yt-3.0 / yt / geometry /

Full commit
AMR hierarchy container class

Author: Matthew Turk <>
Affiliation: KIPAC/SLAC/Stanford
  Copyright (C) 2007-2011 Matthew Turk.  All Rights Reserved.

  This file is part of yt.

  yt is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 3 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <>.

import h5py
import numpy as np
import string, re, gc, time, cPickle
import weakref

from itertools import chain, izip

from yt.funcs import *
from yt.utilities.logger import ytLogger as mylog
from yt.arraytypes import blankRecordArray
from yt.config import ytcfg
from yt.data_objects.field_info_container import NullFunc
from yt.geometry.geometry_handler import GeometryHandler, YTDataChunk
from yt.utilities.definitions import MAXLEVEL
from yt.utilities.physical_constants import sec_per_year
from yt.utilities.io_handler import io_registry
from yt.utilities.parallel_tools.parallel_analysis_interface import \
    ParallelAnalysisInterface, parallel_splitter

from yt.data_objects.data_containers import data_object_registry

class GridGeometryHandler(GeometryHandler):
    float_type = 'float64'

    def _setup_geometry(self):
        mylog.debug("Counting grids.")

        mylog.debug("Initializing grid arrays.")

        mylog.debug("Parsing hierarchy.")

        mylog.debug("Constructing grid objects.")

        mylog.debug("Re-examining hierarchy")

    def parameters(self):
        return self.parameter_file.parameters

    def select_grids(self, level):
        Returns an array of grids at *level*.
        return self.grids[self.grid_levels.flat == level]

    def get_levels(self):
        for level in range(self.max_level+1):
            yield self.select_grids(level)

    def _initialize_grid_arrays(self):
        mylog.debug("Allocating arrays for %s grids", self.num_grids)
        self.grid_dimensions = np.ones((self.num_grids,3), 'int32')
        self.grid_left_edge = np.zeros((self.num_grids,3), self.float_type)
        self.grid_right_edge = np.ones((self.num_grids,3), self.float_type)
        self.grid_levels = np.zeros((self.num_grids,1), 'int32')
        self.grid_particle_count = np.zeros((self.num_grids,1), 'int32')

    def clear_all_data(self):
        This routine clears all the data currently being held onto by the grids
        and the data io handler.
        for g in self.grids: g.clear_data()

    def get_smallest_dx(self):
        Returns (in code units) the smallest cell size in the simulation.
        return self.select_grids(self.grid_levels.max())[0].dds[0]

    def _initialize_level_stats(self):
        # Now some statistics:
        #   0 = number of grids
        #   1 = number of cells
        #   2 = blank
        desc = {'names': ['numgrids','numcells','level'],
        self.level_stats = blankRecordArray(desc, MAXLEVEL)
        self.level_stats['level'] = [i for i in range(MAXLEVEL)]
        self.level_stats['numgrids'] = [0 for i in range(MAXLEVEL)]
        self.level_stats['numcells'] = [0 for i in range(MAXLEVEL)]
        for level in xrange(self.max_level+1):
            self.level_stats[level]['numgrids'] = np.sum(self.grid_levels == level)
            li = (self.grid_levels[:,0] == level)
            self.level_stats[level]['numcells'] = self.grid_dimensions[li,:].prod(axis=1).sum()

    def grid_corners(self):
        return np.array([
          [self.grid_left_edge[:,0], self.grid_left_edge[:,1], self.grid_left_edge[:,2]],
          [self.grid_right_edge[:,0], self.grid_left_edge[:,1], self.grid_left_edge[:,2]],
          [self.grid_right_edge[:,0], self.grid_right_edge[:,1], self.grid_left_edge[:,2]],
          [self.grid_left_edge[:,0], self.grid_right_edge[:,1], self.grid_left_edge[:,2]],
          [self.grid_left_edge[:,0], self.grid_left_edge[:,1], self.grid_right_edge[:,2]],
          [self.grid_right_edge[:,0], self.grid_left_edge[:,1], self.grid_right_edge[:,2]],
          [self.grid_right_edge[:,0], self.grid_right_edge[:,1], self.grid_right_edge[:,2]],
          [self.grid_left_edge[:,0], self.grid_right_edge[:,1], self.grid_right_edge[:,2]],
        ], dtype='float64')

