
CS 134 Slide 1

What is computer science?
 “The discipline of computing is the
systematic study of the algorithmic
processes that describe and transform
information: their theory, analysis,
design, efficiency, implementation, and
application. The fundamental question
underlying all of computing is, ‘What
can be (efficiently) automated?’ ”
Denning et al., “Computing as a Discipline,”
Communications of the ACM 32, 1 (Jan 1989) pp. 9–23.

•

•

•

a young discipline that arose from
several more established fields
(mathematics, science, engineering)

key words: algorithm, information (“informatics”)

term coined by George Forsythe, a
numerical analyst and founding head
(1965-1972) of Stanford Univ. CS
Department
CS at Waterloo: formally founded in
1967 as the Department of Applied
Analysis and Computer Science

CS 134 Slide 2

Aspects of computer science
•

•

•

Design (from engineering)
− establish requirements and specifications; create

artefacts based on sound design principles
− application: create hardware and software that is

flexible, efficient, and usable

Theory (from mathematics)
− develop model; prove theorems
− application: analyze the efficiency of algorithms

before implementation; discover limits to
computation

Experimentation (from science)
− form hypothesis, design experiments, and test

predictions
− application: simulate real-world situations; test

effectiveness of programs whose behaviour
cannot be modelled well

These aspects appear throughout CS,
often concurrently.

CS 134 Slide 3

Abstraction
“Fundamentally, computer science is a
science of abstraction – creating the right
model for a problem and devising the
appropriate mechanizable techniques to
solve it. Confronted with a problem, we
must create an abstraction of that problem
that can be represented and manipulated
inside a computer. Through these
manipulations, we try to find a solution to
the original problem.”

A. V. Aho & J. D. Ullman, Foundations of Computer Science

Object-oriented design concentrates on data abstraction:
1. identify entities occurring in problem domain
2. partition similar entities into sets
3. identify properties and operations common to all

entities in each set
4. define interfaces to support operations on objects

that belong to each entity set
5. define code modules to implement the entity sets

∗ choose representations for objects
∗ implement methods for constructing and

manipulating objects conforming to the
interfaces

CS 134 Slide 4

Abstract Data Types
•

•

•

•
•

•

An abstract data type (ADT) includes
− set of values (data space)
− set of operators (methods)

examples:
− real numbers with addition, subtraction, absolute

value, square root, ...
− ordered sequences of characters with

concatenate, substring, length, ...
− sets of objects with union, intersection, size, ...
− points in the plane with x-coordinate, distance, ...

allows us to define further types
tailored to applications’ needs
independent of programming language
also applicable to procedural
programming languages
independent of data representation and
operator implementation

CS 134 Slide 5

ADTs (cont'd)
•

•

Use the principle of information hiding
coined by David Parnas in 1972
“Every module [should be] characterized by its
knowledge of a design decision which it hides
from all others.”

− particularly important to hide decisions that are
likely to change (when they are found to be
wrong or the environment has changed)

− benefits software maintenance and reuse

ADT List
− collection of n objects indexed from 1 to n

∗ <i1, i2, i3, … , in>
− can create an empty list

∗ createList()
− can get the number of items

∗ s.size()
− can access element at an arbitrary index of List s

∗ s.get(index)
− can insert new elements

∗ s.add(index, item)
− can remove elements

∗ s.remove(index) or s.removeAll()
− special check for empty List

∗ s.isEmpty() ≡ (s.size() == 0)

CS 134 Slide 6

Assertions in programs
•

•

•

An assertion is:
− a logical claim about the state of a program
− located at a specific point in the program
− assumed true whenever that point is reached

Example: 0 ≤ i < a.length
precise, concise, and convincing
documentation
can be used to
− guide the creation of a program (design)
− reason formally about a program and verify its

correctness (theory)
− drive formulation of test cases and debugging

strategy (experiment)

Properties of assertions
− comments
− snapshots of what is claimed to be true

during execution at some specific point in the
code

− noteworthy static statements
− not descriptions of action or change

CS 134 Slide 7

Specification by assertions
•

•

•

•

preconditions: assertions that must be
true when the method is invoked
postconditions: assertions that will be
true when the method returns
Specify the syntax and semantics of each method:
− its signature :

∗ name of method and type of result
∗ names and types of parameters

− assumed properties of its inputs
− intended effects of its execution

public static int valueAt (int[] a, int i);
// pre: 0 ≤ i < a.length
// post: returns a[i]

public boolean equals (Object other);
// post: returns true iff this has the same value as other

A method with preconditions and
postconditions specifies a contract
between the implementer and its
users.
− preconditions need not be checked within method

Pre- and postconditions give the basis
of testing and of formal verification.

