enzo-dev-problem-types / src / enzo / ProblemType.C

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/***********************************************************************
/
/  PROBLEM TYPE CLASS
/
/  written by: Matthew Turk, Oliver Hahn
/  date:       July, 2010
/
/  PURPOSE:
/
************************************************************************/

#ifdef NEW_PROBLEM_TYPES
#include <string>
#include <map>
#include <iostream>
#include <stdexcept>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "ErrorExceptions.h"
#include "macros_and_parameters.h"
#include "typedefs.h"
#include "global_data.h"
#include "Fluxes.h"
#include "GridList.h"
#include "ExternalBoundary.h"
#include "Grid.h"
#include "Hierarchy.h"
#include "TopGridData.h"

#include "ProblemType.h"

EnzoProblemMap& get_problem_types()
{
    static EnzoProblemMap problem_type_map;
    return problem_type_map;
}

/* This takes a string, grabs the (static) plugin map defined above, and
   returns the plugin creator for that. */
EnzoProblemType *select_problem_type( std::string problem_type_name)
{
    EnzoProblemType_creator *ept_creator = get_problem_types()
            [ problem_type_name ];

    /* Simply throw an error if no such plugin exists... */

    if( !ept_creator )
    {   
        EnzoProblemMap mymap = get_problem_types();

        for (EnzoProblemMap::const_iterator it 
                = mymap.begin(); it != mymap.end(); ++it) {
          std::cout << "Available: " << it->first << std::endl;
        }
        ENZO_FAIL("Unknown output plug-in.");
    }

    EnzoProblemType *ptype = ept_creator->create();

    return ptype;

}

EnzoProblemType::EnzoProblemType()
{
    this->DataLabelCount = 0;
}

int EnzoProblemType::AddDataLabel(const char *FieldName) {
    /* We allocate a new copy of FieldName */
    /* Include NUL-terminator */
    int slen = strlen(FieldName) + 1;
    char *fcopy = new char[slen];
    strncpy(fcopy, FieldName, slen);
    DataLabel[this->DataLabelCount] = fcopy;
    std::cout << "Adding " << DataLabel[this->DataLabelCount]
              << " in place " << this->DataLabelCount << std::endl;
    return DataLabelCount++;
}

grid *EnzoProblemType::CreateNewUniformGrid(
                grid *ParentGrid,
                int Rank, int Dimensions[],
                FLOAT LeftEdge[], FLOAT RightEdge[], int NumParticles,
                float UniformDensity,
				float UniformTotalEnergy,
				float UniformInternalEnergy,
				float UniformVelocity[], 
				float UniformBField[])
{
    grid *grid_data = new grid;
    grid_data->InheritProperties(ParentGrid);
    grid_data->PrepareGrid(Rank, Dimensions, LeftEdge, RightEdge,
            NumParticles);
    this->InitializeUniformGrid(grid_data,
                UniformDensity,
				UniformTotalEnergy,
				UniformInternalEnergy,
				UniformVelocity, 
				UniformBField);
    return grid_data;
}

int EnzoProblemType::InitializeUniformGrid(
                grid *tg,
                float UniformDensity,
				float UniformTotalEnergy,
				float UniformInternalEnergy,
				float UniformVelocity[], 
				float UniformBField[])
{
  /* declarations */
 
  int dim, i, size, field, GCM;

  int DeNum, HINum, HIINum, HeINum, HeIINum, HeIIINum, HMNum, H2INum, H2IINum,
    DINum, DIINum, HDINum, MetalNum, B1Num, B2Num, B3Num, PhiNum;

  int CINum, CIINum, OINum, OIINum, SiINum, SiIINum, SiIIINum, CHINum, CH2INum, 
    CH3IINum, C2INum, COINum, HCOIINum, OHINum, H2OINum, O2INum;


  int ExtraField[2];

  /* create fields */
 
  tg->NumberOfBaryonFields = 0;
  tg->FieldType[tg->NumberOfBaryonFields++] = Density;
  tg->FieldType[tg->NumberOfBaryonFields++] = TotalEnergy;
  if (DualEnergyFormalism)
    tg->FieldType[tg->NumberOfBaryonFields++] = InternalEnergy;
  int vel = tg->NumberOfBaryonFields;
  tg->FieldType[tg->NumberOfBaryonFields++] = Velocity1;
  if (tg->GridRank > 1 || HydroMethod > 2)
    tg->FieldType[tg->NumberOfBaryonFields++] = Velocity2;
  if (tg->GridRank > 2 || HydroMethod > 2)
    tg->FieldType[tg->NumberOfBaryonFields++] = Velocity3;
  if (HydroMethod == MHD_RK) {
    tg->FieldType[B1Num = tg->NumberOfBaryonFields++] = Bfield1;
    tg->FieldType[B2Num = tg->NumberOfBaryonFields++] = Bfield2;
    tg->FieldType[B3Num = tg->NumberOfBaryonFields++] = Bfield3;
    tg->FieldType[PhiNum = tg->NumberOfBaryonFields++] = PhiField;
    if (UseDivergenceCleaning) {
      tg->FieldType[tg->NumberOfBaryonFields++] = Phi_pField;
    }
  }


