Source

ITE / code / shared / embedded / ann_wrapperM / @ann / private / kd_tree.cpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//----------------------------------------------------------------------
// File:			kd_tree.cpp
// Programmer:		Sunil Arya and David Mount
// Description:		Basic methods for kd-trees.
// Last modified:	01/04/05 (Version 1.0)
//----------------------------------------------------------------------
// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
// David Mount.  All Rights Reserved.
// 
// This software and related documentation is part of the Approximate
// Nearest Neighbor Library (ANN).  This software is provided under
// the provisions of the Lesser GNU Public License (LGPL).  See the
// file ../ReadMe.txt for further information.
// 
// The University of Maryland (U.M.) and the authors make no
// representations about the suitability or fitness of this software for
// any purpose.  It is provided "as is" without express or implied
// warranty.
//----------------------------------------------------------------------
// History:
//	Revision 0.1  03/04/98
//		Initial release
//	Revision 1.0  04/01/05
//		Increased aspect ratio bound (ANN_AR_TOOBIG) from 100 to 1000.
//		Fixed leaf counts to count trivial leaves.
//		Added optional pa, pi arguments to Skeleton kd_tree constructor
//			for use in load constructor.
//		Added annClose() to eliminate KD_TRIVIAL memory leak.
//----------------------------------------------------------------------

#include "kd_tree.h"					// kd-tree declarations
#include "kd_split.h"					// kd-tree splitting rules
#include "kd_util.h"					// kd-tree utilities
#include "ANNperf.h"				// performance evaluation

//----------------------------------------------------------------------
//	Global data
//
//	For some splitting rules, especially with small bucket sizes,
//	it is possible to generate a large number of empty leaf nodes.
//	To save storage we allocate a single trivial leaf node which
//	contains no points.  For messy coding reasons it is convenient
//	to have it reference a trivial point index.
//
//	KD_TRIVIAL is allocated when the first kd-tree is created.  It
//	must *never* deallocated (since it may be shared by more than
//	one tree).
//----------------------------------------------------------------------
static int				IDX_TRIVIAL[] = {0};	// trivial point index
ANNkd_leaf				*KD_TRIVIAL = NULL;		// trivial leaf node

//----------------------------------------------------------------------
//	Printing the kd-tree 
//		These routines print a kd-tree in reverse inorder (high then
//		root then low).  (This is so that if you look at the output
//		from the right side it appear from left to right in standard
//		inorder.)  When outputting leaves we output only the point
//		indices rather than the point coordinates. There is an option
//		to print the point coordinates separately.
//
//		The tree printing routine calls the printing routines on the
//		individual nodes of the tree, passing in the level or depth
//		in the tree.  The level in the tree is used to print indentation
//		for readability.
//----------------------------------------------------------------------

void ANNkd_split::print(				// print splitting node
		int level,						// depth of node in tree
		ostream &out)					// output stream
{
	child[ANN_HI]->print(level+1, out);	// print high child
	out << "    ";
	for (int i = 0; i < level; i++)		// print indentation
		out << "..";
	out << "Split cd=" << cut_dim << " cv=" << cut_val;
	out << " lbnd=" << cd_bnds[ANN_LO];
	out << " hbnd=" << cd_bnds[ANN_HI];
	out << "\n";
	child[ANN_LO]->print(level+1, out);	// print low child
}

void ANNkd_leaf::print(					// print leaf node
		int level,						// depth of node in tree
		ostream &out)					// output stream
{

	out << "    ";
	for (int i = 0; i < level; i++)		// print indentation
		out << "..";

	if (this == KD_TRIVIAL) {			// canonical trivial leaf node
		out << "Leaf (trivial)\n";
	}
	else{
		out << "Leaf n=" << n_pts << " <";
		for (int j = 0; j < n_pts; j++) {
			out << bkt[j];
			if (j < n_pts-1) out << ",";
		}
		out << ">\n";
	}
}

