
WAD-QC 2.0

Rob van Rooij and Arnold Schilham, UMC Utrecht

20180629
v0.7

For up-to-date information, check the Wiki at
https://bitbucket.org/rvrooij/pywad3/wiki/Home

Abstract

WAD-QC 2.0 is an open source implementation in python of the WAD-QC Server https://
github.com/wadqc: a server for automated analysis of medical images for quality control, by the
Society for Medical Physics of the Netherlands (NVKF) http://www.nvkf.nl.

1

https://bitbucket.org/rvrooij/pywad3/wiki/Home
https://github.com/wadqc
https://github.com/wadqc
http://www.nvkf.nl

Contents

1 Design 4

1.1 Basic requirements . 4

1.2 Overview of WAD-QC 2.0 . 5

1.2.1 Data flow . 5

1.2.2 Data sources . 5

1.2.3 Parallel jobs . 5

1.2.4 IO layers . 5

1.2.5 WAD-QC database . 6

1.2.6 WAD-Admin . 6

1.2.7 WAD-Dashboard . 7

1.3 Main changes and new features with regard to WAD-QC 1.0 7

1.3.1 Implementation changes . 7

1.3.2 Module config changes . 8

1.3.3 Module changes . 8

1.3.4 Results changes . 8

1.3.5 Added features . 8

1.4 WAD-QC Database . 9

2 Implementation details 12

2.1 Specific implementation details . 12

2.1.1 module config.json . 12

2.1.2 meta config.json . 12

2.1.3 wadconfig.ini, wadsetup.ini, and orthanc.json 12

2.1.4 separation between WAD-Admin and WAD-Dashboard 13

2.1.5 integrity testing . 13

2.1.6 SQLite . 13

2.1.7 DICOM-tags . 13

2.1.8 features not yet implemented . 13

2

3 Module guidelines 15

3.1 Analysis module . 15

3.2 JSON files . 15

3.2.1 results.json . 15

3.2.2 module config . 16

3.2.3 meta config . 17

4 API Layers 20

4.1 DBIO . 20

4.2 PACSIO . 20

3

Chapter 1

Design

1.1 Basic requirements

Based on use-cases of WAD-QC 1.0 in several hospitals and requests for changes to the existing
framework by the developers, WAD-QC 2.0 was redesigned from scratch. Many design choices for
WAD-QC 2.0 turn out to be very similar to the design choices made in WAD-QC 1.0; this is partly
because of bias due to experience with WAD-QC 1.0 but mostly because the choices of WAD-QC
1.0 were well founded.

The basic requirements for the design of WAD-QC 2.0 were:

(1) Use modern, up-to-date software. For ease of maintenance, use the same programming lan-
guage where possible. For flexibility, use only open-source, cross-platform software.

(2) Use dedicated components: DICOM images should be stored in a PACS and access to these
images should be through Query/Retrieve only. Results and parameters should be stored in a
database. Introduce no hard dependencies on a specific PACS implementation or on a specific
database engine.

(3) The results database should contain results and everything needed to reproduce the results
(except for the images themselves): Module and parameters used and unique IDs of the images
analyzed. Information not related to the results or on how to generate them should not be mixed
with results data.

(4) Analysis modules should be treated as black boxes that can read DICOM images (and a con-
figuration file with run-time parameters), and produce results in a prescribed file format.

(5) Visualization and reporting of results should be left to dedicated, flexible tool, and should not
be integrated in WAD-QC 2.0.

These requirements were met as follows:

(1) WAD-QC 2.0 is completely written in python3, and is fully compatible with python2.

(2) WAD-QC 2.0 makes use of a connection layer, through which it can be coupled to multiple
data sources simultaneously. Right now only usage of the DICOM server Orthanc[1] is fully
implemented and tested. For interfacing with databases, WAD-QC 2.0 uses the ORM pee-
wee [2], which out-of-the-box supports MySQL, PostgreSQL, SQLite and BerkeleyDB. As Or-
thanc needs SQLite or PostgreSQL as a database back-end, the only tested configurations for
WAD-QC 2.0 are SQLite and PostgreSQL. The default database engine for WAD-QC 2.0 is
PostgreSQL.

4

(3) The WAD-QC database is restructured to meet the requirements, and will be described in detail
later in this document.