  int colorfields = tg->NumberOfBaryonFields;

  // Enzo's standard multispecies (primordial chemistry - H, D, He)
  if (TestProblemData.MultiSpecies) {
    tg->FieldType[DeNum     = tg->NumberOfBaryonFields++] = ElectronDensity;
    tg->FieldType[HINum     = tg->NumberOfBaryonFields++] = HIDensity;
    tg->FieldType[HIINum    = tg->NumberOfBaryonFields++] = HIIDensity;
    tg->FieldType[HeINum    = tg->NumberOfBaryonFields++] = HeIDensity;
    tg->FieldType[HeIINum   = tg->NumberOfBaryonFields++] = HeIIDensity;
    tg->FieldType[HeIIINum  = tg->NumberOfBaryonFields++] = HeIIIDensity;
    if (TestProblemData.MultiSpecies > 1) {
      tg->FieldType[HMNum   = tg->NumberOfBaryonFields++] = HMDensity;
      tg->FieldType[H2INum  = tg->NumberOfBaryonFields++] = H2IDensity;
      tg->FieldType[H2IINum = tg->NumberOfBaryonFields++] = H2IIDensity;
    }
    if (TestProblemData.MultiSpecies > 2) {
      tg->FieldType[DINum   = tg->NumberOfBaryonFields++] = DIDensity;
      tg->FieldType[DIINum  = tg->NumberOfBaryonFields++] = DIIDensity;
      tg->FieldType[HDINum  = tg->NumberOfBaryonFields++] = HDIDensity;
    }
  }

  //  Metal fields, including the standard 'metallicity' as well 
  // as two extra fields
  if (TestProblemData.UseMetallicityField) {
    tg->FieldType[MetalNum = tg->NumberOfBaryonFields++] = Metallicity;

    if(TestProblemData.MultiMetals){
      tg->FieldType[ExtraField[0] = tg->NumberOfBaryonFields++] = ExtraType0;
      tg->FieldType[ExtraField[1] = tg->NumberOfBaryonFields++] = ExtraType1;
    }
  }
 
  // Simon glover's chemistry models (there are several)
  //
  // model #1:  primordial (H, D, He)
  // model #2:  low Z (H, D, He, C, O, Si)
  // model #3:  molecular (H, D, He, C, O, Si, plus molecules)
  // model #4:  simple (just hydrogen)
  // model #5: slightly less simple ( hydrogen plus CO)
  // model #7:  GMC (H, D,He, C, O, plus molecules)
  if(TestProblemData.GloverChemistryModel){

    GCM = TestProblemData.GloverChemistryModel;  // purely for convenience

    // a few species are in all of the models
    tg->FieldType[HIINum   = tg->NumberOfBaryonFields++] = HIIDensity;
    tg->FieldType[HINum    = tg->NumberOfBaryonFields++] = HIDensity;
    tg->FieldType[H2INum   = tg->NumberOfBaryonFields++] = H2IDensity;

    // more primordial species
    if( (GCM==1) || (GCM==2) || (GCM==3) || (GCM==7) ){
      tg->FieldType[DINum    = tg->NumberOfBaryonFields++] = DIDensity;
      tg->FieldType[DIINum   = tg->NumberOfBaryonFields++] = DIIDensity;
      tg->FieldType[HDINum   = tg->NumberOfBaryonFields++] = HDIDensity;
      tg->FieldType[HeINum   = tg->NumberOfBaryonFields++] = HeIDensity;
      tg->FieldType[HeIINum  = tg->NumberOfBaryonFields++] = HeIIDensity;
      tg->FieldType[HeIIINum = tg->NumberOfBaryonFields++] = HeIIIDensity;
    }

    // CO molecule
    if( (GCM==3) || (GCM==5) || (GCM==7) ){
      tg->FieldType[COINum   = tg->NumberOfBaryonFields++] = COIDensity;
    }

