// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Copyright (c) 2011-2013 The PPCoin developers
// Copyright (c) 2013-2014 The Peershares developers
// Copyright (c) 2014-2015 The Nu developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_MAIN_H
#define BITCOIN_MAIN_H
#include "bignum.h"
#include "net.h"
#include "script.h"
#include "vote.h"
#ifdef WIN32
#include <io.h> /* for _commit */
#endif
#include <list>
class CWallet;
class CBlock;
class CBlockIndex;
class CKeyItem;
class CReserveKey;
class COutPoint;
class CAddress;
class CInv;
class CRequestTracker;
class CNode;
class CCoinControl;
static const unsigned int MAX_BLOCK_SIZE = 1000000;
static const unsigned int MAX_BLOCK_SIZE_GEN = MAX_BLOCK_SIZE/2;
static const unsigned int MAX_BLOCK_SIGOPS = MAX_BLOCK_SIZE/50;
static const unsigned int MAX_ORPHAN_TRANSACTIONS = MAX_BLOCK_SIZE/100;
static const unsigned int MAX_COINSTAKE_SIZE = 1000; // nubit: maximum size of CoinStake transactions
static const int64 MIN_SHARE_TX_FEE = COIN;
static const int64 MIN_SHARE_TXOUT_AMOUNT = MIN_SHARE_TX_FEE;
static const int64 MIN_CURRENCY_TX_FEE = CENT;
static const int64 MIN_CURRENCY_TXOUT_AMOUNT = MIN_CURRENCY_TX_FEE;
static const int64 MAX_MONEY = 2000000000 * COIN;
inline bool MoneyRange(int64 nValue) { return (nValue >= 0 && nValue <= MAX_MONEY); }
static const int COINBASE_MATURITY = 100; // Must be smaller than PROOF_OF_WORK_BLOCKS
static const int COINSTAKE_MATURITY = 5000; // Same average time as Peercoin (500 * 10 minutes vs 5000 * 1 minute)
// Threshold for nLockTime: below this value it is interpreted as block number, otherwise as UNIX timestamp.
static const int LOCKTIME_THRESHOLD = 500000000; // Tue Nov 5 00:53:20 1985 UTC
static const int STAKE_TARGET_SPACING = 60 * 1; // 60 second block spacing for Nubit
static const int STAKE_MIN_AGE = 60 * 60 * 24 * 7; // changed to 7 days so only one vote in 10000 block voting period can be made
static const int STAKE_MAX_AGE = STAKE_MIN_AGE + 1; // changed to same as minimum to incentivize minting as soon as possible
static const int64 IPO_SHARES = 1000000000 * COIN; // Total number of shares to create using proof of work (intented for IPO)
static const int64 PROOF_OF_WORK_BLOCKS = 400; // Block height of the last proof of work block
#ifdef TESTING
static const int64 PARK_RATE_VOTES = 5; // Number of blocks used in park rate median vote calculation
static const int64 PARK_RATE_PREVIOUS_VOTES = 1; // Number of blocks used in the park rate increase limitation
static const unsigned int CUSTODIAN_VOTES = 5;
static const int PARK_RATE_VOTE_DELAY = 12;
#else
static const int64 PARK_RATE_VOTES = 2000; // Number of blocks used in park rate median vote calculation
static const int64 PARK_RATE_PREVIOUS_VOTES = 1440; // Number of blocks used in the park rate increase limitation
static const unsigned int CUSTODIAN_VOTES = 10000;
static const int PARK_RATE_VOTE_DELAY = 60;
#endif
static const int64 MOTION_VOTES = 10000;
static const int64 PROOF_OF_STAKE_REWARD = 40 * COIN; // Constant reward of Proof of Stake blocks
static const int64 MIN_COINSTAKE_VALUE = 10000 * COIN; // Minimum value allowed as input in a CoinStake
static const int64 MAX_COIN_AGE = 100000000000000; // To make sure coin days can be added about 10,000 times without overflow
#ifdef TESTING
static const int FEE_VOTE_DELAY_BLOCKS = 3;
static const int FEE_VOTES = 5;
static const int SAFE_FEE_BLOCKS = 2;
#else
static const int FEE_VOTE_DELAY_BLOCKS = 60; // Voted fees are effective this number of blocks after the actual vote result
static const int FEE_VOTES = 2000;
static const int SAFE_FEE_BLOCKS = 10; // When a new transaction is created, the highest min fee of the next SAFE_FEE_BLOCKS blocks will be used, to make sure this transaction can be included in any of these blocks
#endif
#ifdef USE_UPNP
static const int fHaveUPnP = true;
#else
static const int fHaveUPnP = false;
#endif
static const uint256 hashGenesisBlockOfficial("000003cc2da5a0a289ad0a590c20a8b975219ddc1204efd169e947dd4cbad73f");
static const uint256 hashGenesisBlockTestNet("000005fa4ce5f6fefe0d7faee4708051527a35f6c918a03d8fdf077ac4845933");
static const int64 nMaxClockDrift = 2 * 60 * 60; // two hours
extern CScript COINBASE_FLAGS;
static const std::string sAvailableUnits("SB");
inline bool IsValidUnit(unsigned char cUnit)
{
return sAvailableUnits.find(cUnit) != std::string::npos;
}
inline bool IsValidCurrency(unsigned char cUnit)
{
return (cUnit != 'S' && IsValidUnit(cUnit));
}
inline int64 GetDefaultFee(unsigned char cUnit)
{
switch (cUnit)
{
case 'S': return COIN;
case 'B': return CENT;
default: return MAX_MONEY;
}
}
extern CCriticalSection cs_main;
extern std::map<uint256, CBlockIndex*> mapBlockIndex;
extern std::set<std::pair<COutPoint, unsigned int> > setStakeSeen;
extern uint256 hashGenesisBlock;
extern unsigned int nStakeMinAge;
extern int nCoinbaseMaturity;
extern int nCoinstakeMaturity;
extern CBlockIndex* pindexGenesisBlock;
extern int nBestHeight;
extern CBigNum bnBestChainTrust;
extern CBigNum bnBestInvalidTrust;
extern uint256 hashBestChain;
extern CBlockIndex* pindexBest;
extern unsigned int nTransactionsUpdated;
extern uint64 nLastBlockTx;
extern uint64 nLastBlockSize;
extern int64 nLastCoinStakeSearchInterval;
extern const std::string strMessageMagic;
extern double dHashesPerSec;
extern int64 nHPSTimerStart;
extern int64 nTimeBestReceived;
extern CCriticalSection cs_setpwalletRegistered;
extern std::set<CWallet*> setpwalletRegistered;
extern std::map<uint256, CBlock*> mapOrphanBlocks;
extern std::map<uint256, CBlock*> mapDuplicateStakeBlocks;
#ifdef TESTING
extern uint256 hashSingleStakeBlock;
extern int nBlocksToIgnore;
#endif
// Settings
extern int64 nSplitShareOutputs;
class CReserveKey;
class CTxDB;
class CTxIndex;
CWallet *GetWallet(unsigned char cUnit);
void RegisterWallet(CWallet* pwalletIn);
void UnregisterWallet(CWallet* pwalletIn);
void UnregisterAndDeleteAllWallets();
void SyncWithWallets(const CTransaction& tx, const CBlock* pblock = NULL, bool fUpdate = false, bool fConnect = true);
bool ProcessBlock(CNode* pfrom, CBlock* pblock);
bool CheckDiskSpace(uint64 nAdditionalBytes=0);
FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode="rb");
FILE* AppendBlockFile(unsigned int& nFileRet);
