aliased ty = List.memq (proxy ty) !aliased
let add_alias ty =
  let px = proxy ty in
  if not (is_aliased px) then begin
    aliased := px :: !aliased;
    add_named_var px
  end

let aliasable ty =
  match ty.desc with Tvar _ | Tunivar _ | Tpoly _ -> false | _ -> true

let namable_row row =
  row.row_name <> None &&
  List.for_all
    (fun (_, f) ->
       match row_field_repr f with
       | Reither(c, l, _, _) ->
           row.row_closed && if c then l = [] else List.length l = 1
       | _ -> true)
    row.row_fields

let rec mark_loops_rec visited ty =
  let ty = repr ty in
  let px = proxy ty in
  if List.memq px visited && aliasable ty then add_alias px else
    let visited = px :: visited in
    match ty.desc with
    | Tvar _ -> add_named_var ty
    | Tarrow(_, ty1, ty2, _) ->
        mark_loops_rec visited ty1; mark_loops_rec visited ty2
    | Ttuple tyl -> List.iter (mark_loops_rec visited) tyl
    | Tconstr(_, tyl, _) | Tpackage (_, _, tyl) ->
        List.iter (mark_loops_rec visited) tyl
    | Tvariant row ->
        if List.memq px !visited_objects then add_alias px else
         begin
          let row = row_repr row in
          if not (static_row row) then
            visited_objects := px :: !visited_objects;
          match row.row_name with
          | Some(p, tyl) when namable_row row ->
              List.iter (mark_loops_rec visited) tyl
          | _ ->
              iter_row (mark_loops_rec visited) row
         end
    | Tobject (fi, nm) ->
        if List.memq px !visited_objects then add_alias px else
         begin
          if opened_object ty then
            visited_objects := px :: !visited_objects;
          begin match !nm with
          | None ->
              let fields, _ = flatten_fields fi in
              List.iter
                (fun (_, kind, ty) ->
                  if field_kind_repr kind = Fpresent then
                    mark_loops_rec visited ty)
                fields
          | Some (_, l) ->
              List.iter (mark_loops_rec visited) (List.tl l)
          end
        end
    | Tfield(_, kind, ty1, ty2) when field_kind_repr kind = Fpresent ->
        mark_loops_rec visited ty1; mark_loops_rec visited ty2
    | Tfield(_, _, _, ty2) ->
        mark_loops_rec visited ty2
    | Tnil -> ()
    | Tsubst ty -> mark_loops_rec visited ty
    | Tlink _ -> fatal_error "Printtyp.mark_loops_rec (2)"
    | Tpoly (ty, tyl) ->
        List.iter (fun t -> add_alias t) tyl;
        mark_loops_rec visited ty
    | Tunivar _ -> add_named_var ty

let mark_loops ty =
  normalize_type Env.empty ty;
  mark_loops_rec [] ty;;

let reset_loop_marks () =
  visited_objects := []; aliased := []; delayed := []

let reset () =
  unique_names := Ident.empty; reset_names (); reset_loop_marks ()

let reset_and_mark_loops ty =
  reset (); mark_loops ty

let reset_and_mark_loops_list tyl =
  reset (); List.iter mark_loops tyl

(* Disabled in classic mode when printing an unification error *)
let print_labels = ref true
let print_label ppf l =
  if !print_labels && l <> "" || is_optional l then fprintf ppf "%s:" l

let rec tree_of_typexp sch ty =
  let ty = repr ty in
  let px = proxy ty in
  if List.mem_assq px !names && not (List.memq px !delayed) then
   let mark = is_non_gen sch ty in
   Otyp_var (mark, name_of_type px) else

