
MATH 128 = Calculus 2 for the Sciences, Fall 2006
Assignment 7 SOLUTIONS

DueWednesday, November 8in Drop Box 9 before class

To receive full marks, correct answers must be fully justified.

To assist you, possible convergence tests are noted using the following abbreviations:

Divergence Test=DT, Integral Test=IT, Comparison Test=CT,
Limit Comparison Test=LCT, Ratio Test=RT, Alternating Series Test=AST.

Not all valid tests/methods are necessarily listed for each problem.
State which test you use and explain all steps.

1. Determine whether the following series converge or diverge.

(a)
∑∞

n=1
n+e
n2 (LCT, CT, or expand)

Solution (LCT) : Sincean = n+e
n2 ≈ n

n2 = 1
n for largen, let bn = 1

n. Sincean
bn

=
n+e
n2
1
n

= n+e
n = 1+ e

n →
1 > 0 asn→ ∞, and since

∑
bn is a divergent p-series (p = 1), then

∑
an is also divergent, by the

LCT.

Solution (CT): Sincen+ e> n⇒ n+e
n2 > n

n2 = 1
n, and since

∑ 1
n is a divergent p-series (p=1), then∑ n+e

n2 diverges by the CT.

Solution (expand): Since
∑ n+e

n2 =
∑ 1

n + e
n2 =

∑ 1
n +

∑ e
n2 is the sum of a divergent p-series (p=1)

and a convergent p-series (p=2), respectively, the given series is divergent.

(b)
∑∞

n=2
1

n(ln n)3 (IT)

Solution (IT) : Let f (x) = 1
x(ln x)3 so thatan = f (n). For x ≥ 2, f (x) is positive and continuous. We

can see thatf (x) must be decreasing since, asx increases, lnx increases, so then must the product
x(ln x)3 increase. Therefore, the reciprocal 1/(x(ln x)3) must decrease. Or, we can provef (x) is
decreasing by examining the derivative off (x):

f ′(x) = d
dx(x(ln x)3)−1 = −

[
x((ln x)3)−2 ·

(
(ln x)3 + 3x(ln x)2 · 1

x

)]
< 0

(all terms inside the square brackets [ ] are positive).

With the substitutionu = ln x⇒ du = dx
x we have:

∫ ∞

2
f (x) dx =

∫ ∞

2

dx

x(ln x)3
=

∫ ∞

ln 2

du

u3
= lim

b→∞

[
− 1

2u2

]b

ln 2
= lim

b→∞

(
− 1

2b2
+

1
2(ln 2)2

)
=

1
2(ln 2)2

Since
∫ ∞
2

f (x) dx converges, then
∑∞

n=2 an also converges, by the IT.
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(c)
∑∞

n=1
n!
3n (DT or RT)

Solution (DT): Sincen!
3n → ∞ asn→ ∞ (see Assignment 6), then

∑∞
n=1

n!
3n diverges by the DT.

Solution (RT): Let an = n!
3n . Then an+1

an
=

(n+1)!
3n+1

n!
3n

=
(n+1)!3n

3n+1n! = n+1
3 → ∞ > 1 asn→ ∞, so

∑∞
n=1 an

diverges by the RT.

(d)
∑∞

n=1
1

4n+4n (CT or RT)

Solution (CT): Since 4n + 4n > 4n ⇒ 1
4n+4n < 1

4n , and since
∑ 1

4n =
∑(

1
4

)n
is a convergent

geometric series (r = 1
4 < 1), then

∑∞
n=1

1
4n+4n converges by the CT.

Solution (RT): Let an = 1
4n+4n. Then

an+1

an
=

1
4n+1+4(n+1)

1
4n+4n

=
4n + 4n

4n+1 + 4(n + 1)
=

4n + 4n
4(4n + n + 1)

1
4n

1
4n

=
1 + 4n

4n

4
(
1 + 4n

4n + 1
4n

) → 1
4
< 1 as n→ ∞,

so
∑∞

n=1 an converges by the RT.

(e)
∑∞

n=1
3n

n! (RT)

Solution (RT): Let an = 3n

n! . Then an+1
an

=
3n+1
(n+1)!

3n
n!

= 3n+1n!
(n+1)!3n = 3

n+1 → 0 < 1 asn→ ∞, so
∑∞

n=1 an

converges by the RT.

(f)
∑∞

n=1
sinn
en (CT)

Solution (CT): Since| sinn| ≤ 1 for all n ≥ 1, then|an| =
∣∣∣ sinn

en

∣∣∣ ≤ 1
en , and since

∑ 1
en =

∑(
1
e

)n
is a

convergent geometric series (r = 1/e< 1), then
∑∞

n=1

∣∣∣ sinn
en

∣∣∣ converges by the CT. Then
∑∞

n=1 an is
absolutely convergent and thus convergent.