bool LoadBlockIndex(bool fAllowNew=true);
void PrintBlockTree();
bool ProcessMessages(CNode* pfrom);
bool SendMessages(CNode* pto, bool fSendTrickle);
void GenerateBitcoins(bool fGenerate, CWallet* pwallet);
CBlock* CreateNewBlock(CReserveKey& reservekey, CWallet* pwallet, bool fProofOfStake=false);
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce);
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1);
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey);
bool CheckProofOfWork(uint256 hash, unsigned int nBits);
int64 GetProofOfWorkReward();
int64 GetProofOfStakeReward();
unsigned int ComputeMinWork(unsigned int nBase, int64 nTime);
int GetNumBlocksOfPeers();
bool IsInitialBlockDownload();
std::string GetWarnings(std::string strFor);
uint256 WantedByOrphan(const CBlock* pblockOrphan);
const CBlockIndex* GetLastBlockIndex(const CBlockIndex* pindex, bool fProofOfStake);
#ifdef TESTING
void BitcoinMiner(CWallet *pwallet, bool fProofOfStake, bool fGenerateSingleBlock = false);
#else
void BitcoinMiner(CWallet *pwallet, bool fProofOfStake);
#endif
bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock);
bool IsNuProtocolV05(int64 nTimeBlock);
inline int GetMaturity(bool fProofOfStake)
{
return fProofOfStake ? nCoinstakeMaturity : nCoinbaseMaturity;
}
inline int64 MinTxOutAmount(unsigned char cUnit)
{
return cUnit == 'S' ? MIN_SHARE_TXOUT_AMOUNT : MIN_CURRENCY_TXOUT_AMOUNT;
}
bool GetWalletFile(CReserveKey* reservekey, CWallet* pwallet, std::string &strWalletFileOut);
/** Position on disk for a particular transaction. */
class CDiskTxPos
{
public:
unsigned int nFile;
unsigned int nBlockPos;
unsigned int nTxPos;
CDiskTxPos()
{
SetNull();
}
CDiskTxPos(unsigned int nFileIn, unsigned int nBlockPosIn, unsigned int nTxPosIn)
{
nFile = nFileIn;
nBlockPos = nBlockPosIn;
nTxPos = nTxPosIn;
}
IMPLEMENT_SERIALIZE( READWRITE(FLATDATA(*this)); )
void SetNull() { nFile = -1; nBlockPos = 0; nTxPos = 0; }
bool IsNull() const { return (nFile == -1); }
friend bool operator==(const CDiskTxPos& a, const CDiskTxPos& b)
{
return (a.nFile == b.nFile &&
a.nBlockPos == b.nBlockPos &&
a.nTxPos == b.nTxPos);
}
friend bool operator!=(const CDiskTxPos& a, const CDiskTxPos& b)
{
return !(a == b);
}
std::string ToString() const
{
if (IsNull())
return "null";
else
return strprintf("(nFile=%d, nBlockPos=%d, nTxPos=%d)", nFile, nBlockPos, nTxPos);
}
void print() const
{
printf("%s", ToString().c_str());
}
};
/** An inpoint - a combination of a transaction and an index n into its vin */
class CInPoint
{
public:
CTransaction* ptx;
unsigned int n;
CInPoint() { SetNull(); }
CInPoint(CTransaction* ptxIn, unsigned int nIn) { ptx = ptxIn; n = nIn; }
void SetNull() { ptx = NULL; n = -1; }
bool IsNull() const { return (ptx == NULL && n == -1); }
};
/** An outpoint - a combination of a transaction hash and an index n into its vout */
class COutPoint
{
public:
uint256 hash;
unsigned int n;
COutPoint() { SetNull(); }
COutPoint(uint256 hashIn, unsigned int nIn) { hash = hashIn; n = nIn; }
IMPLEMENT_SERIALIZE( READWRITE(FLATDATA(*this)); )
void SetNull() { hash = 0; n = -1; }
bool IsNull() const { return (hash == 0 && n == -1); }
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
return (a.hash < b.hash || (a.hash == b.hash && a.n < b.n));
}
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const
{
return strprintf("COutPoint(%s, %d)", hash.ToString().substr(0,10).c_str(), n);
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
*/
class CTxIn
{
public:
COutPoint prevout;
CScript scriptSig;
unsigned int nSequence;
CTxIn()
{
nSequence = std::numeric_limits<unsigned int>::max();
}
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits<unsigned int>::max())
{
prevout = prevoutIn;
scriptSig = scriptSigIn;
nSequence = nSequenceIn;
}
CTxIn(uint256 hashPrevTx, unsigned int nOut, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits<unsigned int>::max())
{
prevout = COutPoint(hashPrevTx, nOut);
scriptSig = scriptSigIn;
nSequence = nSequenceIn;
}
IMPLEMENT_SERIALIZE
(
READWRITE(prevout);
READWRITE(scriptSig);
READWRITE(nSequence);
)
bool IsFinal() const
{
return (nSequence == std::numeric_limits<unsigned int>::max());
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToStringShort() const
{
return strprintf(" %s %d", prevout.hash.ToString().c_str(), prevout.n);
}
std::string ToString() const
{
std::string str;
str += "CTxIn(";
str += prevout.ToString();
if (prevout.IsNull())
str += strprintf(", coinbase %s", HexStr(scriptSig).c_str());
else
str += strprintf(", scriptSig=%s", scriptSig.ToString().substr(0,24).c_str());
if (nSequence != std::numeric_limits<unsigned int>::max())
str += strprintf(", nSequence=%u", nSequence);
str += ")";
return str;
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
/** An output of a transaction. It contains the public key that the next input
* must be able to sign with to claim it.
*/
class CTxOut
{
public:
int64 nValue;
CScript scriptPubKey;
CTxOut()
{
SetNull();
}
CTxOut(int64 nValueIn, CScript scriptPubKeyIn)
{
nValue = nValueIn;
scriptPubKey = scriptPubKeyIn;
}
IMPLEMENT_SERIALIZE
(
READWRITE(nValue);
READWRITE(scriptPubKey);
)
void SetNull()
{
nValue = -1;
scriptPubKey.clear();
}
bool IsNull()
{
return (nValue == -1);
}
void SetEmpty()
{
nValue = 0;
scriptPubKey.clear();
}
bool IsEmpty() const
{
return (nValue == 0 && scriptPubKey.empty());
}
bool IsVote() const
{
return (nValue == 0 && ::IsVote(scriptPubKey));
}
bool IsParkRateResult() const
{
return (nValue == 0 && ::IsParkRateResult(scriptPubKey));
}
bool IsPark() const
{
return ::IsPark(scriptPubKey);
}
uint256 GetHash() const
{
return SerializeHash(*this);
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToStringShort() const
{
return strprintf(" out %s %s", FormatMoney(nValue).c_str(), scriptPubKey.ToString(true).c_str());
}
std::string ToString() const
{
if (IsEmpty()) return "CTxOut(empty)";
return strprintf("CTxOut(nValue=%s, scriptPubKey=%s)", FormatMoney(nValue).c_str(), scriptPubKey.ToString().c_str());
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
typedef std::map<uint256, std::pair<CTxIndex, CTransaction> > MapPrevTx;
/** The basic transaction that is broadcasted on the network and contained in
* blocks. A transaction can contain multiple inputs and outputs.
