Source

Recon-ng / libs / aes.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#!/usr/bin/python
#
# aes.py: implements AES - Advanced Encryption Standard
# from the SlowAES project, http://code.google.com/p/slowaes/
#
# Copyright (c) 2008    Josh Davis ( http://www.josh-davis.org ),
#           Alex Martelli ( http://www.aleax.it )
#
# Ported from C code written by Laurent Haan ( http://www.progressive-coding.com )
#
# Licensed under the Apache License, Version 2.0
# http://www.apache.org/licenses/
#
import os
import sys
import math

def append_PKCS7_padding(s):
    """return s padded to a multiple of 16-bytes by PKCS7 padding"""
    numpads = 16 - (len(s)%16)
    return s + numpads*chr(numpads)

def strip_PKCS7_padding(s):
    """return s stripped of PKCS7 padding"""
    if len(s)%16 or not s:
        raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
    numpads = ord(s[-1])
    if numpads > 16:
        raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
    return s[:-numpads]

class AES(object):
    # valid key sizes
    keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)

    # Rijndael S-box
    sbox =  [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
            0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
            0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
            0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
            0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
            0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
            0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
            0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
            0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
            0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
            0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
            0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
            0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
            0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
            0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
            0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
            0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
            0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
            0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
            0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
            0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
            0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
            0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
            0x54, 0xbb, 0x16]

    # Rijndael Inverted S-box
    rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
            0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
            0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54,
            0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
            0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
            0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8,
            0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
            0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
            0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab,
            0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
            0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
            0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41,
            0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
            0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
            0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d,
            0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b ,
            0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
            0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
            0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60,
            0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
            0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
            0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b,
            0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
            0x21, 0x0c, 0x7d]

    def getSBoxValue(self,num):
        """Retrieves a given S-Box Value"""
        return self.sbox[num]

    def getSBoxInvert(self,num):
        """Retrieves a given Inverted S-Box Value"""
        return self.rsbox[num]

    def rotate(self, word):
        """ Rijndael's key schedule rotate operation.

        Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
        Word is an char list of size 4 (32 bits overall).
        """
        return word[1:] + word[:1]

    # Rijndael Rcon
    Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
            0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
            0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
            0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
            0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
            0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
            0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
            0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
            0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
            0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
            0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
            0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
            0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
            0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
            0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
            0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
            0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
            0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
            0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
            0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
            0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
            0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
            0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
            0xe8, 0xcb ]

    def getRconValue(self, num):
        """Retrieves a given Rcon Value"""
        return self.Rcon[num]

    def core(self, word, iteration):
        """Key schedule core."""
        # rotate the 32-bit word 8 bits to the left
        word = self.rotate(word)
        # apply S-Box substitution on all 4 parts of the 32-bit word
        for i in range(4):
            word[i] = self.getSBoxValue(word[i])
        # XOR the output of the rcon operation with i to the first part
        # (leftmost) only
        word[0] = word[0] ^ self.getRconValue(iteration)
        return word

    def expandKey(self, key, size, expandedKeySize):
        """Rijndael's key expansion.

        Expands an 128,192,256 key into an 176,208,240 bytes key

        expandedKey is a char list of large enough size,
        key is the non-expanded key.
        """
        # current expanded keySize, in bytes
        currentSize = 0
        rconIteration = 1
        expandedKey = [0] * expandedKeySize

        # set the 16, 24, 32 bytes of the expanded key to the input key
        for j in range(size):
            expandedKey[j] = key[j]
        currentSize += size

        while currentSize < expandedKeySize:
            # assign the previous 4 bytes to the temporary value t
            t = expandedKey[currentSize-4:currentSize]

            # every 16,24,32 bytes we apply the core schedule to t
            # and increment rconIteration afterwards
            if currentSize % size == 0:
                t = self.core(t, rconIteration)
                rconIteration += 1
            # For 256-bit keys, we add an extra sbox to the calculation
            if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
                for l in range(4): t[l] = self.getSBoxValue(t[l])