(g)
∑∞

n=1
(ln n)2

n (CT or IT)

Solution (CT): For n ≥ 3, lnn > 1 ⇒ (ln n)2 > 12 = 1 ⇒ (ln n)2

n > 1
n, and since

∑∞
n=3

1
n is a

divergent p-series (p=1),
∑∞

n=3
(ln n)2

n also diverges, by the CT. Thus
∑∞

n=1
(ln n)2

n =
∑2

n=1
(ln n)2

n +
∑∞

n=3
(ln n)2

n also diverges.

Solution (IT) : Let f (x) =
(ln x)2

x so thatan = f (n). For x ∈ (1,∞), f (x) is positive and continuous.
We consider the derivative off (x) to determine whetherf (x) is decreasing:

f ′(x) =
(2(ln x) · 1

x)x− (ln x)2 · 1
x2

=
ln x(2− ln x)

x2
< 0⇔ 2− ln x < 0⇒ 2 < ln x⇒ x > e2.

Thus, the IT can be used forx > e2. We must choose the next highest integer valuek for x (to
correspond to the indexn of the series):

• Without a calculator: since 2< e< 3⇒ e2 < 9 = k.

• With a calculator: sincee2 ≈ 7.4⇒ k = 8.

Hence we apply the IT forx ∈ [k,∞) to draw conclusions for the corresponding series
∑∞

n=k
(ln n)2

n .{
Note: since

∑k
n=1

(ln n)2

n is finite, our IT conclusion regarding
∑∞

n=k
(ln n)2

n will also apply to
∑∞

n=1
(ln n)2

n .
}

With the substitutionu = ln x⇒ du = dx
x and fork = 8 or 9, we have:

∫ ∞

k
f (x) dx =

∫ ∞

k

(ln x)2

x
dx =

∫ ∞

ln k
u2 du = lim

b→∞

[
u3

3

]b

ln k
= lim

b→∞

(
b3

3
− (ln k)3

3

)
→ ∞.

Since
∫ ∞
k

f (x) dx diverges, so does
∑∞

n=k
(ln n)2

n , by the IT. Therefore,
∑∞

n=1
(ln n)2

n also diverges.
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(h)
∑∞

n=1
n!
nn (CT or RT)

Solution (CT): Since

an =
n!
n

=
1 · 2 · 3 · · · (n− 1) · n

n · n · n · · ·n · n ≤ 1
n
· 2

n
· 1 · 1 · · · 1 =

2
n2

for n ≥ 2

(since3
n,

4
n, . . . ,

n−1
n , n

n are each less than or equal to 1 whenn ≥ 2) and since
∑ 2

n2 is a convergent
p-series (p=2), then

∑∞
n=2

n!
nn converges by the CT. Therefore,

∑∞
n=1

n!
nn = 1 +

∑∞
n=2

n!
nn is also

convergent.

Solution (RT): Let an = n!
nn . Then

an+1

an
=

(n+1)!
(n+1)n+1

n!
nn

=
(n + 1)!nn

(n + 1)n+1n!
=

(n + 1)n!nn

(n + 1)(n + 1)nn!
=

nn

(n + 1)n
=


n

n + 1
·

1
n
1
n


n

=
1(

1 + 1
n

)n →
1
e
< 1

asn→ ∞. Hence
∑∞

n=1 an converges by the RT.

2. Determine whether the following series converge absolutely, converge conditionally, or di-
verge.

(a)
∑∞

n=1
(−1)n+1
√

n(n+1)
(AST and LCT)

Solution (AST + LCT) : Let an =
(−1)n+1
√

n(n+1)
. Then|an| = 1√

n(n+1)
. Sincen(n + 1) is increasing for

n ≥ 1 and since
√· is an increasing function, then the sequence{|an|} decreases to 0 asn → ∞.

Thus,
∑

an converges by the AST. Since|an| = 1√
n(n+1)

≈ 1√
n2

= 1
n, let bn = 1

n. Since

|an|
bn

=

1√
n(n+1)

1
n

=
n√

n2 + n
=

n√
n2 + n

1
n
1
n

=
1√
n2+n

n2

=
1√

1 + 1
n

→ 1 > 0 as n→ ∞,

and
∑

bn is a divergent p-series (p=1), then
∑ |an| diverges by the LCT. Thus,

∑
an converges

conditionally.

(b)
∑∞

n=1
(−5)n

42n+1 (AST or RT)

Solution (absolute convergence): Let an =
(−5)n

42n+1 =
(−1)n5n

4(16)n =
(−1)n

4

(
5
16

)n
. Then |an| = 1

4

(
5
16

)n
.