(4) In WAD-QC 2.0 the input and output requirements of the analysis modules have changed. The
necessary changes to existing modules of WAD-QC 1.0 are only minor, for both python and
non-python modules. Right now only some of the pyWAD 1.0 plugins are adjusted to become
stand-alone analysis modules. Only these modules have been tested for now.

(5) A stand-alone visualization tool is included in the WAD-QC 2.0. This is not intended as a final
product, but without a visualization tool WAD-QC is difficult to appreciate.

1.2 Overview of WAD-QC 2.0

Figure 1.1 shows WAD-QC 2.0 in a flow-chart.

1.2.1 Data flow

As a new dataset arrives in the PACS, the Selector process is triggered and the flow-chart is acted
upon. The Selector requests the headers of the new dataset from the PACS and requests all data
filters (selection rules) from the WAD-QC database. The headers are compared to the selection rules.
If a match is found a new job is put in a queue for processing, detailing how the obtain the data and
how to process it. The Processor process runs in the background, and periodically checks the queue
for new jobs. The Processor assigns jobs to so-called Worker processes from a predefined pool.
When a Worker becomes available it processes the job given: the correct dataset is requested from
the PACS and the analysis is started with the provided analysis module and run-time parameters.
Upon completion of the analysis, the Worker collects the results and stores them in the WAD-QC
database.

1.2.2 Data sources

The WAD-QC framework can be connected to multiple PACS servers at the same time, but each
PACS server needs to provide its own trigger mechanism for the Selector process. In the case of
Orthanc, this is done by a lua script that invokes a Selector each time a new DICOM study arrives in
the PACS.

1.2.3 Parallel jobs

The number of workers available to the Processor is set by the user, and defines the number of
analysis jobs that can be run in parallel.

1.2.4 IO layers

As can be seen in Figure 1.1, there are dedicated IO layers to access the PACS and the WAD-QC
database (green boxes). That way the WAD-QC framework is made independent from a specific type
of PACS or database engine, and by forcing all access to go through those layers, the integrity of the
PACS and the database is easier to maintain

5

Figure 1.1: Flowchart of WAD-QC 2.0. The green boxes indicate specialized IO layers, and the
orange box indicates the WAD-QC database.

1.2.5 WAD-QC database

The orange box in Figure 1 shows the actual WAD-QC database. It consists of three main parts:

(1) Data Filters and Analysis Settings: the selection rules and the processing parameters to use;

(2) Queue: The processing queue;

(3) Results: The analysis results.

1.2.6 WAD-Admin

To keep the core of WAD-QC 2.0 (i.e. Selector, Processor and IO layers) compact and manageable,
a dedicated administration tool (named WAD-Admin) is provided. WAD-Admin is a stand-alone web
service through which all the essential configurations of WAD-QC should be managed. For example,
through WAD-Admin new selection rules and changes to analysis settings (run-time parameters) and
the PACS connections can be applied. WAD-Admin also includes a utility to inspect all tables of the
WAD-QC database. WAD-Admin should only be accessed by the local administrator of the WAD-QC
installation.

6

main features

• Manage database (upgrade, consistency check, inspect)

• Manage Analysis Modules (import, export, upgrade factory modules)

• Manage Selectors (create, disable, dry-run, backup)

• Manage Processes and Results (delete, redo, view logs)

1.2.7 WAD-Dashboard

For visualization of the analysis results, the stand-alone web service WAD-Dashboard is bundled
with WAD-QC 2.0. WAD-Dashboard is the tool that should be the landing page for a normal user
who is only interested in the results of the QC tests. Right now WAD-Dashboard is only a simple tool,
but it allows for visualization of the results, and also highlights some of the functionalities expected
from a final product. In the present implementation, WAD-Admin and WAD-Dashboard are build
with the Flask framework [3], and include their own web servers. Therefore these services can run
stand-alone, which is nice for development, but it is recommended to deploy them on a standard web
server. Instructions are provided for deploying on Apache 2.0.

main features

• Usermanagement (roles, restrict data shown)

• Grouping Results (join output of different Selectors into one visible Result)

• Show Results (global status, details, graphs, trends, punctuality check of QC frequency)

1.3 Main changes and new features with regard to WAD-QC 1.0

Below is a summary of the main changes of WAD-QC 2.0 compared to WAD-QC 1.0.

1.3.1 Implementation changes

python WAD-QC 2.0 is entirely written in python3 (and fully compatibile with python2) instead of
java and php. Just like java, python is cross-platform and widely available. Most people find python
easy to learn, and there is a vast community and a wealth of support available for python.