CS 134 Slide 8

Specification of ADT List

public interface ListInterface {
/* finite (possibly empty) collection of objects, indexed from 1 to size() */

 public boolean isEmpty();
 // post: Returns true iff this is empty

 public int size();
 // post: Returns the number of items that are currently in this

 public void removeAll();
 // post: this is empty

 public void add(int index, Object item)
 throws ListIndexOutOfBoundsException,
 ListException;
 // post: If index >= 1, index <= size()+1 and this is not full, then, item
 // is at index and other items are renumbered accordingly;
 // if index < 1 or index > size() + 1,
 // throws ListIndexOutOfBoundsException;
 // if list is full, throws ListException

 public Object get(int index)
 throws ListIndexOutOfBoundsException;
 // post: If 1 <= index <= size(), the item at position index in the list is
 // returned; throws ListIndexOutOfBoundsException if index < 1 or
 // index > size()

 public void remove(int index)
 throws ListIndexOutOfBoundsException;
 // post: If 1 <= index <= size(), the item at position index in the list is
 // deleted, and other items are renumbered accordingly; throws
 // ListIndexOutOfBoundsException if index < 1 or index > size().

}

CS 134 Slide 9

ADTs in Java
•

•

•

•

Classes provide representations and
implementations of an ADT allowing
for their instantiation
We would like to separate these
details from the ADT's specification
Java provides specific mechanism
that it calls an interface.
− Java “interface” is a set of method signatures.

∗ no code for the methods
∗ no constructors

− Java interfaces can extend other Java interfaces.
∗ interfaces form a hierarchy

− A class implements one or more interfaces.
∗ For each method in an interface, such a class

must provide a method that matches the
interface method signature exactly.

interface TA extends Student, Employee { ... }
class teachAsst implements TA, Cloneable { ... }

syntax and semantics of the operators
are defined by the interface

CS 134 Slide 10

Java Data Types
• Program variables contain either
− values of primitive types (int, char, etc.), or
− references to arrays or to objects (values of

subclasses of the class Object)
int temperature;
int [] dailyHighTemperatures;
Object highAndLowTemperatures;

ListInterface temperatureReadings;

∗ Variable declared with a class name can refer
to objects in any subclass.

∗ Variables declared with an interface name can
refer to objects in any class implementing that
interface.

• Casting
− When an object is constructed (using new), its

type is established.
Square sq = new Square(3);

− An object of type T can always be treated as if it
were of a supertype of T (upcast).
Rectangle rec = sq;

∗ Thus all objects can be treated as type Object.
∗ If an object is cast to some supertype (upcast),

it can later be downcast to its original type.
sq = (Square) rec; /* could raise exception */

CS 134 Slide 11

Wrapper classes
To use primitive values in situations requiring objects,
need to “wrap” them. For example:
public final class java.lang.Integer
 extends java.lang.Number {
 ...
 public Integer(int value);
 // post: constructs wrapper object to hold value

 public boolean equals(Object obj);
 // post: returns true iff this.intValue() == obj.intValue()

 public int intValue();
 // post: returns value wrapped by this

 public String toString();
 // post: returns string representation of this.intValue();
 ...

}

− N.B. These wrapper classes define “immutable”
objects: there are no “set” or “update” methods.

− Similar classes exist for booleans, doubles, etc.

CS 134 Slide 12

ADT Hierarchy
•

•

•

•

•

ADT SortedList is a finite collection of
objects maintained in a specified
order together with the operations:
− createSortedList, sortedIsEmpty, sortedSize,

sortedAdd(item), sortedRemove(item),
sortedGet(index), locateIndex(item)

operations in common with ADT List
can be put into a more general ADT
BasicList ADT
− methods: size, isEmpty, removeAll, get

hierarchy is reflected in the Java
interfaces, not the Java classes
classes that implement this interface
must provide
− one or more constructors

∗ basic constructor inherits default implementation
− correct implementation for each method

∗ semantics of each method specified by
pre-and postconditions

∗ equals and toString inherit default
implementations from Object

CS 134 Slide 13

Representation independence
•

•

Define all variables using the name of
the ADT’s interface, not any of the
classes that implement that interface.

ListInterface s;

...
s.add(i,x);

− ADT user need not be aware of representation.
− Implementation can be changed without altering

any user code.