*/
class CTransaction
{
public:
int nVersion;
unsigned int nTime;
std::vector<CTxIn> vin;
std::vector<CTxOut> vout;
unsigned int nLockTime;
unsigned char cUnit;
// Denial-of-service detection:
mutable int nDoS;
bool DoS(int nDoSIn, bool fIn) const { nDoS += nDoSIn; return fIn; }
CTransaction()
{
SetNull();
}
IMPLEMENT_SERIALIZE
(
READWRITE(this->nVersion);
nVersion = this->nVersion;
READWRITE(nTime);
READWRITE(vin);
READWRITE(vout);
READWRITE(nLockTime);
READWRITE(cUnit);
)
void SetNull()
{
nVersion = 1;
nTime = GetAdjustedTime();
vin.clear();
vout.clear();
nLockTime = 0;
cUnit = '?';
nDoS = 0; // Denial-of-service prevention
}
bool IsNull() const
{
return (vin.empty() && vout.empty());
}
uint256 GetHash() const
{
return SerializeHash(*this);
}
bool IsFinal(int nBlockHeight=0, int64 nBlockTime=0) const
{
// Time based nLockTime implemented in 0.1.6
if (nLockTime == 0)
return true;
if (nBlockHeight == 0)
nBlockHeight = nBestHeight;
if (nBlockTime == 0)
nBlockTime = GetAdjustedTime();
if ((int64)nLockTime < ((int64)nLockTime < LOCKTIME_THRESHOLD ? (int64)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, vin)
if (!txin.IsFinal())
return false;
return true;
}
bool IsNewerThan(const CTransaction& old) const
{
if (vin.size() != old.vin.size())
return false;
for (unsigned int i = 0; i < vin.size(); i++)
if (vin[i].prevout != old.vin[i].prevout)
return false;
bool fNewer = false;
unsigned int nLowest = std::numeric_limits<unsigned int>::max();
for (unsigned int i = 0; i < vin.size(); i++)
{
if (vin[i].nSequence != old.vin[i].nSequence)
{
if (vin[i].nSequence <= nLowest)
{
fNewer = false;
nLowest = vin[i].nSequence;
}
if (old.vin[i].nSequence < nLowest)
{
fNewer = true;
nLowest = old.vin[i].nSequence;
}
}
}
return fNewer;
}
bool IsCoinBase() const
{
return (cUnit == 'S' && vin.size() == 1 && vin[0].prevout.IsNull() && vout.size() >= 1);
}
bool IsCoinStake() const
{
// ppcoin: the coin stake transaction is marked with the first output empty
return (cUnit == 'S' && vin.size() > 0 && (!vin[0].prevout.IsNull()) && vout.size() >= 2 && vout[0].IsEmpty());
}
bool IsCustodianGrant() const
{
if (cUnit == 'S')
return (vin.size() == 1 && vin[0].prevout.hash == 0 && vin[0].prevout.n == -2 && vout.size() >= 1);
else
return (IsValidCurrency(cUnit) && vin.size() == 1 && vin[0].prevout.IsNull() && vout.size() >= 1);
}
bool IsParked(unsigned int nOut) const
{
if (nOut >= vout.size())
throw std::runtime_error("CTransaction::IsParked() : nOut out of range");
return vout[nOut].IsPark();
}
bool IsUnpark() const
{
return (vin.size() == 1 && !vin[0].prevout.IsNull() && ::IsUnpark(vin[0].scriptSig) && vout.size() == 1);
}
/** Check for standard transaction types
@return True if all outputs (scriptPubKeys) use only standard transaction forms
*/
bool IsStandard() const;
/** Check for cross unit transaction
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return True if all inputs have the same unit as the transaction
@see CTransaction::FetchInputs
*/
bool AreInputsSameUnit(const MapPrevTx& mapInputs) const;
/** Check for standard transaction types
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return True if all inputs (scriptSigs) use only standard transaction forms
@see CTransaction::FetchInputs
*/
bool AreInputsStandard(const MapPrevTx& mapInputs) const;
/** Count ECDSA signature operations the old-fashioned (pre-0.6) way
@return number of sigops this transaction's outputs will produce when spent
@see CTransaction::FetchInputs
*/
unsigned int GetLegacySigOpCount() const;
/** Count ECDSA signature operations in pay-to-script-hash inputs.
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return maximum number of sigops required to validate this transaction's inputs
@see CTransaction::FetchInputs
*/
unsigned int GetP2SHSigOpCount(const MapPrevTx& mapInputs) const;
/** Amount of peershares spent by this transaction.
@return sum of all outputs (note: does not include fees)
*/
int64 GetValueOut() const
{
int64 nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, vout)
{
nValueOut += txout.nValue;
if (!MoneyRange(txout.nValue) || !MoneyRange(nValueOut))
throw std::runtime_error("CTransaction::GetValueOut() : value out of range");
}
return nValueOut;
}
/** Amount of peershares coming in to this transaction
Note that lightweight clients may not know anything besides the hash of previous transactions,
so may not be able to calculate this.
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return Sum of value of all inputs (scriptSigs)
@see CTransaction::FetchInputs
*/
int64 GetValueIn(const MapPrevTx& mapInputs) const;
static bool AllowFree(double dPriority)
{
// Large (in bytes) low-priority (new, small-coin) transactions
// need a fee.