English The default language used throughout WAD-QC is English.

image access DICOM images are accessed through Query/Retrieve only.

external dependencies No hard dependencies on database engine or on PACS type for images.

JSON The main file format for exchanging information is now JSON, while XML was used in WAD-
QC 1.0. JSON is a more natural structure for python, and results in more compact files, without loss
of readability or flexibility.

7

1.3.2 Module config changes

Run-time parameters for the analysis modules (the config.xml files in WAD-QC 1.0) are now treated
as a critical part for the obtained results; as changes in these parameters can lead to different results,
those parameters are tracked in the WAD-QC database so that results can be reproduced faithfully.
Furthermore, the contents of the earlier config.xml files are now split into a part essential for the
results to be produced (the module config) and a part useful for the interpretation of the results (the
meta config), such as fixed criteria for the values obtained, or the units of those values. Apart from
constraints of the outcome values, the meta config contains elements that are only needed when
visualizing the data and which are completely ignored by the core of WAD-QC 2.0 and WAD-Admin,
but can be used by WAD-Dashboard.

1.3.3 Module changes

The pyWAD package of analysis modules is split into separate, stand-alone modules, that make use
of shared set of IO functions. Modules are stand-alone executables, that expect 3 parameters:

-c config file

-d study data folder

-r results output file

The data is always provided to the analysis module in a three level deep folder structure Study/Series/In-
stances, where one study, but multiple series and instances each are allowed. Just like in WAD-QC
1.0 each analysis module is stored in a separate folder, and only the folder locations are tracked in
the WAD-QC database. Although it is possible to store the complete analysis modules as blobs in
the database, it was decided not to do so, for flexibility and to keep the database size smaller. To
ensure reproducibility of results, it is expected that developers implement an analysis module version
number and that this version number is stored as a result item together with the other results of an
analysis.

1.3.4 Results changes

Results are expected to be written as a JSON file. When Objects are produced as results (e.g.
images), these are added as blobs in the results database.

1.3.5 Added features

multiple data sources WAD-QC 2.0 allows for multiple data sources at the same time. Multiple
PACS systems can be coupled, and other types of data storage systems are feasible as well.

date-time results Date-Time objects are recognized as a result type as well. Use-cases are for
example hardware calibration dates, or data acquisition times.

dynamical limits Dynamical limits for results are added. In the produced results file, constraints
(limits) to the data can be supplied as well. If static constraints (constraints provided in the meta config)
are provided for the for a result, while dynamic constraints are provided too, the static constraints will
will take precedence upon storage in the WAD-QC database.

8

selector logics A Selector (i.e. a set of data criteria (selector rules) and a coupled list of analy-
sis actions and parameters) contains a number of selector rules that are combined with AND logic.
Each selector rule consist of a reference to any valid DICOM header field, a certain comparison
logic, and a number of different outcomes that are acceptable. The logics that can be picked
are: equal to, not equal to, contains, does not contain, starts with, ends with, does not start with,
does not end with, is empty, is not empty. The latter two take no outcome values. Although it is
expected that these possibilities will suffice in most cases, a user is encouraged to consider using
multiple selectors instead of one very complex selector; in the reporting tool (WAD-Dashboard) the
results of these separate selectors should be combined into one test result.

role of module config module configs cannot exist alone. They should always point to an analysis
module. If an analysis module can be used for different kinds of analyses (e.g. using different
phantoms) the developer is expected to supply a separate module config for each kind of analysis.
If the module config supplied with an analysis module adheres to a certain JSON format, then the
run-time parameters in that module config can be changed together with all other selector settings in
one GUI screen in WAD-Admin. Therefore a developer is expected to supply module configs that lists
all the possible parameters restricted to that particular analysis, and nothing more. It is also allowed
to upload a non-JSON file as module config to be used together with a certain module; in that case
the module config is just copied as is, and no tuning of parameters through WAD-Admin is possible.

one screen to modify selector In WAD-Admin, all selector parameters can be changed in one
screen: The selector rules, the module config used, the run-time parameters, and the constraints
(limits) for the results.

import and export An import/export feature is available in WAD-Admin. Here module configs to-
gether with their analysis modules can be selected for export or import, thus facilitating updates to
modules and making the initial setting up of a WAD Server easier. There is a distinction between
factory and user modules and module configs, where the factory versions are the original ones
bundled in the WAD-QC package, and user designates modified factory files or manually uploaded
files.

disabled selectors Selectors have an additional flag is active that can be used to temporarily
enable or disable selectors.

selector dry-run It is possible to dry-run a Selector on the data sources. This will show the list of
data that would result in a match for that Selector, without actually creating new Processes. That
way, a Selector can be adjusted to include or exclude certain data, before going live.