            # We XOR t with the four-byte block 16,24,32 bytes before the new
            # expanded key.  This becomes the next four bytes in the expanded
            # key.
            for m in range(4):
                expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
                        t[m]
                currentSize += 1

        return expandedKey

    def addRoundKey(self, state, roundKey):
        """Adds (XORs) the round key to the state."""
        for i in range(16):
            state[i] ^= roundKey[i]
        return state

    def createRoundKey(self, expandedKey, roundKeyPointer):
        """Create a round key.
        Creates a round key from the given expanded key and the
        position within the expanded key.
        """
        roundKey = [0] * 16
        for i in range(4):
            for j in range(4):
                roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
        return roundKey

    def galois_multiplication(self, a, b):
        """Galois multiplication of 8 bit characters a and b."""
        p = 0
        for counter in range(8):
            if b & 1: p ^= a
            hi_bit_set = a & 0x80
            a <<= 1
            # keep a 8 bit
            a &= 0xFF
            if hi_bit_set:
                a ^= 0x1b
            b >>= 1
        return p

    #
    # substitute all the values from the state with the value in the SBox
    # using the state value as index for the SBox
    #
    def subBytes(self, state, isInv):
        if isInv: getter = self.getSBoxInvert
        else: getter = self.getSBoxValue
        for i in range(16): state[i] = getter(state[i])
        return state

    # iterate over the 4 rows and call shiftRow() with that row
    def shiftRows(self, state, isInv):
        for i in range(4):
            state = self.shiftRow(state, i*4, i, isInv)
        return state

    # each iteration shifts the row to the left by 1
    def shiftRow(self, state, statePointer, nbr, isInv):
        for i in range(nbr):
            if isInv:
                state[statePointer:statePointer+4] = \
                        state[statePointer+3:statePointer+4] + \
                        state[statePointer:statePointer+3]
            else:
                state[statePointer:statePointer+4] = \
                        state[statePointer+1:statePointer+4] + \
                        state[statePointer:statePointer+1]
        return state

    # galois multiplication of the 4x4 matrix
    def mixColumns(self, state, isInv):
        # iterate over the 4 columns
        for i in range(4):
            # construct one column by slicing over the 4 rows
            column = state[i:i+16:4]
            # apply the mixColumn on one column
            column = self.mixColumn(column, isInv)
            # put the values back into the state
            state[i:i+16:4] = column

        return state

    # galois multiplication of 1 column of the 4x4 matrix
    def mixColumn(self, column, isInv):
        if isInv: mult = [14, 9, 13, 11]
        else: mult = [2, 1, 1, 3]
        cpy = list(column)
        g = self.galois_multiplication

        column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
                    g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
        column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
                    g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
        column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
                    g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
        column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
                    g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
        return column

    # applies the 4 operations of the forward round in sequence
    def aes_round(self, state, roundKey):
        state = self.subBytes(state, False)
        state = self.shiftRows(state, False)
        state = self.mixColumns(state, False)
        state = self.addRoundKey(state, roundKey)
        return state

    # applies the 4 operations of the inverse round in sequence
    def aes_invRound(self, state, roundKey):
        state = self.shiftRows(state, True)
        state = self.subBytes(state, True)
        state = self.addRoundKey(state, roundKey)
        state = self.mixColumns(state, True)
        return state

    # Perform the initial operations, the standard round, and the final
    # operations of the forward aes, creating a round key for each round
    def aes_main(self, state, expandedKey, nbrRounds):
        state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
        i = 1
        while i < nbrRounds:
            state = self.aes_round(state,
                                   self.createRoundKey(expandedKey, 16*i))
            i += 1
        state = self.subBytes(state, False)
        state = self.shiftRows(state, False)
        state = self.addRoundKey(state,
                                 self.createRoundKey(expandedKey, 16*nbrRounds))
        return state