void ANNkd_tree::Print(					// print entire tree
		ANNbool with_pts,				// print points as well?
		ostream &out)					// output stream
{
	out << "ANN Version " << ANNversion << "\n";
	if (with_pts) {						// print point coordinates
		out << "    Points:\n";
		for (int i = 0; i < n_pts; i++) {
			out << "\t" << i << ": ";
			annPrintPt(pts[i], dim, out);
			out << "\n";
		}
	}
	if (root == NULL)					// empty tree?
		out << "    Null tree.\n";
	else {
		root->print(0, out);			// invoke printing at root
	}
}

//----------------------------------------------------------------------
//	kd_tree statistics (for performance evaluation)
//		This routine compute various statistics information for
//		a kd-tree.  It is used by the implementors for performance
//		evaluation of the data structure.
//----------------------------------------------------------------------

#define MAX(a,b)		((a) > (b) ? (a) : (b))

void ANNkdStats::merge(const ANNkdStats &st)	// merge stats from child 
{
	n_lf += st.n_lf;			n_tl += st.n_tl;
	n_spl += st.n_spl;			n_shr += st.n_shr;
	depth = MAX(depth, st.depth);
	sum_ar += st.sum_ar;
}

//----------------------------------------------------------------------
//	Update statistics for nodes
//----------------------------------------------------------------------

const double ANN_AR_TOOBIG = 1000;				// too big an aspect ratio

void ANNkd_leaf::getStats(						// get subtree statistics
	int					dim,					// dimension of space
	ANNkdStats			&st,					// stats (modified)
	ANNorthRect			&bnd_box)				// bounding box
{
	st.reset();
	st.n_lf = 1;								// count this leaf
	if (this == KD_TRIVIAL) st.n_tl = 1;		// count trivial leaf
	double ar = annAspectRatio(dim, bnd_box);	// aspect ratio of leaf
												// incr sum (ignore outliers)
	st.sum_ar += float(ar < ANN_AR_TOOBIG ? ar : ANN_AR_TOOBIG);
}

void ANNkd_split::getStats(						// get subtree statistics
	int					dim,					// dimension of space
	ANNkdStats			&st,					// stats (modified)
	ANNorthRect			&bnd_box)				// bounding box
{
	ANNkdStats ch_stats;						// stats for children
												// get stats for low child
	ANNcoord hv = bnd_box.hi[cut_dim];			// save box bounds
	bnd_box.hi[cut_dim] = cut_val;				// upper bound for low child
	ch_stats.reset();							// reset
	child[ANN_LO]->getStats(dim, ch_stats, bnd_box);
	st.merge(ch_stats);							// merge them
	bnd_box.hi[cut_dim] = hv;					// restore bound
												// get stats for high child
	ANNcoord lv = bnd_box.lo[cut_dim];			// save box bounds
	bnd_box.lo[cut_dim] = cut_val;				// lower bound for high child
	ch_stats.reset();							// reset
	child[ANN_HI]->getStats(dim, ch_stats, bnd_box);
	st.merge(ch_stats);							// merge them
	bnd_box.lo[cut_dim] = lv;					// restore bound

	st.depth++;									// increment depth
	st.n_spl++;									// increment number of splits
}

//----------------------------------------------------------------------
//	getStats
//		Collects a number of statistics related to kd_tree or
//		bd_tree.
//----------------------------------------------------------------------

void ANNkd_tree::getStats(						// get tree statistics
	ANNkdStats			&st)					// stats (modified)
{
	st.reset(dim, n_pts, bkt_size);				// reset stats
												// create bounding box
	ANNorthRect bnd_box(dim, bnd_box_lo, bnd_box_hi);
	if (root != NULL) {							// if nonempty tree
		root->getStats(dim, st, bnd_box);		// get statistics
		st.avg_ar = st.sum_ar / st.n_lf;		// average leaf asp ratio
	}
}