1.4 WAD-QC Database

Figure 1.2 shows the schematic diagram of the database of WAD-QC 2.0. There are a few noteworthy
changes with respect to the database of WAD-QC 1.0.

The table Variables is added to have a central location for all kinds of variables that are needed for
the core of WAD-QC: the locations for temporary files and the modules, the version of the database,
and some parameters for the Processor (like number of workers available and time between polling
the queue).

9

The table MetaConfigs is added and contains all information needed for displaying results (like a
description or constraints). This information is stored as a JSON file in the table, to allow for easy
extension later on.

The table ModuleConfigs has a central position in the scheme. Not only does it contain the mod-
ule config, but it is also the only table that connects to the tables Modules, and DataTypes, and
MetaConfigs. DataTypes is a table with the allowed types of data that are available from the various
data sources; this information can be used to retrieve the right data from a given data source. For
DICOM images in a PACS, recognized data types are dcm study, dcm series, and dcm instance.

Figure 1.2: Schematic of the WAD-QC database, showing all tables (blue blocks) and the foreign key
connections (arrows) between tables.

Another central position is held by the table Selectors. In the first place it is used as the linking pin
between the data selection criteria in table SelectorRules and the analysis to perform through table
ModuleConfigs. Later it is used to identify the origin of the results produced. Note that multiple entries
of table SelectorRules are combined with logical AND in one entry of table Selectors.

The data selection criteria are now split into three different tables. Table SelectorRules lists the
different selection criteria, each consisting of a data tag and a given outcome value and the logical
relation between the two. The allowed logical relations are stored in the table SelectorLogics. Multiple
outcome values are allowed for each rule; these outcomes are stored in the table RuleValues and

10

they are treated as a list of logical OR values.

The table Processes is in fact the Processor queue. When the Selector finds a match between a new
dataset and all the SelectorRules of a given entry in Selectors, a new item is added to the Processes
table, stating:

(1) for which entry of Selectors this match was found;

(2) what ModuleConfigs entry should be used for analysis;

(3) the origin of the data (DataSources entry);

(4) the unique ID needed to retrieve the data from given data source;

(5) the actual status of the Processes entry. The allowed states of the latter are defined in the table
ProcessStatus (e.g. ’new’, ’busy’, ’error’).

The table Results is new, and is very similar to the Processes table. After a Processes entry is
picked up by the Processor and successfully analyzed, it is removed from the Processes table and
a new Results entry is created, containing the same information as the Processes entry on how the
results were obtained. With the information in the Results entry, the original Processes entry can be
recreated, so the results can be reproduced.

The values of the analysis results themselves are stored in the tables ResultStrings, ResultFloats,
ResultBools, ResultObjects, ResultDateTimes, depending on the types of results. The ResultDate-
Times table is new, and is used for storage of DateTime elements. Each of these five tables of types
of results has entries for the names of the values, the values themselves and values for all dynamic
constraints allowed for that particular type of result. For example a ResultStrings entry has only
an ‘equal to’ constraint, while a ResultFloats entry has constraints for ‘equal to’, ‘minimum’, ‘maxi-
mum’, ‘acceptable lower limit’ and ‘acceptable higher limit’. A ResultObjects entry does not have any
constraints. Also note that all ResultObjects are stored as blobs in the database.

11

Chapter 2

Implementation details

2.1 Specific implementation details

WAD-QC 2.0 expects certain input files in JSON format, and other configuration files at certain loca-
tions, as will be explained below.

2.1.1 module config.json

If the WAD-Admin interface is to be used to manage the run-time parameter settings of an analysis
module, these parameters should be stored in a prescribed manner so that WAD-Admin can access
them. In WAD-QC 2.0 this information is stored in the module config JSON blob. A blob was chosen
instead of a new table of parameters, as it is unclear what kind of parameters and what else is to be
stored in that table. It also keeps it flexible to other kinds of module config files, that might be needed
for a specific analysis module. However, only if it is a JSON file with a certain structure, WAD-Admin
can be used to make modifications to that file. Examples of the proposed JSON file structure can
be found in the distributed factory module configs, which can be viewed and downloaded through
WAD-Admin.