    // atomic carbon, oxygen
    if( (GCM==2) || (GCM==3) || (GCM==7) ){
      tg->FieldType[CINum     = tg->NumberOfBaryonFields++] = CIDensity;
      tg->FieldType[CIINum    = tg->NumberOfBaryonFields++] = CIIDensity;
      tg->FieldType[OINum     = tg->NumberOfBaryonFields++] = OIDensity;
      tg->FieldType[OIINum    = tg->NumberOfBaryonFields++] = OIIDensity;
    }

    // atomic silicon
    if( (GCM==2) || (GCM==3) ){
      tg->FieldType[SiINum    = tg->NumberOfBaryonFields++] = SiIDensity;
      tg->FieldType[SiIINum   = tg->NumberOfBaryonFields++] = SiIIDensity;
      tg->FieldType[SiIIINum  = tg->NumberOfBaryonFields++] = SiIIIDensity;
    }

    // a ton of molecules
    if( (GCM==3) || (GCM==7) ){
      tg->FieldType[CHINum   = tg->NumberOfBaryonFields++] = CHIDensity;
      tg->FieldType[CH2INum  = tg->NumberOfBaryonFields++] = CH2IDensity;
      tg->FieldType[CH3IINum = tg->NumberOfBaryonFields++] = CH3IIDensity;
      tg->FieldType[C2INum   = tg->NumberOfBaryonFields++] = C2IDensity;
      tg->FieldType[HCOIINum = tg->NumberOfBaryonFields++] = HCOIIDensity;
      tg->FieldType[OHINum   = tg->NumberOfBaryonFields++] = OHIDensity;
      tg->FieldType[H2OINum  = tg->NumberOfBaryonFields++] = H2OIDensity;
      tg->FieldType[O2INum   = tg->NumberOfBaryonFields++] = O2IDensity;
    }

  } //   if(TestProblemData.GloverChemistryModel)

  /* Return if this doesn't concern us. */
 
  if (tg->ProcessorNumber != MyProcessorNumber)
    return SUCCESS;
 
  /* compute size of fields */
 
  size = 1;
  for (dim = 0; dim < tg->GridRank; dim++)
    size *= tg->GridDimension[dim];
 
  /* allocate fields */
 
  for (field = 0; field < tg->NumberOfBaryonFields; field++)
    if (tg->BaryonField[field] == NULL)
      tg->BaryonField[field] = new float[size];
 
  /* set density, total energy */
 
  for (i = 0; i < size; i++) {
    tg->BaryonField[0][i] = UniformDensity;
    tg->BaryonField[1][i] = UniformTotalEnergy;
  }
 
  /* set velocities */
 
  for (dim = 0; dim < tg->GridRank; dim++)
    for (i = 0; i < size; i++)
      tg->BaryonField[vel+dim][i] = UniformVelocity[dim];
 
  /* Set internal energy if necessary. */
 
  if (DualEnergyFormalism)
    for (i = 0; i < size; i++)
      tg->BaryonField[2][i] = UniformInternalEnergy;

  if (HydroMethod == MHD_RK) {
    for (dim = 0; dim < 3; dim++) 
      for (i = 0; i < size; i++)
	tg->BaryonField[B1Num+dim][i] = UniformBField[dim];
  }

   /* set density of color fields to user-specified values (if user doesn't specify, 
     the defaults are set in SetDefaultGlobalValues.  Do some minimal amount of error
     checking to try to ensure charge conservation when appropriate */
  for (i = 0; i < size; i++){

    // Set multispecies fields!
    // this attempts to set them such that species conservation is maintained,
    // using the method in CosmologySimulationInitializeGrid.C
    if(TestProblemData.MultiSpecies){

      tg->BaryonField[HIINum][i] = TestProblemData.HII_Fraction * 
	TestProblemData.HydrogenFractionByMass * UniformDensity;
 
      tg->BaryonField[HeIINum][i] =  TestProblemData.HeII_Fraction *
	UniformDensity * (1.0-TestProblemData.HydrogenFractionByMass);

      tg->BaryonField[HeIIINum][i] = TestProblemData.HeIII_Fraction *
	UniformDensity * (1.0-TestProblemData.HydrogenFractionByMass);

      tg->BaryonField[HeINum][i] =
	(1.0 - TestProblemData.HydrogenFractionByMass)*UniformDensity -
	tg->BaryonField[HeIINum][i] - tg->BaryonField[HeIIINum][i];

      if(TestProblemData.MultiSpecies > 1){
	tg->BaryonField[HMNum][i] = TestProblemData.HM_Fraction *
	  tg->BaryonField[HIINum][i];

	tg->BaryonField[H2INum][i] = TestProblemData.H2I_Fraction *
	  tg->BaryonField[0][i] * TestProblemData.HydrogenFractionByMass;

	tg->BaryonField[H2IINum][i] = TestProblemData.H2II_Fraction * 2.0 *
	  tg->BaryonField[HIINum][i];
      }