return dPriority > COIN * 144 / 250;
}
// nubit: Returns the per-kilobyte fee at this block
int64 GetUnitMinFee(const CBlockIndex *pindex) const;
// nubit: Returns a per-kilobyte fee that is safe to use in the next few blocks
int64 GetSafeUnitMinFee(const CBlockIndex *pindex) const;
int64 GetMinTxOutAmount() const
{
return MinTxOutAmount(cUnit);
}
int64 GetMinFee(int64 nBaseFee, unsigned int nBytes=0) const;
// nubit: Returns the minimum fee required for this transaction in this block
int64 GetMinFee(const CBlockIndex *pindex, unsigned int nBytes=0) const;
// nubit: Returns the minimum fee that's safe to use in the next few blocks after pindex
int64 GetSafeMinFee(const CBlockIndex *pindex, unsigned int nBytes=0) const;
bool ReadFromDisk(CDiskTxPos pos, FILE** pfileRet=NULL)
{
CAutoFile filein = CAutoFile(OpenBlockFile(pos.nFile, 0, pfileRet ? "rb+" : "rb"), SER_DISK, CLIENT_VERSION);
if (!filein)
return error("CTransaction::ReadFromDisk() : OpenBlockFile failed");
// Read transaction
if (fseek(filein, pos.nTxPos, SEEK_SET) != 0)
return error("CTransaction::ReadFromDisk() : fseek failed");
try {
filein >> *this;
}
catch (std::exception &e) {
return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__);
}
// Return file pointer
if (pfileRet)
{
if (fseek(filein, pos.nTxPos, SEEK_SET) != 0)
return error("CTransaction::ReadFromDisk() : second fseek failed");
*pfileRet = filein.release();
}
return true;
}
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return (a.nVersion == b.nVersion &&
a.nTime == b.nTime &&
a.vin == b.vin &&
a.vout == b.vout &&
a.nLockTime == b.nLockTime &&
a.cUnit == b.cUnit);
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return !(a == b);
}
std::string ToStringShort() const
{
std::string str;
str += strprintf("%s %s", GetHash().ToString().c_str(), IsCoinBase()? "base" : (IsCoinStake()? "stake" : "user"));
return str;
}
std::string ToString() const
{
std::string str;
str += IsCoinBase()? "Coinbase" : (IsCoinStake()? "Coinstake" : "CTransaction");
str += strprintf("(hash=%s, unit=%c nTime=%d, ver=%d, vin.size=%d, vout.size=%d, nLockTime=%d)\n",
GetHash().ToString().substr(0,10).c_str(),
cUnit,
nTime,
nVersion,
vin.size(),
vout.size(),
nLockTime);
for (unsigned int i = 0; i < vin.size(); i++)
str += " " + vin[i].ToString() + "\n";
for (unsigned int i = 0; i < vout.size(); i++)
str += " " + vout[i].ToString() + "\n";
return str;
}
void print() const
{
printf("%s", ToString().c_str());
}
bool ReadFromDisk(CTxDB& txdb, const uint256& hash, CTxIndex& txindexRet);
bool ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet);
bool ReadFromDisk(CTxDB& txdb, COutPoint prevout);
bool ReadFromDisk(COutPoint prevout);
bool DisconnectInputs(CTxDB& txdb);
/** Fetch from memory and/or disk. inputsRet keys are transaction hashes.
@param[in] txdb Transaction database
@param[in] mapTestPool List of pending changes to the transaction index database
@param[in] fBlock True if being called to add a new best-block to the chain
@param[in] fMiner True if being called by CreateNewBlock
@param[out] inputsRet Pointers to this transaction's inputs
@param[out] fInvalid returns true if transaction is invalid
@return Returns true if all inputs are in txdb or mapTestPool
*/
bool FetchInputs(CTxDB& txdb, const std::map<uint256, CTxIndex>& mapTestPool,
bool fBlock, bool fMiner, MapPrevTx& inputsRet, bool& fInvalid);
/** Sanity check previous transactions, then, if all checks succeed,
mark them as spent by this transaction.
@param[in] inputs Previous transactions (from FetchInputs)
@param[out] mapTestPool Keeps track of inputs that need to be updated on disk
@param[in] posThisTx Position of this transaction on disk
@param[in] pindexBlock
@param[in] fBlock true if called from ConnectBlock
@param[in] fMiner true if called from CreateNewBlock
@param[in] fStrictPayToScriptHash true if fully validating p2sh transactions
@return Returns true if all checks succeed
*/
bool ConnectInputs(CTxDB& txdb, MapPrevTx inputs,
std::map<uint256, CTxIndex>& mapTestPool, const CDiskTxPos& posThisTx,
const CBlockIndex* pindexBlock, bool fBlock, bool fMiner, bool fStrictPayToScriptHash=true);
bool ClientConnectInputs();
bool CheckTransaction() const;
bool AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs=true, bool* pfMissingInputs=NULL);
bool GetCoinAge(CTxDB& txdb, int64& nCoinAge) const; // ppcoin: get transaction coin age
// Add an output, split if appropriate
void AddOutput(const CScript& script, int64 nAmount);
// Add the change output, split if appropriate, and back to scriptChange if avatar mode is enabled
void AddChange(int64 nChange, CScript& scriptChange, const CCoinControl* coinControl, CReserveKey& reservekey);
bool CheckParkWithResult(const std::vector<CParkRateVote>& vParkRateResult) const;
protected:
const CTxOut& GetOutputFor(const CTxIn& input, const MapPrevTx& inputs) const;
};
/** A transaction with a merkle branch linking it to the block chain. */
class CMerkleTx : public CTransaction
{
public:
uint256 hashBlock;
std::vector<uint256> vMerkleBranch;
int nIndex;
// memory only
mutable bool fMerkleVerified;
CMerkleTx()
{
Init();
}
CMerkleTx(const CTransaction& txIn) : CTransaction(txIn)
{
Init();
}
void Init()
{
hashBlock = 0;
nIndex = -1;
fMerkleVerified = false;
}
IMPLEMENT_SERIALIZE
(
nSerSize += SerReadWrite(s, *(CTransaction*)this, nType, nVersion, ser_action);
nVersion = this->nVersion;
READWRITE(hashBlock);
READWRITE(vMerkleBranch);
READWRITE(nIndex);
)
int SetMerkleBranch(const CBlock* pblock=NULL);
int GetDepthInChain(const CBlockIndex* pindexChain, CBlockIndex* &pindexRet) const;
int GetDepthInMainChain(CBlockIndex* &pindexRet) const { return GetDepthInChain(pindexBest, pindexRet); }
int GetDepthInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet); }
bool IsInMainChain() const { return GetDepthInMainChain() > 0; }
int GetBlocksToMaturity() const;
bool AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs=true);
bool AcceptToMemoryPool();
};
/** A txdb record that contains the disk location of a transaction and the
* locations of transactions that spend its outputs. vSpent is really only
* used as a flag, but having the location is very helpful for debugging.
*/
class CTxIndex
{
public:
CDiskTxPos pos;
std::vector<CDiskTxPos> vSpent;
CTxIndex()
{
SetNull();
}
CTxIndex(const CDiskTxPos& posIn, unsigned int nOutputs)
{
pos = posIn;
vSpent.resize(nOutputs);
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(pos);
READWRITE(vSpent);
)
void SetNull()
{
pos.SetNull();
vSpent.clear();
}
bool IsNull()
{
return pos.IsNull();
}
friend bool operator==(const CTxIndex& a, const CTxIndex& b)
{
return (a.pos == b.pos &&
a.vSpent == b.vSpent);
}
friend bool operator!=(const CTxIndex& a, const CTxIndex& b)
{
return !(a == b);
}
int GetDepthInChain(const CBlockIndex* pindexChain, CBlockIndex* &pindexRet) const;
int GetDepthInMainChain(CBlockIndex* &pindexRet) const { return GetDepthInChain(pindexBest, pindexRet); }
int GetDepthInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet); }
};
/** Nodes collect new transactions into a block, hash them into a hash tree,
* and scan through nonce values to make the block's hash satisfy proof-of-work
* requirements. When they solve the proof-of-work, they broadcast the block
* to everyone and the block is added to the block chain. The first transaction
* in the block is a special one that creates a new coin owned by the creator
* of the block.
*
* Blocks are appended to blk0001.dat files on disk. Their location on disk
* is indexed by CBlockIndex objects in memory.
