MATH 136 Solutions Assignment 3 Fall/05

October 6, 2005

Following are the solutions. Most of the solutions are given using MATLAB.
However, you are not required to use MATLAB for these assignments.
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12 marks
Solution.

(a) TRUE
Justification: Matrix-vector multiplication Az is equivalent to the
linear combination 2?21 xia;, where the vectors a; are the columns



of A, A = (a1 ... an). Hence the matrix equation Az = b can be
equivalently represented as E?zl xria; = b.

(b) TRUE

Justification: Consider a linear combination of vectors
a1+ ...+ apvy,

If we denote x; = a; and a; = v;, then this combination is equivalent

to 2?21 x;a;, which can be written as Ax, where A = (a1 .. an).
(c) TRUE

Justification: See Theorem 3 on page 42.
(d) TRUE

Justification: If Az = b is inconsistent, it means that there exists no
x such that b can be represented as 2?21 x;a;, where a;’s are the
columns of A, i.e. this means that b can not be represented as a
linear combination of the columns of A. This is, however, equivalent
to say that b is not in the span of these columns by definition of the

span.
(e) FALSE
Justification: Consider, for example, the augmented matrix [A z]
such that:
10 0 1
0 1 0 1
0 0 1 1

It has a pivot in each row, but it is consistent and has a solution.

(f) TRUE

Justification: By Theorem 4 on page 43 it follows that if Theorem 4
part (c) is false (i.e. columns of A do not span R™) then Theorem 4
part (a) is also false, which means that there exists a vector b € R™
such that Az = b is not consistent.

Note, that the negation of the statement (a) of the theorem is not
read as "every vector b”, but rather states the existence of at least
one.

2 page 48 #26

3 marks
Solution.
The matrix equation can be rewritten in the following way:

7 3 6
1|2 42 |1 ] =11
5 3 0



and substituting for the u, v and w, we get
iU+ Tov = w

or
1w + x2v — w = 0.

=

By comparing the coeffients, we obtain z; = 3 and z9 = —5.

3 page 49 #40

3 marks
Solution.
Perform the row reduction, the columns span R* if and only if each row has a
pivot. The MATLAB program is as following;:

A=[8 11 -6 -7 13

-7 -8 56 -9

11 7 -7 -9 -6

-34187]
ACL,:)=A(1,:)/4A(1,1)
AC2,:)=4(2,:)-A(2,1)*A(1,:)
A(3,:)=A(3,:)-A(3,1)*A(1,:)
AC4,:)=A(4,:)-A(4,1)*A(1,:)
A(2,:)=4(2,:)/4(2,2)
A(3,:)=4(3,:)-A(3,2)*A(2,:)
AC4,:)=A(4,:)-A(4,2)*A(2,:)
A(3,:)=A(3,:)/4(3,3)
A(4,:)=A(4,:)-A(4,3)*A(3,:)
A(4,:)=A(4,:)/4(4,4)

The result is:

A=
8 11 -6 =7 13
-7 -8 5 6 -9
11 7 -7 -9 -6
-3 4 1 8 7
A=

1.0000 1.3750 -0.7500 -0.8750 1.6250
-7.0000 -8.0000 5.0000 6.0000 -9.0000
11.0000 7.0000 -7.0000 -9.0000 -6.0000
-3.0000 4.0000 1.0000 8.0000 7.0000
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0
11.0000
-3.0000
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0 0 0 0 -12.0000

0 0 0 6.0000 0
Warning: Divide by zero.(Type "warning off MATLAB:
divideByZero'" to suppress this warning.)

This result shows that A(3,3) becomes zero, but we still could choose A(3,5)
and A(4,4) as a pivot. Since each row has a pivot, we conclude that the columns
of A span R*,
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3 marks
Solution.
In the solution of #40, we can see that the third column is not a pivot column,
so we could delete the third column. Now each column has a pivot, so we can’t
delete more columns.
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3 marks
Solution.
We reduce the augmented matrix to the echelon form; the MATLAB program
is as follows:

A=[1 3 -5 0

14-80

-3 -7 9 0]
A(1,:)=A(1,:)/A(1,1)
AC2,:)=4(2,:)-A(2,1)*A(1,:)
A(3,:)=A(3,:)-A(3,1)*A(1,:)
A(2,:)=4(2,:)/4(2,2)
A(3,:)=A(3,:)-A(3,2)*A(2,:)
A(3,:)=A(3,:)/4(3,3)

A=
1 3 -5 0
1 4 -8 0
-3 -7 9 0

A=
1 3 -5 0
1 4 -8 0
-3 -7 9 0



1 -5 0
1 -3 0
-3 -7 9 0
A=
1 -5 0
1 -3 0
0 -6 0
A=
1 -5 0
1 -3 0
0 -6 0
A=
1 -5 0
1 -3 0
0 0 0

Warning: Divide by zero.
(Type "warning off MATLAB:divideByZero" to suppress this warning.)

We can then convert it into the reduced echelon form:

1 0 4 0
A=1]10 1 -3 0
00 0 O
Then the solution has the form:
1 —41‘3 —4
r=\|za| = | 323 | =23 | 3
z3 x3 0
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3 marks



Solution.
First exchange the rows 1 and 2, and the MATLAB program is:

A=[1 -2 60

-5 7 9 0]
ACL,:)=A(1,:)/A(1,1)
A(2,:)=A(2,:)-4(2,1)*A(1,:)
A(2,:)=A(2,:)/A4(2,2)
A(1,:)=A(1,:)-4(1,2)*A(2,:)

The result is:

A=
1 -2 6 0
-5 7 9 0
A=
1 -2 6 0
-5 7 9 0
A=
1 -2 6 0
-3 39 0
A=
1 -2 6 0
1 -13 0
A=
1 0 -20 0
1 -13 0

Hence we obtain the solution:

1 20x3 20
r= x| = | 1323 )] =23 | 13
I3 3 1
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3 marks
Solution.
1 0 3
_ ) _ 8 1
= 3 - 2 T -5
T4 0 1
8 page 56 #34
3 marks

Solution.
By inspection, we can see that the second column is —1.5 times of the first
column, so we can take the vector

(-0

as a non-trivial solution (you can verify that it is indeed a solution).