      // HI density is calculated by subtracting off the various ionized fractions
      // from the total
      tg->BaryonField[HINum][i] = 
            TestProblemData.HydrogenFractionByMass*tg->BaryonField[0][i]
            - tg->BaryonField[HIINum][i];
      if (MultiSpecies > 1)
	tg->BaryonField[HINum][i] -= (tg->BaryonField[HMNum][i]
                                + tg->BaryonField[H2IINum][i]
				                + tg->BaryonField[H2INum][i]);

      // Electron "density" (remember, this is a factor of m_p/m_e scaled from the 'normal'
      // density for convenience) is calculated by summing up all of the ionized species.
      // The factors of 0.25 and 0.5 in front of HeII and HeIII are to fix the fact that we're
      // calculating mass density, not number density (because the BaryonField values are 4x as
      // heavy for helium for a single electron)
      tg->BaryonField[DeNum][i] = tg->BaryonField[HIINum][i] +
	0.25*tg->BaryonField[HeIINum][i] + 0.5*tg->BaryonField[HeIIINum][i];
      if (MultiSpecies > 1)
	tg->BaryonField[DeNum][i] += 0.5*tg->BaryonField[H2IINum][i] -
	  tg->BaryonField[HMNum][i];

      // Set deuterium species (assumed to be a negligible fraction of the total, so not
      // counted in the conservation)
      if(TestProblemData.MultiSpecies > 2){
	tg->BaryonField[DINum ][i]  = TestProblemData.DeuteriumToHydrogenRatio * tg->BaryonField[HINum][i];
	tg->BaryonField[DIINum][i] = TestProblemData.DeuteriumToHydrogenRatio * tg->BaryonField[HIINum][i];
	tg->BaryonField[HDINum][i] = 0.75 * TestProblemData.DeuteriumToHydrogenRatio * tg->BaryonField[H2INum][i];
      }

    } // if(TestProblemData.MultiSpecies)

    // metallicity fields (including 'extra' metal fields)
    if(TestProblemData.UseMetallicityField){
      tg->BaryonField[MetalNum][i] = TestProblemData.MetallicityField_Fraction* UniformDensity;

      if(TestProblemData.MultiMetals){
      tg->BaryonField[ExtraField[0]][i] = TestProblemData.MultiMetalsField1_Fraction* UniformDensity;
      tg->BaryonField[ExtraField[1]][i] = TestProblemData.MultiMetalsField2_Fraction* UniformDensity;

      }
    } // if(TestProblemData.UseMetallicityField)

        // simon glover chemistry stuff
    if(TestProblemData.GloverChemistryModel){
      float tempHM, tempH2II;

      GCM = TestProblemData.GloverChemistryModel;  // purely for convenience

      tg->BaryonField[HIINum][i] = TestProblemData.HII_Fraction * 
	TestProblemData.HydrogenFractionByMass * UniformDensity;
      tg->BaryonField[H2INum][i] = TestProblemData.H2I_Fraction *
	  tg->BaryonField[0][i] * TestProblemData.HydrogenFractionByMass;

      tempHM = TestProblemData.HM_Fraction * tg->BaryonField[HIINum][i];

      tempH2II = TestProblemData.H2II_Fraction * 2.0 * tg->BaryonField[HIINum][i];

      tg->BaryonField[HINum][i] = TestProblemData.HydrogenFractionByMass*tg->BaryonField[0][i]
	- tg->BaryonField[HIINum][i];
      tg->BaryonField[HINum][i] -= (tempHM + tempH2II + tg->BaryonField[H2INum][i]);

      if( (GCM==1) || (GCM==2) || (GCM==3) || (GCM==7) ){
	tg->BaryonField[DINum   ][i] = TestProblemData.DI_Fraction * UniformDensity;
	tg->BaryonField[DIINum  ][i] = TestProblemData.DII_Fraction * UniformDensity;
	tg->BaryonField[HDINum  ][i] = TestProblemData.HDI_Fraction * UniformDensity;
	tg->BaryonField[HeIINum][i] =  TestProblemData.HeII_Fraction *
	  UniformDensity * (1.0-TestProblemData.HydrogenFractionByMass);
	tg->BaryonField[HeIIINum][i] = TestProblemData.HeIII_Fraction *
	  UniformDensity * (1.0-TestProblemData.HydrogenFractionByMass);
	tg->BaryonField[HeINum][i] =
	  (1.0 - TestProblemData.HydrogenFractionByMass)*UniformDensity -
	  tg->BaryonField[HeIINum][i] - tg->BaryonField[HeIIINum][i];
      }