Since
∑ |an| is a convergent geometric series (r = 5/16< 1), then

∑
an converges absolutely.

Solution (AST): Let an =
(−5)n

42n+1 =
(−1)n5n

4(16)n =
(−1)n

4

(
5
16

)n
. Then|an| = 1

4

(
5
16

)n
. Since the sequence

{|an|} decreases to 0 asn → ∞, then
∑

an converges by the AST. Since
∑ |an| is a convergent

geometric series (r = 5/16< 1), then
∑

an converges absolutely.

Solution (RT): Let an =
(−5)n

42n+1 =
(−1)n5n

4(16)n =
(−1)n

4

(
5
16

)n
. Then

∣∣∣∣an+1
an

∣∣∣∣ =

∣∣∣∣∣∣
(−1)n+1

4

(
5
16

)n+1

(−1)n
4

(
5
16

)n

∣∣∣∣∣∣ = 5
16 < 1, hence

∑
an converges absolutely by the RT.

(c)
∑∞

n=1
(−1)n

2 4√n
(AST)

Solution (AST): Let an =
(−1)n

2 4√n
. Since the sequence{|an|} decreases to 0 asn → ∞, then

∑
an

converges by the AST. The series
∑ |an| is a divergent p-series (p=1/4), hence

∑
an converges

conditionally.
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(d)
∑∞

n=1
(−1)nn!

3n (DT or RT)
{

Note: AST does not apply, since the terms of the sequence
{∣∣∣∣ (−1)nn!

3n

∣∣∣∣
}

do not tend to 0 asn→ ∞.
}

Solution (DT): Let an =
(−1)nn!

3n . Then|an| → ∞ asn→ ∞ (see #1(c)). Since|an| does not tend to
0, thenan does not tend to 0. Thus,

∑
an diverges by the DT.

Solution (RT): Let an =
(−1)nn!

3n . Then
∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣∣
(−1)n+1(n+1)!

3n+1
(−1)nn!

3n

∣∣∣∣∣∣∣ =
∣∣∣∣ (−1)n+1(n+1)!3n

(−1)nn!3n+1

∣∣∣∣ = n+1
3 → ∞ asn→ ∞.

Therefore,
∑

an diverges by the RT.

Bonus Question
Suppose you are offered the choice between the following four deals, where you get the following
specific dollar amounts on the day indicated. Assume the deal lasts forever.

Deal # Day 1 Day 2 Day 3 Day 4 . . .

1 $1 $0.50 1
4 of $1 1

8 of $1 . . .

2 $1 $0.50 1
3 of $1 1

4 of $1 . . .

3 $1 $0.50 1
6 of $1 1

24 of $1 . . .

4 $1 $0.25 1
9 of $1 1

16 of $1 . . .

Which deal should you choose to en-
sure you receive an infinite amount of
money? Justify your answer.

Solution:

Deal 1: 1 + 1
2 + 1

4 + 1
8 + . . . + 1

2n + . . . =
∑∞

n=0
1
2n =

∑∞
n=0

(
1
2

)n
, a convergent geometric series (r=1/2)

whose sum is 1
1− 1

2
= 2. So, Deal 1 yields a maximum of $2.

Deal 2: 1+ 1
2 + 1

3 + 1
4 + . . .+ 1

n + . . . =
∑∞

n=1
1
n, a divergent p-series (p=1). So, Deal 2 yields an infinite

amount of money.

Deal 3: 1 + 1
2 + 1

6 + 1
24 + . . . + 1

n! + . . . =
∑∞

n=1
1
n! . We can determine the convergence of this series

using the RT. Letan = 1
n! . Thenan+1

an
=

1
(n+1)!

1
n!

= n!
(n+1)! = 1

n+1 → 0 < 1 asn→ ∞. Thus,
∑ 1

n! is

convergent, by the RT. So, Deal 3 yields a finite amount of money.

[Actually, the value of the related series
∑∞

n=0
1
n! is known to bee, derived from the Maclaurin series

for ex whenx = 1. See Section 8.7 of the textbook. So,
∑∞

n=0
1
n! −

∑1
n=0

1
n! =

∑∞
n=1

1
n! = (e− 1).]

Deal 4: 1 + 1
4 + 1

9 + 1
16 + . . . + 1

n2 + . . . =
∑∞

n=1
1
n2 , which is a convergent p-series (p=2). So, Deal 4 yields a

finite amount of money.

[Actually, we can tell from the IT that the value for the series must be less than 2. (See pages 577-578
of the textbook.) A complicated proof, using power series (Sections 8.5 and 8.6 of the textbook), and
beyond the scope of this course, reveals the actual value isπ2/6.]

Conclusion: Select Deal 2, since it will generate an infinite amount of money.