  let pr_typ () =
    match ty.desc with
    | Tvar _ ->
        Otyp_var (is_non_gen sch ty, name_of_type ty)
    | Tarrow(l, ty1, ty2, _) ->
        let pr_arrow l ty1 ty2 =
          let lab =
            if !print_labels && l <> "" || is_optional l then l else ""
          in
          let t1 =
            if is_optional l then
              match (repr ty1).desc with
              | Tconstr(path, [ty], _)
                when Path.same path Predef.path_option ->
                  tree_of_typexp sch ty
              | _ -> Otyp_stuff "<hidden>"
            else tree_of_typexp sch ty1 in
          Otyp_arrow (lab, t1, tree_of_typexp sch ty2) in
        pr_arrow l ty1 ty2
    | Ttuple tyl ->
        Otyp_tuple (tree_of_typlist sch tyl)
    | Tconstr(p, tyl, abbrev) ->
        Otyp_constr (tree_of_path p, tree_of_typlist sch tyl)
    | Tvariant row ->
        let row = row_repr row in
        let fields =
          if row.row_closed then
            List.filter (fun (_, f) -> row_field_repr f <> Rabsent)
              row.row_fields
          else row.row_fields in
        let present =
          List.filter
            (fun (_, f) ->
               match row_field_repr f with
               | Rpresent _ -> true
               | _ -> false)
            fields in
        let all_present = List.length present = List.length fields in
        begin match row.row_name with
        | Some(p, tyl) when namable_row row ->
            let id = tree_of_path p in
            let args = tree_of_typlist sch tyl in
            if row.row_closed && all_present then
              Otyp_constr (id, args)
            else
              let non_gen = is_non_gen sch px in
              let tags =
                if all_present then None else Some (List.map fst present) in
              Otyp_variant (non_gen, Ovar_name(tree_of_path p, args),
                            row.row_closed, tags)
        | _ ->
            let non_gen =
              not (row.row_closed && all_present) && is_non_gen sch px in
            let fields = List.map (tree_of_row_field sch) fields in
            let tags =
              if all_present then None else Some (List.map fst present) in
            Otyp_variant (non_gen, Ovar_fields fields, row.row_closed, tags)
        end
    | Tobject (fi, nm) ->
        tree_of_typobject sch fi !nm
    | Tnil | Tfield _ ->
        tree_of_typobject sch ty None
    | Tsubst ty ->
        tree_of_typexp sch ty
    | Tlink _ ->
        fatal_error "Printtyp.tree_of_typexp"
    | Tpoly (ty, []) ->
        tree_of_typexp sch ty
    | Tpoly (ty, tyl) ->
        (*let print_names () =
          List.iter (fun (_, name) -> prerr_string (name ^ " ")) !names;
          prerr_string "; " in *)
        let tyl = List.map repr tyl in
        if tyl = [] then tree_of_typexp sch ty else begin
          let old_delayed = !delayed in
          (* Make the names delayed, so that the real type is
             printed once when used as proxy *)
          List.iter add_delayed tyl;
          let tl = List.map name_of_type tyl in
          let tr = Otyp_poly (tl, tree_of_typexp sch ty) in
          (* Forget names when we leave scope *)
          remove_names tyl;
          delayed := old_delayed; tr
        end
    | Tunivar _ ->
        Otyp_var (false, name_of_type ty)
    | Tpackage (p, n, tyl) ->
        let n =
          List.map (fun li -> String.concat "." (Longident.flatten li)) n in
        Otyp_module (Path.name p, n, tree_of_typlist sch tyl)
  in
  if List.memq px !delayed then delayed := List.filter ((!=) px) !delayed;
  if is_aliased px && aliasable ty then begin
    check_name_of_type px;
    Otyp_alias (pr_typ (), name_of_type px) end
  else pr_typ ()

and tree_of_row_field sch (l, f) =
  match row_field_repr f with
  | Rpresent None | Reither(true, [], _, _) -> (l, false, [])
  | Rpresent(Some ty) -> (l, false, [tree_of_typexp sch ty])
  | Reither(c, tyl, _, _) ->
      if c (* contradiction: un constructeur constant qui a un argument *)
      then (l, true, tree_of_typlist sch tyl)
      else (l, false, tree_of_typlist sch tyl)
  | Rabsent -> (l, false, [] (* une erreur, en fait *))