*/
class CBlock
{
public:
// header
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
// network and disk
std::vector<CTransaction> vtx;
// ppcoin: block signature - signed by coin base txout[0]'s owner
std::vector<unsigned char> vchBlockSig;
// memory only
mutable std::vector<uint256> vMerkleTree;
// Denial-of-service detection:
mutable int nDoS;
bool DoS(int nDoSIn, bool fIn) const { nDoS += nDoSIn; return fIn; }
CBlock()
{
SetNull();
}
IMPLEMENT_SERIALIZE
(
READWRITE(this->nVersion);
nVersion = this->nVersion;
READWRITE(hashPrevBlock);
READWRITE(hashMerkleRoot);
READWRITE(nTime);
READWRITE(nBits);
READWRITE(nNonce);
// ConnectBlock depends on vtx following header to generate CDiskTxPos
if (!(nType & (SER_GETHASH|SER_BLOCKHEADERONLY)))
{
READWRITE(vtx);
READWRITE(vchBlockSig);
}
else if (fRead)
{
const_cast<CBlock*>(this)->vtx.clear();
const_cast<CBlock*>(this)->vchBlockSig.clear();
}
)
void SetNull()
{
nVersion = 1;
hashPrevBlock = 0;
hashMerkleRoot = 0;
nTime = 0;
nBits = 0;
nNonce = 0;
vtx.clear();
vchBlockSig.clear();
vMerkleTree.clear();
nDoS = 0;
}
bool IsNull() const
{
return (nBits == 0);
}
uint256 GetHash() const
{
return Hash(BEGIN(nVersion), END(nNonce));
}
int64 GetBlockTime() const
{
return (int64)nTime;
}
void UpdateTime(const CBlockIndex* pindexPrev);
// ppcoin: two types of block: proof-of-work or proof-of-stake
bool IsProofOfStake() const
{
return (vtx.size() > 1 && vtx[1].IsCoinStake());
}
bool IsProofOfWork() const
{
return !IsProofOfStake();
}
std::pair<COutPoint, unsigned int> GetProofOfStake() const
{
return IsProofOfStake()? std::make_pair(vtx[1].vin[0].prevout, vtx[1].nTime) : std::make_pair(COutPoint(), (unsigned int)0);
}
// ppcoin: get max transaction timestamp
int64 GetMaxTransactionTime() const
{
int64 maxTransactionTime = 0;
BOOST_FOREACH(const CTransaction& tx, vtx)
maxTransactionTime = std::max(maxTransactionTime, (int64)tx.nTime);
return maxTransactionTime;
}
uint256 BuildMerkleTree() const
{
vMerkleTree.clear();
BOOST_FOREACH(const CTransaction& tx, vtx)
vMerkleTree.push_back(tx.GetHash());
int j = 0;
for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
{
for (int i = 0; i < nSize; i += 2)
{
int i2 = std::min(i+1, nSize-1);
vMerkleTree.push_back(Hash(BEGIN(vMerkleTree[j+i]), END(vMerkleTree[j+i]),
BEGIN(vMerkleTree[j+i2]), END(vMerkleTree[j+i2])));
}
j += nSize;
}
return (vMerkleTree.empty() ? 0 : vMerkleTree.back());
}
std::vector<uint256> GetMerkleBranch(int nIndex) const
{
if (vMerkleTree.empty())
BuildMerkleTree();
std::vector<uint256> vMerkleBranch;
int j = 0;
for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
{
int i = std::min(nIndex^1, nSize-1);
vMerkleBranch.push_back(vMerkleTree[j+i]);
nIndex >>= 1;
j += nSize;
}
return vMerkleBranch;
}
static uint256 CheckMerkleBranch(uint256 hash, const std::vector<uint256>& vMerkleBranch, int nIndex)
{
if (nIndex == -1)
return 0;
BOOST_FOREACH(const uint256& otherside, vMerkleBranch)
{
if (nIndex & 1)
hash = Hash(BEGIN(otherside), END(otherside), BEGIN(hash), END(hash));
else
hash = Hash(BEGIN(hash), END(hash), BEGIN(otherside), END(otherside));
nIndex >>= 1;
}
return hash;
}
bool WriteToDisk(unsigned int& nFileRet, unsigned int& nBlockPosRet)
{
// Open history file to append
CAutoFile fileout = CAutoFile(AppendBlockFile(nFileRet), SER_DISK, CLIENT_VERSION);
if (!fileout)
return error("CBlock::WriteToDisk() : AppendBlockFile failed");
// Write index header
unsigned char pchMessageStart[4];
GetMessageStart(pchMessageStart, true);
unsigned int nSize = fileout.GetSerializeSize(*this);
fileout << FLATDATA(pchMessageStart) << nSize;
// Write block
long fileOutPos = ftell(fileout);
if (fileOutPos < 0)
return error("CBlock::WriteToDisk() : ftell failed");
nBlockPosRet = fileOutPos;
fileout << *this;
// Flush stdio buffers and commit to disk before returning
fflush(fileout);
if (!IsInitialBlockDownload() || (nBestHeight+1) % 500 == 0)
{
#ifdef WIN32
_commit(_fileno(fileout));
#else
fsync(fileno(fileout));
#endif
}
return true;
}
bool ReadFromDisk(unsigned int nFile, unsigned int nBlockPos, bool fReadTransactions=true)
{
SetNull();
// Open history file to read
CAutoFile filein = CAutoFile(OpenBlockFile(nFile, nBlockPos, "rb"), SER_DISK, CLIENT_VERSION);
if (!filein)
return error("CBlock::ReadFromDisk() : OpenBlockFile failed");
if (!fReadTransactions)
filein.nType |= SER_BLOCKHEADERONLY;
// Read block
try {
filein >> *this;
}
catch (std::exception &e) {
return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__);
}
// Check the header
if (fReadTransactions && IsProofOfWork() && !CheckProofOfWork(GetHash(), nBits))
return error("CBlock::ReadFromDisk() : errors in block header");
return true;
}
void print() const
{
printf("CBlock(hash=%s, ver=%d, hashPrevBlock=%s, hashMerkleRoot=%s, nTime=%u, nBits=%08x, nNonce=%u, vtx=%d, vchBlockSig=%s)\n",
GetHash().ToString().substr(0,20).c_str(),
nVersion,
hashPrevBlock.ToString().substr(0,20).c_str(),
hashMerkleRoot.ToString().substr(0,10).c_str(),
nTime, nBits, nNonce,
vtx.size(),
HexStr(vchBlockSig.begin(), vchBlockSig.end()).c_str());
for (unsigned int i = 0; i < vtx.size(); i++)
{
printf(" ");
vtx[i].print();
}
printf(" vMerkleTree: ");
for (unsigned int i = 0; i < vMerkleTree.size(); i++)
printf("%s ", vMerkleTree[i].ToString().substr(0,10).c_str());
printf("\n");
}
bool DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex);
bool ConnectBlock(CTxDB& txdb, CBlockIndex* pindex);
bool ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions=true);
bool SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew);
bool AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos);
bool CheckBlock() const;
bool AcceptBlock();
bool GetCoinAge(int64& nCoinAge) const; // ppcoin: calculate total coin age spent in block
bool GetCoinStakeAge(int64& nCoinAge) const;
bool SignBlock(const CKeyStore& keystore);
bool CheckBlockSignature() const;
unsigned int GetStakeEntropyBit() const; // ppcoin: entropy bit for stake modifier if chosen by modifier
bool CheckCustodianGrants(const CBlockIndex* pindex) const;
private:
bool SetBestChainInner(CTxDB& txdb, CBlockIndex *pindexNew);
};
/** The block chain is a tree shaped structure starting with the
* genesis block at the root, with each block potentially having multiple
* candidates to be the next block. pprev and pnext link a path through the
* main/longest chain. A blockindex may have multiple pprev pointing back
* to it, but pnext will only point forward to the longest branch, or will
* be null if the block is not part of the longest chain.