//----------------------------------------------------------------------
//	kd_tree destructor
//		The destructor just frees the various elements that were
//		allocated in the construction process.
//----------------------------------------------------------------------

ANNkd_tree::~ANNkd_tree()				// tree destructor
{
	if (root != NULL) delete root;
	if (pidx != NULL) delete [] pidx;
	if (bnd_box_lo != NULL) annDeallocPt(bnd_box_lo);
	if (bnd_box_hi != NULL) annDeallocPt(bnd_box_hi);
}

//----------------------------------------------------------------------
//	This is called with all use of ANN is finished.  It eliminates the
//	minor memory leak caused by the allocation of KD_TRIVIAL.
//----------------------------------------------------------------------
void annClose()				// close use of ANN
{
	if (KD_TRIVIAL != NULL) {
		delete KD_TRIVIAL;
		KD_TRIVIAL = NULL;
	}
}

//----------------------------------------------------------------------
//	kd_tree constructors
//		There is a skeleton kd-tree constructor which sets up a
//		trivial empty tree.	 The last optional argument allows
//		the routine to be passed a point index array which is
//		assumed to be of the proper size (n).  Otherwise, one is
//		allocated and initialized to the identity.	Warning: In
//		either case the destructor will deallocate this array.
//
//		As a kludge, we need to allocate KD_TRIVIAL if one has not
//		already been allocated.	 (This is because I'm too dumb to
//		figure out how to cause a pointer to be allocated at load
//		time.)
//----------------------------------------------------------------------

void ANNkd_tree::SkeletonTree(			// construct skeleton tree
		int n,							// number of points
		int dd,							// dimension
		int bs,							// bucket size
		ANNpointArray pa,				// point array
		ANNidxArray pi)					// point indices
{
	dim = dd;							// initialize basic elements
	n_pts = n;
	bkt_size = bs;
	pts = pa;							// initialize points array

	root = NULL;						// no associated tree yet

	if (pi == NULL) {					// point indices provided?
		pidx = new ANNidx[n];			// no, allocate space for point indices
		for (int i = 0; i < n; i++) {
			pidx[i] = i;				// initially identity
		}
	}
	else {
		pidx = pi;						// yes, use them
	}

	bnd_box_lo = bnd_box_hi = NULL;		// bounding box is nonexistent
	if (KD_TRIVIAL == NULL)				// no trivial leaf node yet?
		KD_TRIVIAL = new ANNkd_leaf(0, IDX_TRIVIAL);	// allocate it
}

ANNkd_tree::ANNkd_tree(					// basic constructor
		int n,							// number of points
		int dd,							// dimension
		int bs)							// bucket size
{  SkeletonTree(n, dd, bs);  }			// construct skeleton tree

//----------------------------------------------------------------------
//	rkd_tree - recursive procedure to build a kd-tree
//
//		Builds a kd-tree for points in pa as indexed through the
//		array pidx[0..n-1] (typically a subarray of the array used in
//		the top-level call).  This routine permutes the array pidx,
//		but does not alter pa[].
//
//		The construction is based on a standard algorithm for constructing
//		the kd-tree (see Friedman, Bentley, and Finkel, ``An algorithm for
//		finding best matches in logarithmic expected time,'' ACM Transactions
//		on Mathematical Software, 3(3):209-226, 1977).  The procedure
//		operates by a simple divide-and-conquer strategy, which determines
//		an appropriate orthogonal cutting plane (see below), and splits
//		the points.  When the number of points falls below the bucket size,
//		we simply store the points in a leaf node's bucket.
//
//		One of the arguments is a pointer to a splitting routine,
//		whose prototype is:
//		
//				void split(
//						ANNpointArray pa,  // complete point array
//						ANNidxArray pidx,  // point array (permuted on return)
//						ANNorthRect &bnds, // bounds of current cell
//						int n,			   // number of points
//						int dim,		   // dimension of space
//						int &cut_dim,	   // cutting dimension
//						ANNcoord &cut_val, // cutting value
//						int &n_lo)		   // no. of points on low side of cut
//
//		This procedure selects a cutting dimension and cutting value,
//		partitions pa about these values, and returns the number of
//		points on the low side of the cut.
//----------------------------------------------------------------------