and tree_of_typlist sch tyl =
  List.map (tree_of_typexp sch) tyl

and tree_of_typobject sch fi nm =
  begin match nm with
  | None ->
      let pr_fields fi =
        let (fields, rest) = flatten_fields fi in
        let present_fields =
          List.fold_right
            (fun (n, k, t) l ->
               match field_kind_repr k with
               | Fpresent -> (n, t) :: l
               | _ -> l)
            fields [] in
        let sorted_fields =
          List.sort (fun (n, _) (n', _) -> compare n n') present_fields in
        tree_of_typfields sch rest sorted_fields in
      let (fields, rest) = pr_fields fi in
      Otyp_object (fields, rest)
  | Some (p, ty :: tyl) ->
      let non_gen = is_non_gen sch (repr ty) in
      let args = tree_of_typlist sch tyl in
      Otyp_class (non_gen, tree_of_path p, args)
  | _ ->
      fatal_error "Printtyp.tree_of_typobject"
  end

and is_non_gen sch ty =
    sch && is_Tvar ty && ty.level <> generic_level

and tree_of_typfields sch rest = function
  | [] ->
      let rest =
        match rest.desc with
        | Tvar _ | Tunivar _ -> Some (is_non_gen sch rest)
        | Tconstr _ -> Some false
        | Tnil -> None
        | _ -> fatal_error "typfields (1)"
      in
      ([], rest)
  | (s, t) :: l ->
      let field = (s, tree_of_typexp sch t) in
      let (fields, rest) = tree_of_typfields sch rest l in
      (field :: fields, rest)

let typexp sch prio ppf ty =
  !Oprint.out_type ppf (tree_of_typexp sch ty)

let type_expr ppf ty = typexp false 0 ppf ty

and type_sch ppf ty = typexp true 0 ppf ty

and type_scheme ppf ty = reset_and_mark_loops ty; typexp true 0 ppf ty

(* Maxence *)
let type_scheme_max ?(b_reset_names=true) ppf ty =
  if b_reset_names then reset_names () ;
  typexp true 0 ppf ty
(* Fin Maxence *)

let tree_of_type_scheme ty = reset_and_mark_loops ty; tree_of_typexp true ty

(* Print one type declaration *)

let tree_of_constraints params =
  List.fold_right
    (fun ty list ->
       let ty' = unalias ty in
       if proxy ty != proxy ty' then
         let tr = tree_of_typexp true ty in
         (tr, tree_of_typexp true ty') :: list
       else list)
    params []

let filter_params tyl =
  let params =
    List.fold_left
      (fun tyl ty ->
        let ty = repr ty in
        if List.memq ty tyl then Btype.newgenty (Tsubst ty) :: tyl
        else ty :: tyl)
      [] tyl
  in List.rev params

let string_of_mutable = function
  | Immutable -> ""
  | Mutable -> "mutable "

let rec tree_of_type_decl id decl =

  reset();

  let params = filter_params decl.type_params in

  List.iter add_alias params;
  List.iter mark_loops params;
  List.iter check_name_of_type (List.map proxy params);
  let ty_manifest =
    match decl.type_manifest with
    | None -> None
    | Some ty ->
        let ty =
          (* Special hack to hide variant name *)
          match repr ty with {desc=Tvariant row} ->
            let row = row_repr row in
            begin match row.row_name with
              Some (Pident id', _) when Ident.same id id' ->
                newgenty (Tvariant {row with row_name = None})
            | _ -> ty
            end
          | _ -> ty
        in
        mark_loops ty;
        Some ty
  in
  begin match decl.type_kind with
  | Type_abstract -> ()
  | Type_variant cstrs ->
      List.iter
        (fun (_, args,ret_type_opt) ->
          List.iter mark_loops args;
          may mark_loops ret_type_opt)
        cstrs
  | Type_record(l, rep) ->
      List.iter (fun (_, _, ty) -> mark_loops ty) l
  end;