    # Perform the initial operations, the standard round, and the final
    # operations of the inverse aes, creating a round key for each round
    def aes_invMain(self, state, expandedKey, nbrRounds):
        state = self.addRoundKey(state,
                                 self.createRoundKey(expandedKey, 16*nbrRounds))
        i = nbrRounds - 1
        while i > 0:
            state = self.aes_invRound(state,
                                      self.createRoundKey(expandedKey, 16*i))
            i -= 1
        state = self.shiftRows(state, True)
        state = self.subBytes(state, True)
        state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
        return state

    # encrypts a 128 bit input block against the given key of size specified
    def encrypt(self, iput, key, size):
        output = [0] * 16
        # the number of rounds
        nbrRounds = 0
        # the 128 bit block to encode
        block = [0] * 16
        # set the number of rounds
        if size == self.keySize["SIZE_128"]: nbrRounds = 10
        elif size == self.keySize["SIZE_192"]: nbrRounds = 12
        elif size == self.keySize["SIZE_256"]: nbrRounds = 14
        else: return None

        # the expanded keySize
        expandedKeySize = 16*(nbrRounds+1)

        # Set the block values, for the block:
        # a0,0 a0,1 a0,2 a0,3
        # a1,0 a1,1 a1,2 a1,3
        # a2,0 a2,1 a2,2 a2,3
        # a3,0 a3,1 a3,2 a3,3
        # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
        #
        # iterate over the columns
        for i in range(4):
            # iterate over the rows
            for j in range(4):
                block[(i+(j*4))] = iput[(i*4)+j]

        # expand the key into an 176, 208, 240 bytes key
        # the expanded key
        expandedKey = self.expandKey(key, size, expandedKeySize)

        # encrypt the block using the expandedKey
        block = self.aes_main(block, expandedKey, nbrRounds)

        # unmap the block again into the output
        for k in range(4):
            # iterate over the rows
            for l in range(4):
                output[(k*4)+l] = block[(k+(l*4))]
        return output

    # decrypts a 128 bit input block against the given key of size specified
    def decrypt(self, iput, key, size):
        output = [0] * 16
        # the number of rounds
        nbrRounds = 0
        # the 128 bit block to decode
        block = [0] * 16
        # set the number of rounds
        if size == self.keySize["SIZE_128"]: nbrRounds = 10
        elif size == self.keySize["SIZE_192"]: nbrRounds = 12
        elif size == self.keySize["SIZE_256"]: nbrRounds = 14
        else: return None

        # the expanded keySize
        expandedKeySize = 16*(nbrRounds+1)

        # Set the block values, for the block:
        # a0,0 a0,1 a0,2 a0,3
        # a1,0 a1,1 a1,2 a1,3
        # a2,0 a2,1 a2,2 a2,3
        # a3,0 a3,1 a3,2 a3,3
        # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3

        # iterate over the columns
        for i in range(4):
            # iterate over the rows
            for j in range(4):
                block[(i+(j*4))] = iput[(i*4)+j]
        # expand the key into an 176, 208, 240 bytes key
        expandedKey = self.expandKey(key, size, expandedKeySize)
        # decrypt the block using the expandedKey
        block = self.aes_invMain(block, expandedKey, nbrRounds)
        # unmap the block again into the output
        for k in range(4):
            # iterate over the rows
            for l in range(4):
                output[(k*4)+l] = block[(k+(l*4))]
        return output


class AESModeOfOperation(object):

    aes = AES()

    # structure of supported modes of operation
    modeOfOperation = dict(OFB=0, CFB=1, CBC=2)

    # converts a 16 character string into a number array
    def convertString(self, string, start, end, mode):
        if end - start > 16: end = start + 16
        if mode == self.modeOfOperation["CBC"]: ar = [0] * 16
        else: ar = []

        i = start
        j = 0
        while len(ar) < end - start:
            ar.append(0)
        while i < end:
            ar[j] = ord(string[i])
            j += 1
            i += 1
        return ar