      if( (GCM==3) || (GCM==5) || (GCM==7) )
	tg->BaryonField[COINum  ][i] = TestProblemData.COI_Fraction * UniformDensity;

      if( (GCM==2) || (GCM==3) || (GCM==7) ){
	tg->BaryonField[CINum ][i] = TestProblemData.CI_Fraction * UniformDensity;
	tg->BaryonField[CIINum][i] = TestProblemData.CII_Fraction * UniformDensity;
	tg->BaryonField[OINum ][i] = TestProblemData.OI_Fraction * UniformDensity;
	tg->BaryonField[OIINum][i] = TestProblemData.OII_Fraction * UniformDensity;
      }

      if( (GCM==2) || (GCM==3) ){
	tg->BaryonField[SiINum  ][i] = TestProblemData.SiI_Fraction * UniformDensity;
	tg->BaryonField[SiIINum ][i] = TestProblemData.SiII_Fraction * UniformDensity;
	tg->BaryonField[SiIIINum][i] = TestProblemData.SiIII_Fraction * UniformDensity;
      }

      if( (GCM==3) || (GCM==7) ){
	tg->BaryonField[CHINum  ][i] = TestProblemData.CHI_Fraction * UniformDensity;
	tg->BaryonField[CH2INum ][i] = TestProblemData.CH2I_Fraction * UniformDensity;
	tg->BaryonField[CH3IINum][i] = TestProblemData.CH3II_Fraction * UniformDensity;
	tg->BaryonField[C2INum  ][i] = TestProblemData.C2I_Fraction * UniformDensity;
	tg->BaryonField[HCOIINum][i] = TestProblemData.HCOII_Fraction * UniformDensity;
	tg->BaryonField[OHINum  ][i] = TestProblemData.OHI_Fraction * UniformDensity;
	tg->BaryonField[H2OINum ][i] = TestProblemData.H2OI_Fraction * UniformDensity;
	tg->BaryonField[O2INum  ][i] = TestProblemData.O2I_Fraction * UniformDensity;
      }

    } // if(TestProblemData.GloverChemistryModel)

  } // for (i = 0; i < size; i++)

  return SUCCESS;
}

void EnzoProblemType::FinalizeGrids(HierarchyEntry **RefLevels,
            HierarchyEntry &TopGrid, TopGridData &MetaData)
{

  /* set up subgrids from level 1 to max refinement level -1 */
  
  int lev;
  for (lev = MaximumRefinementLevel - 1; lev > 0; lev--)
    if (RefLevels[lev]->GridData->ProjectSolutionToParentGrid(
          *(RefLevels[lev-1]->GridData))
        == FAIL) {
      ENZO_FAIL("Error in ProjectSolutionToParentGrid.");
    }

  /* set up the root grid */

  if (MaximumRefinementLevel > 0) {
    if (RefLevels[0]->GridData->ProjectSolutionToParentGrid(*(TopGrid.GridData))
        == FAIL) {
      ENZO_FAIL("Error in ProjectSolutionToParentGrid.");
    }
  }
  else
    if (this->InitializeGrid(TopGrid.GridData, TopGrid, MetaData) == FAIL) {
      ENZO_FAIL("Error in RotatingCylinderInitializeGrid.");
    }

}

void FieldContainer::add_field(std::string field_name, float default_value)
{
    if (this->default_values.count(field_name) != 0)
        ENZO_VFAIL("Tried to reset default for %s", field_name.c_str())
    this->default_values[field_name] = default_value;
    return;
}

void FieldContainer::reset()
{
    for (std::map<std::string, float>::iterator it =
            this->default_values.begin();
         it != this->default_values.end();
         it++)
    {
        this->field_values[it->first] = it->second;
    }
    return;
}

int FieldContainer::needs(std::string field_name)
{
    if (this->default_values.count(field_name) == 0) return FALSE;
    else return TRUE;
}

float& FieldContainer::operator[](std::string field_name)
{
    if (this->field_values.count(field_name) == 0)
        ENZO_VFAIL("Asked for %s but it did not exist as a field.", field_name.c_str())
    return this->field_values[field_name];
}

#endif
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.