  let type_param =
    function
    | Otyp_var (_, id) -> id
    | _ -> "?"
  in
  let type_defined decl =
    let abstr =
      match decl.type_kind with
        Type_abstract ->
          decl.type_manifest = None || decl.type_private = Private
      | Type_record _ ->
          decl.type_private = Private
      | Type_variant tll ->
          decl.type_private = Private ||
          List.exists (fun (_,_,ret) -> ret <> None) tll
    in
    let vari =
      List.map2
        (fun ty (co,cn,ct) ->
          if abstr || not (is_Tvar (repr ty)) then (co,cn) else (true,true))
        decl.type_params decl.type_variance
    in
    (Ident.name id,
     List.map2 (fun ty cocn -> type_param (tree_of_typexp false ty), cocn)
       params vari)
  in
  let tree_of_manifest ty1 =
    match ty_manifest with
    | None -> ty1
    | Some ty -> Otyp_manifest (tree_of_typexp false ty, ty1)
  in
  let (name, args) = type_defined decl in
  let constraints = tree_of_constraints params in
  let ty, priv =
    match decl.type_kind with
    | Type_abstract ->
        begin match ty_manifest with
        | None -> (Otyp_abstract, Public)
        | Some ty ->
            tree_of_typexp false ty, decl.type_private
        end
    | Type_variant cstrs ->
        tree_of_manifest (Otyp_sum (List.map tree_of_constructor cstrs)),
        decl.type_private
    | Type_record(lbls, rep) ->
        tree_of_manifest (Otyp_record (List.map tree_of_label lbls)),
        decl.type_private
  in
  (name, args, ty, priv, constraints)

and tree_of_constructor (name, args, ret_type_opt) =
  let name = Ident.name name in
  if ret_type_opt = None then (name, tree_of_typlist false args, None) else
  let nm = !names in
  names := [];
  let ret = may_map (tree_of_typexp false) ret_type_opt in
  let args = tree_of_typlist false args in
  names := nm;
  (name, args, ret)


and tree_of_constructor_ret =
  function
    | None -> None
    | Some ret_type -> Some (tree_of_typexp false ret_type)

and tree_of_label (name, mut, arg) =
  (Ident.name name, mut = Mutable, tree_of_typexp false arg)

let tree_of_type_declaration id decl rs =
  Osig_type (tree_of_type_decl id decl, tree_of_rec rs)

let type_declaration id ppf decl =
  !Oprint.out_sig_item ppf (tree_of_type_declaration id decl Trec_first)

(* Print an exception declaration *)

let tree_of_exception_declaration id decl =
  reset_and_mark_loops_list decl.exn_args;
  let tyl = tree_of_typlist false decl.exn_args in
  Osig_exception (Ident.name id, tyl)

let exception_declaration id ppf decl =
  !Oprint.out_sig_item ppf (tree_of_exception_declaration id decl)

(* Print a value declaration *)

let tree_of_value_description id decl =
  let id = Ident.name id in
  let ty = tree_of_type_scheme decl.val_type in
  let prims =
    match decl.val_kind with
    | Val_prim p -> Primitive.description_list p
    | _ -> []
  in
  Osig_value (id, ty, prims)

let value_description id ppf decl =
  !Oprint.out_sig_item ppf (tree_of_value_description id decl)

(* Print a class type *)

let class_var sch ppf l (m, t) =
  fprintf ppf
    "@ @[<2>val %s%s :@ %a@]" (string_of_mutable m) l (typexp sch 0) t

let method_type (_, kind, ty) =
  match field_kind_repr kind, repr ty with
    Fpresent, {desc=Tpoly(ty, tyl)} -> (ty, tyl)
  | _       , ty                    -> (ty, [])

let tree_of_metho sch concrete csil (lab, kind, ty) =
  if lab <> dummy_method then begin
    let kind = field_kind_repr kind in
    let priv = kind <> Fpresent in
    let virt = not (Concr.mem lab concrete) in
    let (ty, tyl) = method_type (lab, kind, ty) in
    let tty = tree_of_typexp sch ty in
    remove_names tyl;
    Ocsg_method (lab, priv, virt, tty) :: csil
  end
  else csil