ANNkd_ptr rkd_tree(				// recursive construction of kd-tree
	ANNpointArray		pa,				// point array
	ANNidxArray			pidx,			// point indices to store in subtree
	int					n,				// number of points
	int					dim,			// dimension of space
	int					bsp,			// bucket space
	ANNorthRect			&bnd_box,		// bounding box for current node
	ANNkd_splitter		splitter)		// splitting routine
{
	if (n <= bsp) {						// n small, make a leaf node
		if (n == 0)						// empty leaf node
			return KD_TRIVIAL;			// return (canonical) empty leaf
		else							// construct the node and return
			return new ANNkd_leaf(n, pidx); 
	}
	else {								// n large, make a splitting node
		int cd;							// cutting dimension
		ANNcoord cv;					// cutting value
		int n_lo;						// number on low side of cut
		ANNkd_node *lo, *hi;			// low and high children

										// invoke splitting procedure
		(*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo);

		ANNcoord lv = bnd_box.lo[cd];	// save bounds for cutting dimension
		ANNcoord hv = bnd_box.hi[cd];

		bnd_box.hi[cd] = cv;			// modify bounds for left subtree
		lo = rkd_tree(					// build left subtree
				pa, pidx, n_lo,			// ...from pidx[0..n_lo-1]
				dim, bsp, bnd_box, splitter);
		bnd_box.hi[cd] = hv;			// restore bounds

		bnd_box.lo[cd] = cv;			// modify bounds for right subtree
		hi = rkd_tree(					// build right subtree
				pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1]
				dim, bsp, bnd_box, splitter);
		bnd_box.lo[cd] = lv;			// restore bounds

										// create the splitting node
		ANNkd_split *ptr = new ANNkd_split(cd, cv, lv, hv, lo, hi);

		return ptr;						// return pointer to this node
	}
} 

//----------------------------------------------------------------------
// kd-tree constructor
//		This is the main constructor for kd-trees given a set of points.
//		It first builds a skeleton tree, then computes the bounding box
//		of the data points, and then invokes rkd_tree() to actually
//		build the tree, passing it the appropriate splitting routine.
//----------------------------------------------------------------------

ANNkd_tree::ANNkd_tree(					// construct from point array
	ANNpointArray		pa,				// point array (with at least n pts)
	int					n,				// number of points
	int					dd,				// dimension
	int					bs,				// bucket size
	ANNsplitRule		split)			// splitting method
{
	SkeletonTree(n, dd, bs);			// set up the basic stuff
	pts = pa;							// where the points are
	if (n == 0) return;					// no points--no sweat

	ANNorthRect bnd_box(dd);			// bounding box for points
	annEnclRect(pa, pidx, n, dd, bnd_box);// construct bounding rectangle
										// copy to tree structure
	bnd_box_lo = annCopyPt(dd, bnd_box.lo);
	bnd_box_hi = annCopyPt(dd, bnd_box.hi);

	switch (split) {					// build by rule
	case ANN_KD_STD:					// standard kd-splitting rule
		root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split);
		break;
	case ANN_KD_MIDPT:					// midpoint split
		root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split);
		break;
	case ANN_KD_FAIR:					// fair split
		root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split);
		break;
	case ANN_KD_SUGGEST:				// best (in our opinion)
	case ANN_KD_SL_MIDPT:				// sliding midpoint split
		root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split);
		break;
	case ANN_KD_SL_FAIR:				// sliding fair split
		root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_fair_split);
		break;
	default:
		annError("Illegal splitting method", ANNabort);
	}
}
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.