*/
class CBlockIndex
{
public:
const uint256* phashBlock;
CBlockIndex* pprev;
CBlockIndex* pnext;
unsigned int nFile;
unsigned int nBlockPos;
CBigNum bnChainTrust; // ppcoin: trust score of block chain
int nHeight;
int64 nMint;
std::map<unsigned char, int64> mapMoneySupply;
std::map<unsigned char, int64> mapTotalParked;
unsigned int nFlags; // ppcoin: block index flags
enum
{
BLOCK_PROOF_OF_STAKE = (1 << 0), // is proof-of-stake block
BLOCK_STAKE_ENTROPY = (1 << 1), // entropy bit for stake modifier
BLOCK_STAKE_MODIFIER = (1 << 2), // regenerated stake modifier
};
uint64 nStakeModifier; // hash modifier for proof-of-stake
unsigned int nStakeModifierChecksum; // checksum of index; in-memeory only
// proof-of-stake specific fields
COutPoint prevoutStake;
unsigned int nStakeTime;
uint256 hashProofOfStake;
// nubit vote fields
CVote vote;
std::vector<CParkRateVote> vParkRateResult;
int64 nCoinAgeDestroyed;
// nubit: elected custodians
std::vector<CCustodianVote> vElectedCustodian;
// nubit: protocol version that applies to this block
int nProtocolVersion;
// nubit: the result of the fee vote
std::map<unsigned char, uint32_t> mapVotedFee;
// nubit: previous block with an elected custodian
CBlockIndex* pprevElected;
// block header
int nVersion;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
CBlockIndex()
{
phashBlock = NULL;
pprev = NULL;
pnext = NULL;
nFile = 0;
nBlockPos = 0;
nHeight = 0;
bnChainTrust = 0;
nMint = 0;
mapMoneySupply.clear();
mapTotalParked.clear();
nFlags = 0;
nStakeModifier = 0;
nStakeModifierChecksum = 0;
hashProofOfStake = 0;
prevoutStake.SetNull();
nStakeTime = 0;
vote.SetNull();
vParkRateResult.clear();
nCoinAgeDestroyed = 0;
vElectedCustodian.clear();
nProtocolVersion = 0;
mapVotedFee.clear();
pprevElected = NULL;
nVersion = 0;
hashMerkleRoot = 0;
nTime = 0;
nBits = 0;
nNonce = 0;
}
CBlockIndex(unsigned int nFileIn, unsigned int nBlockPosIn, CBlock& block)
{
phashBlock = NULL;
pprev = NULL;
pnext = NULL;
nFile = nFileIn;
nBlockPos = nBlockPosIn;
nHeight = 0;
bnChainTrust = 0;
nMint = 0;
mapMoneySupply.clear();
mapTotalParked.clear();
nFlags = 0;
nStakeModifier = 0;
nStakeModifierChecksum = 0;
hashProofOfStake = 0;
if (block.IsProofOfStake())
{
SetProofOfStake();
prevoutStake = block.vtx[1].vin[0].prevout;
nStakeTime = block.vtx[1].nTime;
}
else
{
prevoutStake.SetNull();
nStakeTime = 0;
}
vote.SetNull();
vParkRateResult.clear();
nCoinAgeDestroyed = 0;
vElectedCustodian.clear();
nProtocolVersion = 0;
mapVotedFee.clear();
pprevElected = NULL;
nVersion = block.nVersion;
hashMerkleRoot = block.hashMerkleRoot;
nTime = block.nTime;
nBits = block.nBits;
nNonce = block.nNonce;
}
CBlock GetBlockHeader() const
{
CBlock block;
block.nVersion = nVersion;
if (pprev)
block.hashPrevBlock = pprev->GetBlockHash();
block.hashMerkleRoot = hashMerkleRoot;
block.nTime = nTime;
block.nBits = nBits;
block.nNonce = nNonce;
return block;
}
uint256 GetBlockHash() const
{
return *phashBlock;
}
int64 GetBlockTime() const
{
return (int64)nTime;
}
CBigNum GetBlockTrust() const
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
if (bnTarget <= 0)
return 0;
return (IsProofOfStake()? (CBigNum(1)<<256) / (bnTarget+1) : 1);
}
bool IsInMainChain() const
{
return (pnext || this == pindexBest);
}
bool IsInChain(const CBlockIndex* pindexChain) const
{
if (pindexChain == pindexBest)
return IsInMainChain();
for (const CBlockIndex* pindex = pindexChain; pindex; pindex = pindex->pprev)
if (pindex == this)
return true;
return false;
}
bool CheckIndex() const
{
return IsProofOfWork() ? CheckProofOfWork(GetBlockHash(), nBits) : true;
}
bool EraseBlockFromDisk()
{
// Open history file
CAutoFile fileout = CAutoFile(OpenBlockFile(nFile, nBlockPos, "rb+"), SER_DISK, CLIENT_VERSION);
if (!fileout)
return false;
// Overwrite with empty null block
CBlock block;
block.SetNull();
fileout << block;
return true;
}
enum { nMedianTimeSpan=11 };
int64 GetMedianTimePast() const
{
int64 pmedian[nMedianTimeSpan];
int64* pbegin = &pmedian[nMedianTimeSpan];
int64* pend = &pmedian[nMedianTimeSpan];
const CBlockIndex* pindex = this;
for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev)
*(--pbegin) = pindex->GetBlockTime();
std::sort(pbegin, pend);
return pbegin[(pend - pbegin)/2];
}
int64 GetMedianTime() const
{
const CBlockIndex* pindex = this;
for (int i = 0; i < nMedianTimeSpan/2; i++)
{
if (!pindex->pnext)
return GetBlockTime();
pindex = pindex->pnext;
}
return pindex->GetMedianTimePast();
}
bool IsProofOfWork() const
{
return !(nFlags & BLOCK_PROOF_OF_STAKE);
}
bool IsProofOfStake() const
{
return (nFlags & BLOCK_PROOF_OF_STAKE);
}
void SetProofOfStake()
{
nFlags |= BLOCK_PROOF_OF_STAKE;
}
unsigned int GetStakeEntropyBit() const
{
return ((nFlags & BLOCK_STAKE_ENTROPY) >> 1);
}
bool SetStakeEntropyBit(unsigned int nEntropyBit)
{
if (nEntropyBit > 1)
return false;
nFlags |= (nEntropyBit? BLOCK_STAKE_ENTROPY : 0);
return true;
}
bool GeneratedStakeModifier() const
{
return (nFlags & BLOCK_STAKE_MODIFIER);
}
void SetStakeModifier(uint64 nModifier, bool fGeneratedStakeModifier)
{
nStakeModifier = nModifier;
if (fGeneratedStakeModifier)
nFlags |= BLOCK_STAKE_MODIFIER;
}