let rec prepare_class_type params = function
  | Cty_constr (p, tyl, cty) ->
      let sty = Ctype.self_type cty in
      if List.memq (proxy sty) !visited_objects
      || not (List.for_all is_Tvar params)
      || List.exists (deep_occur sty) tyl
      then prepare_class_type params cty
      else List.iter mark_loops tyl
  | Cty_signature sign ->
      let sty = repr sign.cty_self in
      (* Self may have a name *)
      let px = proxy sty in
      if List.memq px !visited_objects then add_alias sty
      else visited_objects := px :: !visited_objects;
      let (fields, _) =
        Ctype.flatten_fields (Ctype.object_fields sign.cty_self)
      in
      List.iter (fun met -> mark_loops (fst (method_type met))) fields;
      Vars.iter (fun _ (_, _, ty) -> mark_loops ty) sign.cty_vars
  | Cty_fun (_, ty, cty) ->
      mark_loops ty;
      prepare_class_type params cty

let rec tree_of_class_type sch params =
  function
  | Cty_constr (p', tyl, cty) ->
      let sty = Ctype.self_type cty in
      if List.memq (proxy sty) !visited_objects
      || not (List.for_all is_Tvar params)
      then
        tree_of_class_type sch params cty
      else
        Octy_constr (tree_of_path p', tree_of_typlist true tyl)
  | Cty_signature sign ->
      let sty = repr sign.cty_self in
      let self_ty =
        if is_aliased sty then
          Some (Otyp_var (false, name_of_type (proxy sty)))
        else None
      in
      let (fields, _) =
        Ctype.flatten_fields (Ctype.object_fields sign.cty_self)
      in
      let csil = [] in
      let csil =
        List.fold_left
          (fun csil (ty1, ty2) -> Ocsg_constraint (ty1, ty2) :: csil)
          csil (tree_of_constraints params)
      in
      let all_vars =
        Vars.fold (fun l (m, v, t) all -> (l, m, v, t) :: all) sign.cty_vars []
      in
      (* Consequence of PR#3607: order of Map.fold has changed! *)
      let all_vars = List.rev all_vars in
      let csil =
        List.fold_left
          (fun csil (l, m, v, t) ->
            Ocsg_value (l, m = Mutable, v = Virtual, tree_of_typexp sch t)
            :: csil)
          csil all_vars
      in
      let csil =
        List.fold_left (tree_of_metho sch sign.cty_concr) csil fields
      in
      Octy_signature (self_ty, List.rev csil)
  | Cty_fun (l, ty, cty) ->
      let lab = if !print_labels && l <> "" || is_optional l then l else "" in
      let ty =
       if is_optional l then
         match (repr ty).desc with
         | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> ty
         | _ -> newconstr (Path.Pident(Ident.create "<hidden>")) []
       else ty in
      let tr = tree_of_typexp sch ty in
      Octy_fun (lab, tr, tree_of_class_type sch params cty)

let class_type ppf cty =
  reset ();
  prepare_class_type [] cty;
  !Oprint.out_class_type ppf (tree_of_class_type false [] cty)

let tree_of_class_param param variance =
  (match tree_of_typexp true param with
    Otyp_var (_, s) -> s
  | _ -> "?"),
  if is_Tvar (repr param) then (true, true) else variance

let tree_of_class_params params =
  let tyl = tree_of_typlist true params in
  List.map (function Otyp_var (_, s) -> s | _ -> "?") tyl

let tree_of_class_declaration id cl rs =
  let params = filter_params cl.cty_params in

  reset ();
  List.iter add_alias params;
  prepare_class_type params cl.cty_type;
  let sty = Ctype.self_type cl.cty_type in
  List.iter mark_loops params;

  List.iter check_name_of_type (List.map proxy params);
  if is_aliased sty then check_name_of_type (proxy sty);

  let vir_flag = cl.cty_new = None in
  Osig_class
    (vir_flag, Ident.name id,
     List.map2 tree_of_class_param params cl.cty_variance,
     tree_of_class_type true params cl.cty_type,
     tree_of_rec rs)

let class_declaration id ppf cl =
  !Oprint.out_sig_item ppf (tree_of_class_declaration id cl Trec_first)

let tree_of_cltype_declaration id cl rs =
  let params = List.map repr cl.clty_params in

  reset ();
  List.iter add_alias params;
  prepare_class_type params cl.clty_type;
  let sty = Ctype.self_type cl.clty_type in
  List.iter mark_loops params;