    # Mode of Operation Encryption
    # stringIn - Input String
    # mode - mode of type modeOfOperation
    # hexKey - a hex key of the bit length size
    # size - the bit length of the key
    # hexIV - the 128 bit hex Initilization Vector
    def encrypt(self, stringIn, mode, key, size, IV):
        if len(key) % size:
            return None
        if len(IV) % 16:
            return None
        # the AES input/output
        plaintext = []
        iput = [0] * 16
        output = []
        ciphertext = [0] * 16
        # the output cipher string
        cipherOut = []
        # char firstRound
        firstRound = True
        if stringIn != None:
            for j in range(int(math.ceil(float(len(stringIn))/16))):
                start = j*16
                end = j*16+16
                if  end > len(stringIn):
                    end = len(stringIn)
                plaintext = self.convertString(stringIn, start, end, mode)
                # print 'PT@%s:%s' % (j, plaintext)
                if mode == self.modeOfOperation["CFB"]:
                    if firstRound:
                        output = self.aes.encrypt(IV, key, size)
                        firstRound = False
                    else:
                        output = self.aes.encrypt(iput, key, size)
                    for i in range(16):
                        if len(plaintext)-1 < i:
                            ciphertext[i] = 0 ^ output[i]
                        elif len(output)-1 < i:
                            ciphertext[i] = plaintext[i] ^ 0
                        elif len(plaintext)-1 < i and len(output) < i:
                            ciphertext[i] = 0 ^ 0
                        else:
                            ciphertext[i] = plaintext[i] ^ output[i]
                    for k in range(end-start):
                        cipherOut.append(ciphertext[k])
                    iput = ciphertext
                elif mode == self.modeOfOperation["OFB"]:
                    if firstRound:
                        output = self.aes.encrypt(IV, key, size)
                        firstRound = False
                    else:
                        output = self.aes.encrypt(iput, key, size)
                    for i in range(16):
                        if len(plaintext)-1 < i:
                            ciphertext[i] = 0 ^ output[i]
                        elif len(output)-1 < i:
                            ciphertext[i] = plaintext[i] ^ 0
                        elif len(plaintext)-1 < i and len(output) < i:
                            ciphertext[i] = 0 ^ 0
                        else:
                            ciphertext[i] = plaintext[i] ^ output[i]
                    for k in range(end-start):
                        cipherOut.append(ciphertext[k])
                    iput = output
                elif mode == self.modeOfOperation["CBC"]:
                    for i in range(16):
                        if firstRound:
                            iput[i] =  plaintext[i] ^ IV[i]
                        else:
                            iput[i] =  plaintext[i] ^ ciphertext[i]
                    # print 'IP@%s:%s' % (j, iput)
                    firstRound = False
                    ciphertext = self.aes.encrypt(iput, key, size)
                    # always 16 bytes because of the padding for CBC
                    for k in range(16):
                        cipherOut.append(ciphertext[k])
        return mode, len(stringIn), cipherOut