2.1.2 meta config.json

The meta config contains all the information that helps in the interpretation and visualization of the
results themselves, but which is not needed for the actual generation of those results. As it is un-
clear what information is to be expected there, it was opted to store this information as a JSON
blob. The contents of this blob can be managed separately from the WAD-QC core, for example
by WAD-Dashboard. In the current implementation, the meta config is a JSON file containing the
fixed constraints for analysis results (as opposed to the dynamic constraints that can be supplied by
together with the results by the analysis module), and settings for visualization according to a cer-
tain structure. Examples of the proposed JSON file structure can be found in the distributed factory
meta configs, which can be viewed and downloaded through WAD-Admin.

2.1.3 wadconfig.ini, wadsetup.ini, and orthanc.json

For the WAD-QC framework to run correctly, several files are needed. These files are all created from
templates during installation by wad setup.

WAD-QC needs an initialized database for storing results and information regarding analysis mod-
ules, but also with access credentials for the data sources. This database is created automatically
by wad setup, and filled with the credentials from the file wadsetup.ini, which will be located at

12

$WADROOT/WAD QC/wadsetup.ini after installation. This ini file is needed only for the initial creation,
and for recreation after database truncation.

The Orthanc server needs a configuration file (detailing access rights and what plugins are avail-
able), which will be located at $WADROOT/orthanc/config/orthanc.json after installation. This file
is needed every time the Orthanc server is restarted.

wad setup will create the folder $WADROOT/pgsql/data for PostgreSQL to store its data and access
configuration. The location of this folder is needed every time the PostgreSQL database is restarted.
If for whatever reason the user has decided to store the PostgreSQL data in a different folder, the user
should make a symbolic link $WADROOT/pgsql/data to the real location; without that link wadservices

and WAD-Admin cannot access the WAD-QC database.

Finally, all elements of WAD-QC obtain access to the WAD-QC database through the credentials in
the file wadconfig.ini, which will be located at $WADROOT/WAD QC/wadconfig.ini.

2.1.4 separation between WAD-Admin and WAD-Dashboard

By intention, WAD-Admin and WAD-Dashboard are separated services. While WAD-Admin is an
essential part of WAD-QC 2.0, WAD-Dashboard is meant only as a demonstration of a possible
reporting tool for the analysis results, so that developers are provided with a way to visualize the
results.

2.1.5 integrity testing

For the core of WAD-QC 2.0, a whole set of unit tests for the separate components as well as an end-
test for the whole package is available. Such test do not exist yet for WAD-Admin, WAD-Dashboard,
and wad setup.

2.1.6 SQLite

Although SQLite is available as a tested option for the WAD-QC database, its usage is not recom-
mended. SQLite works best if only one user (e.g. Orthanc) can access the database at any one time;
simultaneous multi-user access to SQLite requires a lot of concurrency checks.

2.1.7 DICOM-tags

Using WAD-Admin to add selector rules to a selector, the list of tags to choose from seems only
small. Through the menu item ‘tags for selector rules’ under ‘Resources’, any DICOM tag can be
added to the list of options to pick. Note the special tag ‘RemoteAET’, which is not a real DICOM tag
but is very useful for selector rules.

2.1.8 features not yet implemented

dcm4chee For now, only the specific IO class for Orthanc has been written, using the REST api of
Orthanc. For dcm4chee a bit more work is needed, as there is no REST api available. A good solution
would be to write a generic PACS IO class for non-Orthanc PACS, which makes use of a separately
running DICOM receiver and supports standard Query/Retrieve tools, and to have a separate service
that queries the generic PACS for new studies. This will have an impact on performance and should
only be pursued if there is enough demand.

13

MySQL As only Orthanc is completely implemented in the WAD-QC 2.0 framework, and since Or-
thanc needs PostgreSQL as a database engine (or SQLite), PostgreSQL was picked as the database
of choice for WAD-QC. Although using different databases engines for WAD-QC and for Orthanc is
possible, it would add another service to the lists of running services, and thus another process to
manage. There are some plans by the developer of Orthanc to implement a MySQL back-end. When
that is available, MySQL could be implemented completely in WAD-QC 2.0 as well.

Wait for user input For some quality tests it can be necessary that the user supplies some extra
information, in addition to a new data set, before a test can be performed. In those cases the Proces-
sor should not start processing the job before all information is present. Because of a lack of proper
uses-cases for these kinds of tests at this time, it was not meaningful to implement this feature yet.