  List.iter check_name_of_type (List.map proxy params);
  if is_aliased sty then check_name_of_type (proxy sty);

  let sign = Ctype.signature_of_class_type cl.clty_type in

  let virt =
    let (fields, _) =
      Ctype.flatten_fields (Ctype.object_fields sign.cty_self) in
    List.exists
      (fun (lab, _, ty) ->
         not (lab = dummy_method || Concr.mem lab sign.cty_concr))
      fields
    || Vars.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.cty_vars false
  in

  Osig_class_type
    (virt, Ident.name id,
     List.map2 tree_of_class_param params cl.clty_variance,
     tree_of_class_type true params cl.clty_type,
     tree_of_rec rs)

let cltype_declaration id ppf cl =
  !Oprint.out_sig_item ppf (tree_of_cltype_declaration id cl Trec_first)

(* Print a module type *)

let rec tree_of_modtype = function
  | Mty_ident p ->
      Omty_ident (tree_of_path p)
  | Mty_signature sg ->
      Omty_signature (tree_of_signature sg)
  | Mty_functor(param, ty_arg, ty_res) ->
      Omty_functor
        (Ident.name param, tree_of_modtype ty_arg, tree_of_modtype ty_res)

and tree_of_signature = function
  | [] -> []
  | Sig_value(id, decl) :: rem ->
      tree_of_value_description id decl :: tree_of_signature rem
  | Sig_type(id, _, _) :: rem when is_row_name (Ident.name id) ->
      tree_of_signature rem
  | Sig_type(id, decl, rs) :: rem ->
      Osig_type(tree_of_type_decl id decl, tree_of_rec rs) ::
      tree_of_signature rem
  | Sig_exception(id, decl) :: rem ->
      tree_of_exception_declaration id decl :: tree_of_signature rem
  | Sig_module(id, mty, rs) :: rem ->
      Osig_module (Ident.name id, tree_of_modtype mty, tree_of_rec rs) ::
      tree_of_signature rem
  | Sig_modtype(id, decl) :: rem ->
      tree_of_modtype_declaration id decl :: tree_of_signature rem
  | Sig_class(id, decl, rs) :: ctydecl :: tydecl1 :: tydecl2 :: rem ->
      tree_of_class_declaration id decl rs :: tree_of_signature rem
  | Sig_class_type(id, decl, rs) :: tydecl1 :: tydecl2 :: rem ->
      tree_of_cltype_declaration id decl rs :: tree_of_signature rem
  | _ ->
      assert false

and tree_of_modtype_declaration id decl =
  let mty =
    match decl with
    | Modtype_abstract -> Omty_abstract
    | Modtype_manifest mty -> tree_of_modtype mty
  in
  Osig_modtype (Ident.name id, mty)

let tree_of_module id mty rs =
  Osig_module (Ident.name id, tree_of_modtype mty, tree_of_rec rs)

let modtype ppf mty = !Oprint.out_module_type ppf (tree_of_modtype mty)
let modtype_declaration id ppf decl =
  !Oprint.out_sig_item ppf (tree_of_modtype_declaration id decl)

(* Print a signature body (used by -i when compiling a .ml) *)

let print_signature ppf tree =
  fprintf ppf "@[<v>%a@]" !Oprint.out_signature tree

let signature ppf sg =
  fprintf ppf "%a" print_signature (tree_of_signature sg)