    # Mode of Operation Decryption
    # cipherIn - Encrypted String
    # originalsize - The unencrypted string length - required for CBC
    # mode - mode of type modeOfOperation
    # key - a number array of the bit length size
    # size - the bit length of the key
    # IV - the 128 bit number array Initilization Vector
    def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
        # cipherIn = unescCtrlChars(cipherIn)
        if len(key) % size:
            return None
        if len(IV) % 16:
            return None
        # the AES input/output
        ciphertext = []
        iput = []
        output = []
        plaintext = [0] * 16
        # the output plain text string
        stringOut = ''
        # char firstRound
        firstRound = True
        if cipherIn != None:
            for j in range(int(math.ceil(float(len(cipherIn))/16))):
                start = j*16
                end = j*16+16
                if j*16+16 > len(cipherIn):
                    end = len(cipherIn)
                ciphertext = cipherIn[start:end]
                if mode == self.modeOfOperation["CFB"]:
                    if firstRound:
                        output = self.aes.encrypt(IV, key, size)
                        firstRound = False
                    else:
                        output = self.aes.encrypt(iput, key, size)
                    for i in range(16):
                        if len(output)-1 < i:
                            plaintext[i] = 0 ^ ciphertext[i]
                        elif len(ciphertext)-1 < i:
                            plaintext[i] = output[i] ^ 0
                        elif len(output)-1 < i and len(ciphertext) < i:
                            plaintext[i] = 0 ^ 0
                        else:
                            plaintext[i] = output[i] ^ ciphertext[i]
                    for k in range(end-start):
                        stringOut += chr(plaintext[k])
                    iput = ciphertext
                elif mode == self.modeOfOperation["OFB"]:
                    if firstRound:
                        output = self.aes.encrypt(IV, key, size)
                        firstRound = False
                    else:
                        output = self.aes.encrypt(iput, key, size)
                    for i in range(16):
                        if len(output)-1 < i:
                            plaintext[i] = 0 ^ ciphertext[i]
                        elif len(ciphertext)-1 < i:
                            plaintext[i] = output[i] ^ 0
                        elif len(output)-1 < i and len(ciphertext) < i:
                            plaintext[i] = 0 ^ 0
                        else:
                            plaintext[i] = output[i] ^ ciphertext[i]
                    for k in range(end-start):
                        stringOut += chr(plaintext[k])
                    iput = output
                elif mode == self.modeOfOperation["CBC"]:
                    output = self.aes.decrypt(ciphertext, key, size)
                    for i in range(16):
                        if firstRound:
                            plaintext[i] = IV[i] ^ output[i]
                        else:
                            plaintext[i] = iput[i] ^ output[i]
                    firstRound = False
                    if originalsize is not None and originalsize < end:
                        for k in range(originalsize-start):
                            stringOut += chr(plaintext[k])
                    else:
                        for k in range(end-start):
                            stringOut += chr(plaintext[k])
                    iput = ciphertext
        return stringOut


def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
    """encrypt `data` using `key`

    `key` should be a string of bytes.

    returned cipher is a string of bytes prepended with the initialization
    vector.

    """
    key = map(ord, key)
    if mode == AESModeOfOperation.modeOfOperation["CBC"]:
        data = append_PKCS7_padding(data)
    keysize = len(key)
    assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
    # create a new iv using random data
    iv = [ord(i) for i in os.urandom(16)]
    moo = AESModeOfOperation()
    (mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
    # With padding, the original length does not need to be known. It's a bad
    # idea to store the original message length.
    # prepend the iv.
    return ''.join(map(chr, iv)) + ''.join(map(chr, ciph))

def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
    """decrypt `data` using `key`

    `key` should be a string of bytes.

    `data` should have the initialization vector prepended as a string of
    ordinal values.

    """

    key = map(ord, key)
    keysize = len(key)
    assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
    # iv is first 16 bytes
    iv = map(ord, data[:16])
    data = map(ord, data[16:])
    moo = AESModeOfOperation()
    decr = moo.decrypt(data, None, mode, key, keysize, iv)
    if mode == AESModeOfOperation.modeOfOperation["CBC"]:
        decr = strip_PKCS7_padding(decr)
    return decr

def generateRandomKey(keysize):
    """Generates a key from random data of length `keysize`.
    
    The returned key is a string of bytes.
    
    """
    if keysize not in (16, 24, 32):
        emsg = 'Invalid keysize, %s. Should be one of (16, 24, 32).'
        raise ValueError, emsg % keysize
    return os.urandom(keysize)

if __name__ == "__main__":
    moo = AESModeOfOperation()
    cleartext = "This is a test!"
    cypherkey = [143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84]
    iv = [103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92]
    mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation["CBC"],
            cypherkey, moo.aes.keySize["SIZE_128"], iv)
    print 'm=%s, ol=%s (%s), ciph=%s' % (mode, orig_len, len(cleartext), ciph)
    decr = moo.decrypt(ciph, orig_len, mode, cypherkey,
            moo.aes.keySize["SIZE_128"], iv)
    print decr