Fill SelectorRules from DICOM It would be nice to have an option when building SelectorRules to
pick DICOM tags and fill their accepted contents by selecting a DICOM image that should be picked
up by the selector.

Filters in config.json Selectors expect either a dcm study, or a dcm series, or a dcm instance. If
a dcm study is used as input, it might be nice to use filters in the module config to indicate what
dcm series of the dcm study should be used for a specific analysis. Although these filters are imple-
mented, they have not been tested yet because of a lack of proper uses-cases.

14

Chapter 3

Module guidelines

3.1 Analysis module

An analysis module is a stand-alone executable, that accept 3 parameters:

-c config file

-d study data folder

-r results output file

The study data folder should be a three level deep folder structure Study/Series/Instances, where
one study, but multiple series with multiple instances each are allowed.

The results output file is the name of the JSON file containing all the results of the analysis.

3.2 JSON files

WAD-QC 2.0 has adopted the JSON standard for files. In python terminology, JSON files are plain
text files to store lists, and dictionaries (and combinations thereof) of key-value pairs.

A few points of note for constructing a JSON file:

• The start and end of a list are marked with square brackets.

• The start and end of a dictionary are marked with curly brackets.

• All strings (including keys) are given as double quoted strings, regardless of the type of value
they represent, be it floating point numbers or strings or whatever.

• List elements and dictionary elements are separated by a comma, where a comma indicates
that a new element will follow. Therefore, do not leave a trailing comma after the last element
of a list or dictionary.

3.2.1 results.json

Figure 3.1 shows an example of a results.json file.

A results.json file contains a list of results. Each result is a dictionary, stating the name, the category
and the val of the result.

The name of a result is the identifier of the result, and can be picked at will.

15

The category of a result indicates in which table the result should be stored, and thus what kind
of constraints can be applied to that result. Valid categories are ‘float’, ‘string’, ‘bool’, ‘object’, and
‘datetime’.

The val of a result gives the value of named result.

1 [

2 {

3 "name": "MeanCenter",

4 "category": "float",

5 "val": "2.3433962264150945"

6 },

7 {

8 "name": "CTslice",

9 "category": "object",

10 "val": "/full/path/to/test.jpg"

11 },

12 {

13 "name": "pluginversion",

14 "category": "string",

15 "val": "20160902"

16 },

17 {

18 "name": "AcquisitionDateTime",

19 "category": "datetime",

20 "val": "2015-01-13 10:53:54"

21 },

22 {

23 "name": "CurrentModulation",

24 "category": "bool",

25 "val": "True",

26 "constraint_equals": "True"

27 }

28]

Figure 3.1: Example of a results.json file, showing the different types of results. Note the usage of
double quotes, brackets and commas.

3.2.2 module config

See Figure 3.2 for a module config example. A module config is a JSON file containing a dictionary
of keys ‘actions’ and ‘comments’. The values corresponding to these keys are again dictionaries.

actions A analysis module will choose the analysis function to apply (a so-called action) to a
provided dataset. An action is defined in the module config by a key in the actions dictionary. The
corresponding value is a dictionary of two dictionaries ‘filters’ and ‘params’. Multiple actions can be
applied to the same data, which will produce one results.json with all results combined.

In the ‘filters’ dictionary different DICOM tags with values can be supplied to select a subset of the
dataset as input for the action. For example, if a multi-series DICOM study is used as input for an
analysis module, a specific DICOM series can be picked from the DICOM study for a specific action,
based on the Series Description. WARNING: the usage of these filters has not been thoroughly
tested yet!

16

In the ‘params’ dictionary, values for run-time parameters can be supplied. If each param is defined
as a single value (i.e. not a list or dictionary) WAD-Admin can be used to modify the values of those
parameters. This means that it is up to the developer to provide a way to enter lists of values as a
single value. A possible solution is shown in Figure 3.2 line 13, where the x and y coordinates of a
point are provided as a single string containing a semi colon to separate the two values.

comments The developer is free to put whatever desired information about the analysis module
and this specific module config in a key-value format in the ‘comments’ dictionary. Please note that
the idea is that this information is somehow relevant for reproducing results, like the author of the file.
Other kinds of comments should be in the companion meta config file.

