
MATH 128 Calculus 2 for the Sciences, Solutions to Assignment 7

1: Determine which of the following series converge.

(a)
∞∑

n=2

n2 + 4n√
n5 − 2n + 1

Solution: Let an =
n2 + 4n√

n5 − 2n + 1
and let bn =

n2

√
n5

=
1√
n

. Then lim
n→∞

an

bn
= lim

n→∞

1 + 4
n√

1− 2
n4 + 1

n5

= 1, and

∑
bn diverges (its a p-series with p = 1

2 ), and so
∑

an diverges too, by the Limit Comparison Test.

(b)
∞∑

n=1

e1/n

Solution: Since lim
n→∞

1
n

= 0, we have lim
n→∞

e1/n = e0 = 1, and so
∑

e1/n diverges by the Divergence Test.

2: Determine which of the following series converge.

(a)
∞∑

n=1

n!
nn

Solution: Let an =
n!
nn

. Note that 0 ≤ an = 1·2·3···n
n·n·n···n = 1

n ·
2
n ·

3
n · · ·

n
n ≤ 1

n ·
2
n = 2

n2 for n ≥ 2. We know that∑
2

n2 converges (its a constant times a p-series), so
∑

an converges too, by the Comparison Test.

Here is second solution. We have lim
n→∞

an+1

an
= lim

n→∞

(n + 1)!
(n + 1)n+1

nn

n!
= lim

n→∞

(
n

n + 1

)n

= lim
n→∞

e
n ln( n

n+1 ).

By l’Hôpital’s Rule, lim
n→∞

ln
(

n
n+1

)
1
n

= lim
n→∞

n+1
n

n+1−n
(n+1)2

− 1
n2

= lim
n→∞

−n

n + 1
= −1, and so lim

n→∞

an+1

an
= e−1 < 1.

Thus, by the Ratio Test,
∑

an converges.

(b)
∞∑

n=1

lnn

n2

Solution: Let an =
lnn

n2
. Since lnn <

√
n for all n ≥ 1, we have 0 < an <

√
n

n2
=

1
n3/2

, and we know that∑ 1
n3/2

converges (its a p-series), and so
∑

an converges too, by the Comparison Test. (We can prove that

lnx <
√

x for all x > 0 as follows: let f(x) =
√

x − lnx. Then f ′(x) =
1

2
√

x
− 1

x
=

√
x− 2
2x

, so we have

f ′(4) = 0, and f ′(x) < 0 when x < 4, and f ′(x) > 0 when x > 4, and so f(x) reaches its minimum when
x = 4. But f(4) = 2− ln 4 > 0, and so f(x) > 0 for all x).

Here is a second solution. Let f(x) =
lnx

x2
so that an = f(n). Note that f ′(x) =

x− 2x lnx

x4
=

1− 2 ln x

x3
,

so we have f ′(x) < 0 when x >
√

e, and so f(x) is eventually decreasing and we can apply the Integral Test.

Let t = ln x so that x = et and dt = 1
x dx. Then

∫ ∞

x=1

f(x) dx =
∫ ∞

x=1

lnx

x2
dx =

∫ ∞

t=0

t e−t dt. Integrate by

parts using u = t and v = −e−t to get
∫ ∞

t=0

t e−t dt =
[
− t e−t +

∫
e−t dt

]∞
0

=
[
− t e−t − e−t

]∞
0

= 1, since

lim
t→∞

t e−t = 0 by l’Hôpital’s Rule. Since the integral is finite,
∑

an converges by the Integral Test.



3: For each of the following series, determine whether it converges absolutely, converges conditionally, or di-
verges.

(a)
∞∑

n=2

(−1)n

lnn

Solution: For n > 1,
{

1
ln n

}
is decreasing, and lim

n→∞
1

ln n = 0, and so
∑ (−1)n

ln n converges by the Alternating

Series Test. On the other hand, 1
ln n > 1

n , and we know that
∑

1
n diverges, so

∑
1

ln n diverges too, by the

Comparison Test. Thus
∑ (−1)n

ln n is conditionally convergent.

(b)
∞∑

n=1

n4

(−2)n

Solution: Let an =
n4

(−2)n
. Then lim

n→∞

|an+1|
|an|

= lim
n→∞

(n + 1)4

2n+1

2n

n4
= lim

n→∞
1
2

(
n + 1

n

)4

= 1
2 < 1, and so∑

|an| converges by the Ratio Test. Thus
∑

an is absolutely convergent.

4: Let S =
∞∑

n=1

1
n3/2

. Find a value of l so that S − Sl ≤ 1
100 , where Sl is the lth partial sum.

Solution: Let f(x) =
1

x3/2
so that an = f(n). Note that f(x) is decreasing, so we can apply the Integral

Test. We have S − Sl =
∞∑

n=l+1

an ≤
∫ ∞

l

f(x) dx =
∫ ∞

l

1
x3/2

dx =
[
− 2

x1/2

]∞
l

=
2√
l
. To get S − Sl ≤ 1

100 ,

we can choose l so that 2√
l
≤ 1

100 , that is
√

l ≥ 200, so we can take l = (200)2 = 40, 000.

5: Let S =
∞∑

n=0

1
6n + 4

. Find the value of a partial sum Sl such that S − Sl ≤ 1
1,000 .

Solution: By the Comparison Test, since
1

6n + 4
<

1
6n

, and using the formula for the sum of a geometric

series, we have S − Sl =
∞∑

n=l+1

1
6n + 4

≤
∞∑

n=l+1

1
6n

=
1

6l+1

1− 1
6

=
1

5 · 6l
. To get S − Sl ≤ 1

1000 , we can

choose l so that
1

5 · 6l
≤ 1

1000
, that is 6l ≥ 200, so we can take l = 3 (since 63 = 216 > 200). We have

S3 =
3∑

n=0

1
6n + 4

= 1
5 + 1

10 + 1
40 + 1

220 = 88+44+11+2
440 = 145

440 = 29
88 .