const CBlockIndex* GetIndexWithEffectiveParkRates(int nOffset = 0) const;
int64 GetPremium(int64 nValue, int64 nDuration, unsigned char cUnit, int nOffset = 0) const;
int64 GetNextPremium(int64 nValue, int64 nDuration, unsigned char cUnit) const
{
return GetPremium(nValue, nDuration, cUnit, 1);
}
int64 GetMoneySupply(unsigned char cUnit) const
{
std::map<unsigned char, int64>::const_iterator it = mapMoneySupply.find(cUnit);
if (it != mapMoneySupply.end())
return it->second;
else
return -1;
}
int64 GetTotalParked(unsigned char cUnit) const
{
std::map<unsigned char, int64>::const_iterator it = mapTotalParked.find(cUnit);
if (it != mapTotalParked.end())
return it->second;
else
return -1;
}
const CBlockIndex* GetEffectiveFeeIndex() const
{
const CBlockIndex* pindex = this;
for (int i = 0; i < FEE_VOTE_DELAY_BLOCKS && pindex->pprev; i++)
pindex = pindex->pprev;
return pindex;
}
int64 GetVotedMinFee(unsigned char cUnit) const
{
std::map<unsigned char, uint32_t>::const_iterator it = mapVotedFee.find(cUnit);
if (it != mapVotedFee.end())
return (int64)it->second;
else
return GetDefaultFee(cUnit);
}
int64 GetMinFee(unsigned char cUnit) const
{
return GetEffectiveFeeIndex()->GetVotedMinFee(cUnit);
}
int64 GetSafeMinFee(unsigned char cUnit) const;
void GetElectedCustodians(std::map<CBitcoinAddress, CBlockIndex*>& mapElectedCustodian) const;
std::map<CBitcoinAddress, CBlockIndex*> GetElectedCustodians() const
{
std::map<CBitcoinAddress, CBlockIndex*> mapElectedCustodian;
GetElectedCustodians(mapElectedCustodian);
return mapElectedCustodian;
}
std::string ToString() const
{
return strprintf("CBlockIndex(nprev=%08x, pnext=%08x, nFile=%d, nBlockPos=%-6d nHeight=%d, nMint=%s, nMoneySupply(S)=%s, nMoneySupply(B)=%s, nFlags=(%s)(%d)(%s), nStakeModifier=%016"PRI64x", nStakeModifierChecksum=%08x, hashProofOfStake=%s, prevoutStake=(%s), nStakeTime=%d merkle=%s, hashBlock=%s)",
pprev, pnext, nFile, nBlockPos, nHeight,
FormatMoney(nMint).c_str(),
FormatMoney(GetMoneySupply('S')).c_str(),
FormatMoney(GetMoneySupply('B')).c_str(),
GeneratedStakeModifier() ? "MOD" : "-", GetStakeEntropyBit(), IsProofOfStake()? "PoS" : "PoW",
nStakeModifier, nStakeModifierChecksum,
hashProofOfStake.ToString().c_str(),
prevoutStake.ToString().c_str(), nStakeTime,
hashMerkleRoot.ToString().substr(0,10).c_str(),
GetBlockHash().ToString().substr(0,20).c_str());
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
/** Used to marshal pointers into hashes for db storage. */
class CDiskBlockIndex : public CBlockIndex
{
public:
uint256 hashPrev;
uint256 hashNext;
CDiskBlockIndex()
{
hashPrev = 0;
hashNext = 0;
}
explicit CDiskBlockIndex(CBlockIndex* pindex) : CBlockIndex(*pindex)
{
hashPrev = (pprev ? pprev->GetBlockHash() : 0);
hashNext = (pnext ? pnext->GetBlockHash() : 0);
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
if (nVersion >= PROTOCOL_V2_0)
READWRITE(nProtocolVersion);
else if (fRead)
const_cast<CDiskBlockIndex*>(this)->nProtocolVersion = 0;
READWRITE(hashNext);
READWRITE(nFile);
READWRITE(nBlockPos);
READWRITE(nHeight);
READWRITE(nMint);
if (nVersion <= 30000) // v0.3.0
{
int64 nMoneySupply = 0;
READWRITE(nMoneySupply);
if (fRead)
const_cast<CDiskBlockIndex*>(this)->mapMoneySupply.clear();
}
else
READWRITE(mapMoneySupply);
if (nVersion > 40400) // v0.4.4
READWRITE(mapTotalParked);
else if (fRead)
const_cast<CDiskBlockIndex*>(this)->mapTotalParked.clear();
READWRITE(nFlags);
READWRITE(nStakeModifier);
if (IsProofOfStake())
{
READWRITE(prevoutStake);
READWRITE(nStakeTime);
READWRITE(hashProofOfStake);
READWRITE(vote);
READWRITE(vParkRateResult);
READWRITE(nCoinAgeDestroyed);
READWRITE(vElectedCustodian);
if (nProtocolVersion >= PROTOCOL_V2_0)
READWRITE(mapVotedFee);
else if (fRead)
const_cast<CDiskBlockIndex*>(this)->mapVotedFee.clear();
}
else if (fRead)
{
const_cast<CDiskBlockIndex*>(this)->prevoutStake.SetNull();
const_cast<CDiskBlockIndex*>(this)->nStakeTime = 0;
const_cast<CDiskBlockIndex*>(this)->hashProofOfStake = 0;
const_cast<CDiskBlockIndex*>(this)->vote.SetNull();
const_cast<CDiskBlockIndex*>(this)->vParkRateResult.clear();
const_cast<CDiskBlockIndex*>(this)->nCoinAgeDestroyed = 0;
const_cast<CDiskBlockIndex*>(this)->vElectedCustodian.clear();
const_cast<CDiskBlockIndex*>(this)->mapVotedFee.clear();
}
// block header
READWRITE(this->nVersion);
READWRITE(hashPrev);
READWRITE(hashMerkleRoot);
READWRITE(nTime);
READWRITE(nBits);
READWRITE(nNonce);
)
uint256 GetBlockHash() const
{
CBlock block;
block.nVersion = nVersion;
block.hashPrevBlock = hashPrev;
block.hashMerkleRoot = hashMerkleRoot;
block.nTime = nTime;
block.nBits = nBits;
block.nNonce = nNonce;
return block.GetHash();
}
std::string ToString() const
{
std::string str = "CDiskBlockIndex(";
str += CBlockIndex::ToString();
str += strprintf("\n hashBlock=%s, hashPrev=%s, hashNext=%s)",
GetBlockHash().ToString().c_str(),
hashPrev.ToString().substr(0,20).c_str(),
hashNext.ToString().substr(0,20).c_str());
return str;
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
/** Describes a place in the block chain to another node such that if the
* other node doesn't have the same branch, it can find a recent common trunk.
* The further back it is, the further before the fork it may be.