If a dictionary ‘params’ is supplied here, WAD-Admin will use that to display that info next to the
parameter, so that a user has some information on the meaning or allowed values of a param.

1 {

2 "actions": {

3 "acqdatetime": {

4 "filters": {},

5 "params": {}

6 },

7 "qc_series": {

8 "filters": {},

9 "params": {

10 "auto_suffix": true,

11 "linepair_type": "RXT02",

12 "pidmm": 70,

13 "xymm0.6": "-83.0;-25.0",

14 }

15 }

16 },

17 "comments": {

18 "author": "Arnold Schilham, UMCU",

19 "creator": "generate_config_json.py version 20160822",

20 "description": "DX/Normi13 module for Philips Digital Diagnost R3",

21 "params": {

22 "auto_suffix": "add suffix based on detector name to results",

23 "linepair_type": "must be RXT02 or typ38",

24 "pidmm": "distance between phantom and image detector",

25 "xymm0.6": "position of the dot in 0.6"

26 },

27 "version": "20160825"

28 }

29 }

Figure 3.2: Example of a module config JSON file, showing the usage of ‘actions’ and ‘comments’.
Note the usage of double quotes, brackets and commas.

3.2.3 meta config

The meta config is meant to be used by the reporting tool only, and should not contain any information
needed by the Processor. If WAD-Dashboard is used as the reporting tool, the format of Figure 3.3
is used. Please note that only if this format is used, WAD-Admin can be used to change the values

17

of the constraints. For all other changes WAD-Dashboard should be used. The reason to make this
mixed-up use of tools, is to provide a single page for altering the run-time parameters, action limits,
and selection rules of a selector; as most of those settings belong to the domain of WAD-Admin,
access to the action limits was put there as well.

A meta config is a JSON file containing a dictionary of keys ‘results’ and ‘comments’. The values for
‘comments’ and ‘results’ are again dictionaries.

comments The developer is free to put whatever desired information about this specific meta config
in a key-value format in the ‘comments’ dictionary.

results Each result is entered as a dictionary of information to be used when visualizing the data.
By default WAD-Dashboard only displays results that are mentioned by name in this dictionary. By
logging in as ‘root’ to WAD-Dashboard, results that are not named in this dictionary can be added to
the dictionary. Right now, the following information is supported:

name This is a required field and should match the name of a result as contained in the result.json.

display level This is a required field to indicate what user should be able to see this result: 0=admin,
1=key-user, 2=normal user.

display name An optional field to alter the name of the result when displaying.

display position An optional field to fix a certain order when displaying results. If not provided,
alphabetical ordering is used.

description An optional field to provide a more complete description of the result.

units An optional field to provide the units of the measurement value.

constraint equals An optional action limit to this result, meaning the measurement value should be
equal to this constraint value. Is applicable to all types of results, except objects.

constraint period An optional action limit to this result, meaning that this measurement should be
done once every x days, with x the constraint value. Is only applicable to DateTime results.

constraint minlowhighmax An optional list of action limits, stating the minimally allowed, the mini-
mally acceptable, the maximally acceptable and the maximally allowed value for the measure-
ment value. Is only applicable to Float results.

constraint refminlowhighmax An optional list of action limits, stating the reference value, and the
relative values for the minimally allowed, the minimally acceptable, the maximally acceptable
and the maximally allowed value for the measurement value. Is only applicable to Float results.

WAD-Dashboard can be used to change the information of ‘display level’, ‘display name’, ‘display position’,
‘description’, and ‘units’. Furthermore, WAD-Dashboard can be used to (temporarily) disable a con-
straint. The values of the constraints themselves can only be changed through WAD-Admin.

Note the constraints provided in the meta config are treated as static. Dynamic constraints should
be provided with the results themselves (as for example in Figure 3.1 line 26). If a constraint is given
both in meta config and in the results.json, the meta config values will be used.

18

1 {

2 "comments": {

3 "author": "Arnold Schilham, UMCU",

4 "creator": "generate_config_json.py version 20160822",

5 "description": "CT/QCCT_wadwrapper (QuickIQ) module for Philips iCT 256"

6 },

7 "results": {

8 "AcquisitionDateTime": {

9 "constraint_period": 14,

10 "description": "date and time of acquisition",

11 "display_level": 2,

12 "display_name": "DateTime",

13 "units": ""

14 },

15 "Patient Position": {

16 "constraint_equals": "HFS",

17 "display_level": 1

18 },

19 "Protocol Name": {

20 "display_level": 1,

21 "display_name": "Protocol HEAD"

22 },

23 "unif": {

24 "constraint_minlowhighmax": [

25 -3.5,

26 -2.5,

27 -0.5,

28 0.5

29],

30 "description": "Non-uniformity of phantom",

31 "display_level": 2,

32 "display_name": "Non-uniformity HEAD",

33 "units": "HU"

34 }

35 }

36 }

Figure 3.3: Example of a meta config JSON file, showing the different types of results. Note the
usage of double quotes, brackets and commas.