    def print_stats(self):
        Prints out (stdout) relevant information about the simulation
        header = "%3s\t%6s\t%14s" % ("level","# grids", "# cells")
        print header
        print "%s" % (len(header.expandtabs())*"-")
        for level in xrange(MAXLEVEL):
            if (self.level_stats['numgrids'][level]) == 0:
            print "% 3i\t% 6i\t% 14i" % \
                  (level, self.level_stats['numgrids'][level],
            dx = self.select_grids(level)[0].dds[0]
        print "-" * 28
        print "   \t% 6i\t% 14i" % (self.level_stats['numgrids'].sum(), self.level_stats['numcells'].sum())
        print "\n"
            print "z = %0.8f" % (self["CosmologyCurrentRedshift"])
        t_s = *["Time"]
        print "t = %0.8e = %0.8e s = %0.8e years" % \
            (, \
             t_s, t_s / sec_per_year )
        print "\nSmallest Cell:"
        for item in self.parameter_file.units.items():
        for unit in u:
            print "\tWidth: %0.3e %s" % (dx*unit[0], unit[1])

    def find_max(self, field, finest_levels = 3):
        Returns (value, center) of location of maximum for a given field.
        if (field, finest_levels) in self._max_locations:
            return self._max_locations[(field, finest_levels)]
        mv, pos = self.find_max_cell_location(field, finest_levels)
        self._max_locations[(field, finest_levels)] = (mv, pos)
        return mv, pos

    def find_max_cell_location(self, field, finest_levels = 3):
        if finest_levels is not False:
            gi = (self.grid_levels >= self.max_level - finest_levels).ravel()
            source = self.data_collection([0.0]*3, self.grids[gi])
            source = self.all_data()
        mylog.debug("Searching for maximum value of %s", field)
        max_val, maxi, mx, my, mz = \
            source.quantities["MaxLocation"](field)"Max Value is %0.5e at %0.16f %0.16f %0.16f", 
              max_val, mx, my, mz)
        self.parameters["Max%sValue" % (field)] = max_val
        self.parameters["Max%sPos" % (field)] = "%s" % ((mx,my,mz),)
        return max_val, np.array((mx,my,mz), dtype='float64')

    def convert(self, unit):
        return self.parameter_file.conversion_factors[unit]

    def _identify_base_chunk(self, dobj):
        if getattr(dobj, "_grids", None) is None:
            gi = dobj.selector.select_grids(self.grid_left_edge,
            grids = list(sorted(self.grids[gi], key = lambda g: g.filename))
            dobj._chunk_info = np.empty(len(grids), dtype='object')
            for i, g in enumerate(grids):
                dobj._chunk_info[i] = g
        if getattr(dobj, "size", None) is None:
            dobj.size = self._count_selection(dobj)
            dobj.shape = (dobj.size,)
        dobj._current_chunk = list(self._chunk_all(dobj))[0]

    def _count_selection(self, dobj, grids = None):
        if grids is None: grids = dobj._chunk_info
        count = sum((g.count(dobj.selector) for g in grids))
        return count

    def _chunk_all(self, dobj):
        gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
        yield YTDataChunk(dobj, "all", gobjs, dobj.size)
    def _chunk_spatial(self, dobj, ngz, sort = None):
        gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
        if sort in ("+level", "level"):
            giter = sorted(gobjs, key = g.Level)
        elif sort == "-level":
            giter = sorted(gobjs, key = -g.Level)
        elif sort is None:
            giter = gobjs
        for i,og in enumerate(giter):
            if ngz > 0:
                g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
                g = og
            size = self._count_selection(dobj, [og])
            if size == 0: continue
            yield YTDataChunk(dobj, "spatial", [g], size)

    def _chunk_io(self, dobj):
        gfiles = defaultdict(list)
        gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
        for g in gobjs:
        for fn in sorted(gfiles):
            gs = gfiles[fn]
            yield YTDataChunk(dobj, "io", gs, self._count_selection(dobj, gs))