(* Print an unification error *)

let type_expansion t ppf t' =
  if t == t' then type_expr ppf t else
  let t' = if proxy t == proxy t' then unalias t' else t' in
  fprintf ppf "@[<2>%a@ =@ %a@]" type_expr t type_expr t'

let rec trace fst txt ppf = function
  | (t1, t1') :: (t2, t2') :: rem ->
      if not fst then fprintf ppf "@,";
      fprintf ppf "@[Type@;<1 2>%a@ %s@;<1 2>%a@] %a"
       (type_expansion t1) t1' txt (type_expansion t2) t2'
       (trace false txt) rem
  | _ -> ()

let rec filter_trace = function
  | (_, t1') :: (_, t2') :: [] when is_Tvar t1' || is_Tvar t2' ->
      []
  | (t1, t1') :: (t2, t2') :: rem ->
      let rem' = filter_trace rem in
      if t1 == t1' && t2 == t2'
      then rem'
      else (t1, t1') :: (t2, t2') :: rem'
  | _ -> []

(* Hide variant name and var, to force printing the expanded type *)
let hide_variant_name t =
  match repr t with
  | {desc = Tvariant row} as t when (row_repr row).row_name <> None ->
      newty2 t.level
        (Tvariant {(row_repr row) with row_name = None;
                   row_more = newvar2 (row_more row).level})
  | _ -> t

let prepare_expansion (t, t') =
  let t' = hide_variant_name t' in
  mark_loops t; if t != t' then mark_loops t';
  (t, t')

let may_prepare_expansion compact (t, t') =
  match (repr t').desc with
    Tvariant _ | Tobject _ when compact ->
      mark_loops t; (t, t)
  | _ -> prepare_expansion (t, t')

let print_tags ppf fields =
  match fields with [] -> ()
  | (t, _) :: fields ->
      fprintf ppf "`%s" t;
      List.iter (fun (t, _) -> fprintf ppf ",@ `%s" t) fields

let has_explanation unif t3 t4 =
  match t3.desc, t4.desc with
    Tfield _, (Tnil|Tconstr _) | (Tnil|Tconstr _), Tfield _
  | _, Tvar _ | Tvar _, _
  | Tvariant _, Tvariant _ -> true
  | Tfield (l,_,_,{desc=Tnil}), Tfield (l',_,_,{desc=Tnil}) -> l = l'
  | _ -> false

let rec mismatch unif = function
    (_, t) :: (_, t') :: rem ->
      begin match mismatch unif rem with
        Some _ as m -> m
      | None ->
          if has_explanation unif t t' then Some(t,t') else None
      end
  | [] -> None
  | _ -> assert false

let explanation unif t3 t4 ppf =
  match t3.desc, t4.desc with
  | Ttuple [], Tvar _ | Tvar _, Ttuple [] ->
      fprintf ppf "@,Self type cannot escape its class"
  | Tconstr (p, tl, _), Tvar _
    when unif && t4.level < Path.binding_time p ->
      fprintf ppf
        "@,@[The type constructor@;<1 2>%a@ would escape its scope@]"
        path p
  | Tvar _, Tconstr (p, tl, _)
    when unif && t3.level < Path.binding_time p ->
      fprintf ppf
        "@,@[The type constructor@;<1 2>%a@ would escape its scope@]"
        path p
  | Tvar _, Tunivar _ | Tunivar _, Tvar _ ->
      fprintf ppf "@,The universal variable %a would escape its scope"
        type_expr (if is_Tunivar t3 then t3 else t4)
  | Tvar _, _ | _, Tvar _ ->
      let t, t' = if is_Tvar t3 then (t3, t4) else (t4, t3) in
      if occur_in Env.empty t t' then
        fprintf ppf "@,@[<hov>The type variable %a occurs inside@ %a@]"
          type_expr t type_expr t'
      else
        fprintf ppf "@,@[<hov>This instance of %a is ambiguous:@ %s@]"
          type_expr t'
          "it would escape the scope of its equation"
  | Tfield (lab, _, _, _), _
  | _, Tfield (lab, _, _, _) when lab = dummy_method ->
      fprintf ppf
        "@,Self type cannot be unified with a closed object type"
  | Tfield (l,_,_,{desc=Tnil}), Tfield (l',_,_,{desc=Tnil}) when l = l' ->
      fprintf ppf "@,Types for method %s are incompatible" l
  | (Tnil|Tconstr _), Tfield (l, _, _, _) ->
      fprintf ppf
        "@,@[The first object type has no method %s@]" l
  | Tfield (l, _, _, _), (Tnil|Tconstr _) ->
      fprintf ppf
        "@,@[The second object type has no method %s@]" l
  | Tvariant row1, Tvariant row2 ->
      let row1 = row_repr row1 and row2 = row_repr row2 in
      begin match
        row1.row_fields, row1.row_closed, row2.row_fields, row2.row_closed with
      | [], true, [], true ->
          fprintf ppf "@,These two variant types have no intersection"
      | [], true, fields, _ ->
          fprintf ppf
            "@,@[The first variant type does not allow tag(s)@ @[<hov>%a@]@]"
            print_tags fields
      | fields, _, [], true ->
          fprintf ppf
            "@,@[The second variant type does not allow tag(s)@ @[<hov>%a@]@]"
            print_tags fields
      | [l1,_], true, [l2,_], true when l1 = l2 ->
          fprintf ppf "@,Types for tag `%s are incompatible" l1
      | _ -> ()
      end
  | _ -> ()