19

Chapter 4

API Layers

4.1 DBIO

To make WAD-QC 2.0 independent of a specific database engine, a dbIO layer was developed. A
minimal example for accessing the WAD-QC database is shown in Figure 4.1.

4.2 PACSIO

To make WAD-QC 2.0 independent of a specific PACS, a PACSIO layer was developed. For each
PACS type a wrapper providing the following functions must be provided:

• getSharedStudyHeaders(studyid)

• getSharedSeriesHeaders(seriesid)

• getInstanceHeaders(instanceid)

• getSeriesIds(studyid)

• getStudyIds(patientid=None)

• getPatientIds()

• getInstancesIds(seriesid)

• getStudyId(seriesid=None, instanceid=None)

• getData(data id, data type, dcmfolder)

• uploadDicomFile(filename)

• uploadDicomFolder(folder)

• deleteData(data id, data type)

Right now, this wrapper only exists for Orthanc.

20

1 from __future__ import print_function # python2 compatibility in python3

2 from os import path

3 from wad_qc.connection import dbio

4

5 def test(selname=None):

6 """

7 dump some results values of a selector

8 """

9 # get a selector

10 if selname is None:

11 selname = dbio.DBSelectors.get().name # get the name of the first one

12 print("test for {}".format(selname))

13

14 # find the selector in the dbase as the first match with this name

15 sel = dbio.DBSelectors.get(dbio.DBSelectors.name==selname)

16

17 # get all results for this selector

18 results = sel.results

19

20 # dump the name and the value of all float results

21 print("res_i, float_i, name, value")

22 for i,res in enumerate(results): # loop over all results

23 for f,val in enumerate(res.floats): # loop over all floatresults

24 print(i, f, val.name, val.val)

25

26

27 # __main__

28 # construct the full path to the INIFILE needed for WAD-QC db access

29 wadqcfolder = path.expanduser(path.join("~","WADROOT","WAD_QC"))

30 inifile = path.join(wadqcfolder,"wadconfig.ini")

31

32 # open connection to db

33 try:

34 dbio.db_connect(inifile)

35 except Exception as e:

36 raise RuntimeError("Cannot connect to WAD-QC database")

37

38 test(selname="Normi13")

Figure 4.1: Example of a accessing the WAD-QC database through the dbIO layer.

21

Bibliography

[1] S. Jodogne, Orthanc: open-source lightweight DICOM server, http://www.orthanc-server.com

[2] C. Leifer, peewee: a simple and small ORM, http://docs.peewee-orm.com

[3] A. Ronacher, Flask: a microframework for Python based on Werkzeug, Jinja2 and good inten-
tions, http://flask.pocoo.org

[4] Continuum Analytics, conda: open source cross-platform packaging system http://conda.

pydata.org

[5] BigSQL Corp, BigSQL: an open-source developer-friendly distribution of PostgreSQL binaries,
http://bigsql.org

22

http://www.orthanc-server.com
http://docs.peewee-orm.com
http://flask.pocoo.org
http://conda.pydata.org
http://conda.pydata.org
http://bigsql.org

	Design
	Basic requirements
	Overview of WAD-QC 2.0
	Data flow
	Data sources
	Parallel jobs
	IO layers
	WAD-QC database
	WAD-Admin
	WAD-Dashboard

	Main changes and new features with regard to WAD-QC 1.0
	Implementation changes
	Module config changes
	Module changes
	Results changes
	Added features

	WAD-QC Database

	Implementation details
	Specific implementation details
	module_config.json
	meta_config.json
	wadconfig.ini, wadsetup.ini, and orthanc.json
	separation between WAD-Admin and WAD-Dashboard
	integrity testing
	SQLite
	DICOM-tags
	features not yet implemented

	Module guidelines
	Analysis module
	JSON files
	results.json
	module_config
	meta_config

	API Layers
	DBIO
	PACSIO