*/
class CBlockLocator
{
protected:
std::vector<uint256> vHave;
public:
CBlockLocator()
{
}
explicit CBlockLocator(const CBlockIndex* pindex)
{
Set(pindex);
}
explicit CBlockLocator(uint256 hashBlock)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi != mapBlockIndex.end())
Set((*mi).second);
}
CBlockLocator(const std::vector<uint256>& vHaveIn)
{
vHave = vHaveIn;
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(vHave);
)
void SetNull()
{
vHave.clear();
}
bool IsNull()
{
return vHave.empty();
}
void Set(const CBlockIndex* pindex)
{
vHave.clear();
int nStep = 1;
while (pindex)
{
vHave.push_back(pindex->GetBlockHash());
// Exponentially larger steps back
for (int i = 0; pindex && i < nStep; i++)
pindex = pindex->pprev;
if (vHave.size() > 10)
nStep *= 2;
}
vHave.push_back(hashGenesisBlock);
}
int GetDistanceBack()
{
// Retrace how far back it was in the sender's branch
int nDistance = 0;
int nStep = 1;
BOOST_FOREACH(const uint256& hash, vHave)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (pindex->IsInMainChain())
return nDistance;
}
nDistance += nStep;
if (nDistance > 10)
nStep *= 2;
}
return nDistance;
}
CBlockIndex* GetBlockIndex()
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, vHave)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (pindex->IsInMainChain())
return pindex;
}
}
return pindexGenesisBlock;
}
uint256 GetBlockHash()
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, vHave)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (pindex->IsInMainChain())
return hash;
}
}
return hashGenesisBlock;
}
int GetHeight()
{
CBlockIndex* pindex = GetBlockIndex();
if (!pindex)
return 0;
return pindex->nHeight;
}
};
/** Alerts are for notifying old versions if they become too obsolete and
* need to upgrade. The message is displayed in the status bar.
* Alert messages are broadcast as a vector of signed data. Unserializing may
* not read the entire buffer if the alert is for a newer version, but older
* versions can still relay the original data.
*/
class CUnsignedAlert
{
public:
int nVersion;
int64 nRelayUntil; // when newer nodes stop relaying to newer nodes
int64 nExpiration;
int nID;
int nCancel;
std::set<int> setCancel;
int nMinVer; // lowest version inclusive
int nMaxVer; // highest version inclusive
std::set<std::string> setSubVer; // empty matches all
int nPriority;
// Actions
std::string strComment;
std::string strStatusBar;
std::string strReserved;
IMPLEMENT_SERIALIZE
(
READWRITE(this->nVersion);
nVersion = this->nVersion;
READWRITE(nRelayUntil);
READWRITE(nExpiration);
READWRITE(nID);
READWRITE(nCancel);
READWRITE(setCancel);
READWRITE(nMinVer);
READWRITE(nMaxVer);
READWRITE(setSubVer);
READWRITE(nPriority);
READWRITE(strComment);
READWRITE(strStatusBar);
READWRITE(strReserved);
)
void SetNull()
{
nVersion = 1;
nRelayUntil = 0;
nExpiration = 0;
nID = 0;
nCancel = 0;
setCancel.clear();
nMinVer = 0;
nMaxVer = 0;
setSubVer.clear();
nPriority = 0;
strComment.clear();
strStatusBar.clear();
strReserved.clear();
}
std::string ToString() const
{
std::string strSetCancel;
BOOST_FOREACH(int n, setCancel)
strSetCancel += strprintf("%d ", n);
std::string strSetSubVer;
BOOST_FOREACH(std::string str, setSubVer)
strSetSubVer += "\"" + str + "\" ";
return strprintf(
"CAlert(\n"
" nVersion = %d\n"
" nRelayUntil = %"PRI64d"\n"
" nExpiration = %"PRI64d"\n"
" nID = %d\n"
" nCancel = %d\n"
" setCancel = %s\n"
" nMinVer = %d\n"
" nMaxVer = %d\n"
" setSubVer = %s\n"
" nPriority = %d\n"
" strComment = \"%s\"\n"
" strStatusBar = \"%s\"\n"
")\n",
nVersion,
nRelayUntil,
nExpiration,
nID,
nCancel,
strSetCancel.c_str(),
nMinVer,
nMaxVer,
strSetSubVer.c_str(),
nPriority,
strComment.c_str(),
strStatusBar.c_str());
}
void print() const
{
printf("%s", ToString().c_str());
}
};
/** An alert is a combination of a serialized CUnsignedAlert and a signature. */
class CAlert : public CUnsignedAlert
{
public:
std::vector<unsigned char> vchMsg;
std::vector<unsigned char> vchSig;
CAlert()
{
SetNull();
}
IMPLEMENT_SERIALIZE
(
READWRITE(vchMsg);
READWRITE(vchSig);
)
void SetNull()
{
CUnsignedAlert::SetNull();
vchMsg.clear();
vchSig.clear();
}
bool IsNull() const
{
return (nExpiration == 0);
}
uint256 GetHash() const
{
return SerializeHash(*this);
}
bool IsInEffect() const
{
return (GetAdjustedTime() < nExpiration);
}
bool Cancels(const CAlert& alert) const
{
if (!IsInEffect())
return false; // this was a no-op before 31403
return (alert.nID <= nCancel || setCancel.count(alert.nID));
}
bool AppliesTo(int nVersion, std::string strSubVerIn) const
{
// TODO: rework for client-version-embedded-in-strSubVer ?
return (IsInEffect() &&
nMinVer <= nVersion && nVersion <= nMaxVer &&
(setSubVer.empty() || setSubVer.count(strSubVerIn)));
}
bool AppliesToMe() const
{
return AppliesTo(PROTOCOL_VERSION, FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, std::vector<std::string>()));
}
bool RelayTo(CNode* pnode) const
{
if (!IsInEffect())
return false;
// returns true if wasn't already contained in the set
if (pnode->setKnown.insert(GetHash()).second)
{
if (AppliesTo(pnode->nVersion, pnode->strSubVer) ||
AppliesToMe() ||
GetAdjustedTime() < nRelayUntil)
{
pnode->PushMessage("alert", *this);
return true;
}
}
return false;
}
bool CheckSignature()
{
CKey key;
if (!key.SetPubKey(ParseHex("")))
return error("CAlert::CheckSignature() : SetPubKey failed");
if (!key.Verify(Hash(vchMsg.begin(), vchMsg.end()), vchSig))
return error("CAlert::CheckSignature() : verify signature failed");
// Now unserialize the data
CDataStream sMsg(vchMsg, SER_NETWORK, PROTOCOL_VERSION);
sMsg >> *(CUnsignedAlert*)this;
return true;
}
bool ProcessAlert();
};
class CTxMemPool
{
public:
mutable CCriticalSection cs;
std::map<uint256, CTransaction> mapTx;
std::map<COutPoint, CInPoint> mapNextTx;
bool accept(CTxDB& txdb, CTransaction &tx,
bool fCheckInputs, bool* pfMissingInputs);
bool addUnchecked(CTransaction &tx);
bool remove(CTransaction &tx);
void queryHashes(std::vector<uint256>& vtxid);
unsigned long size()
{
LOCK(cs);
return mapTx.size();
}
bool exists(uint256 hash)
{
return (mapTx.count(hash) != 0);
}
CTransaction& lookup(uint256 hash)
{
return mapTx[hash];
}
};
extern CTxMemPool mempool;
#endif