let explanation unif mis ppf =
  match mis with
    None -> ()
  | Some (t3, t4) -> explanation unif t3 t4 ppf

let ident_same_name id1 id2 =
  if Ident.equal id1 id2 && not (Ident.same id1 id2) then begin
    add_unique id1; add_unique id2
  end

let rec path_same_name p1 p2 =
  match p1, p2 with
    Pident id1, Pident id2 -> ident_same_name id1 id2
  | Pdot (p1, s1, _), Pdot (p2, s2, _) when s1 = s2 -> path_same_name p1 p2
  | Papply (p1, p1'), Papply (p2, p2') ->
      path_same_name p1 p2; path_same_name p1' p2'
  | _ -> ()

let type_same_name t1 t2 =
  match (repr t1).desc, (repr t2).desc with
    Tconstr (p1, _, _), Tconstr (p2, _, _) -> path_same_name p1 p2
  | _ -> ()

let rec trace_same_names = function
    (t1, t1') :: (t2, t2') :: rem ->
      type_same_name t1 t2; type_same_name t1' t2'; trace_same_names rem
  | _ -> ()

let unification_error unif tr txt1 ppf txt2 =
  reset ();
  trace_same_names tr;
  let tr = List.map (fun (t, t') -> (t, hide_variant_name t')) tr in
  let mis = mismatch unif tr in
  match tr with
  | [] | _ :: [] -> assert false
  | t1 :: t2 :: tr ->
    try
      let tr = filter_trace tr in
      let t1, t1' = may_prepare_expansion (tr = []) t1
      and t2, t2' = may_prepare_expansion (tr = []) t2 in
      print_labels := not !Clflags.classic;
      let tr = List.map prepare_expansion tr in
      fprintf ppf
        "@[<v>\
          @[%t@;<1 2>%a@ \
            %t@;<1 2>%a\
          @]%a%t\
         @]"
        txt1 (type_expansion t1) t1'
        txt2 (type_expansion t2) t2'
        (trace false "is not compatible with type") tr
        (explanation unif mis);
      print_labels := true
    with exn ->
      print_labels := true;
      raise exn

let report_unification_error ppf tr txt1 txt2 =
  unification_error true tr txt1 ppf txt2;;

let trace fst txt ppf tr =
  print_labels := not !Clflags.classic;
  trace_same_names tr;
  try match tr with
    t1 :: t2 :: tr' ->
      if fst then trace fst txt ppf (t1 :: t2 :: filter_trace tr')
      else trace fst txt ppf (filter_trace tr);
      print_labels := true
  | _ -> ()
  with exn ->
    print_labels := true;
    raise exn

let report_subtyping_error ppf tr1 txt1 tr2 =
  reset ();
  let tr1 = List.map prepare_expansion tr1
  and tr2 = List.map prepare_expansion tr2 in
  trace true txt1 ppf tr1;
  if tr2 = [] then () else
  let mis = mismatch true tr2 in
  trace false "is not compatible with type" ppf tr2;
  explanation true mis ppf
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.