Use a “data factory” to create all objects.
− cannot define a constructor in an interface

∗ therefore cannot create instance of ADT
without reference to its representation

− problem: every use of new exposes the representation
− solution: restrict new to special “creator” methods

public static ListInterface makeList() {
 return new ListArrayBased();
}

and collect all such constructing methods (at least
one per ADT) in a “data factory” class.

Then, wherever needed in an application:

ListInterface s = DataFactory.makeList();

CS 134 Slide 14

Advantages of using ADTs

ADT method calls

program that
uses ADT

implementation
2 of ADT

implementation
1 of ADT

implementation
3 of ADT data factory

module 2

module 1

module 3

•

•

•

Choice of which implementation to
use is isolated within data factory.
System recognizes actual types of
objects and connects method calls to
correct classes implicitly.
result: increased modularity
− software understandable and reusable
− supports programming in teams or incrementally
− separation protects proprietary code

CS 134 Slide 15

Software testing
“A man is his own easiest dupe, for what he wishes to be true
he generally believes to be true.” Demosthenes

•

•

•

•

part of initial development effort and
integral part of the maintenance cycle
provides some evidence that software
meets its specifications
− Must be systematic, not haphazard
− Must be well-documented
− Must be repeatable

Unit testing: purpose is to show that
components meet their specifications
System testing: … integrated whole
meets its specifications

To be most effective, software testers
must adopt the attitude that their goal is
to show that the software does not
meet its specifications.
“Whatever is only almost true is quite false, and among the
most dangerous of errors, because being so near the truth, it is
the more likely to lead astray.” Henry Ward Beecher

CS 134 Slide 16

Black-box testing
•
•

•

•

Design test cases based on specifications
Recall: pre- and postconditions define
a contract.
− test input should meet preconditions
− test runs should compare output to expected

results implied by postconditions

“typical” input: values of data
expected to be common in practice
boundary values: data that makes the
precondition(s) “barely” true

For example,
public void removeMe (Object[] array);
// pre: array not null
// post: removes first occurrence of this, if any, closing
// gap and setting the last entry to null

test cases involving x.removeMe(a):
[] a.length == 0
[x] x is the only member
[null] null is the only member
[y,…,x,…,z] x is in the middle
[x,…,y] x is at the start
[y,…,x] x is at the end
[y,…,z] x is not in the array
[y,…,x,…,x,…,z] x repeats

CS 134 Slide 17

White-box testing
•

•

Design test cases based on the
structure of the code.
Execute every line of code.
− Branch testing: tests for each alternative
− Loop testing: tests to iterate

∗ 0 times ∗ exactly once
∗ several times ∗ as often as possible

− Exit testing: tests to cause each condition for
loop or method exit

− Exception testing: test of exception handling

Continuing example:
public void removeMe (Object[] array) {
// pre: array not null
// post: removes first occurrence of this, if any, closing
// gap and setting the last entry to null
 int i;
 for (i = 0; i < array.length; i++) {
 if (array[i] == this) break;
 }
 if (i == array.length) return;
 while (i < array.length-1) {
 array[i] = array[i+1];
 i++;
 }
 array[i] = null;
}

CS 134 Slide 18

Systematic testing
Test plan: collection of tests to perform; for each test:

∗ describe condition(s) being tested
∗ input data
∗ expected results

Test log: record of the results of running tests
∗ pairing test from test plan to output produced

Test harness: program that reads test plan from a
data file, executes it, and writes test log to output file
Regression testing: testing modified code with
identical inputs used to test that code previously

•

•

•

Test each class implementing an ADT
− include main method to invoke the test harness

with suitable test plan
− test each constructor and each method
− rerun after each code change to ensure changes

eliminated errors without introducing new ones

Test application (system)
− black-box: use system specifications only
− white-box: use knowledge of components and

their interactions

Prepare system test report
− test log for system as a whole
− explain any deviations from specifications

CS 134 Slide 19

Implementation of List
•

•

•

•

•

•

might choose a data structure that will
allow random access to elements at a
given index
a partially filled array of a fixed size
might be a reasonable choice if an
upper bound on the number of items
to be inserted into the List is known
a partially filled array which is resized
when full is a data structure that will
grow and shrink gracefully as objects
are inserted into and removed from a
List
Carrano & Prichard only discuss this
briefly on pp. 160-161
this is precisely what a Vector or
ArrayList is (java.util)
N.B. A Vector or ArrayList is not really
an ADT because of trimToSize() and
capacity()

CS 134 Slide 20

Dynamic storage in Java
•

•

Space to hold the value of a variable
“local” to a method is allocated
automatically.
Space to hold the value of an object
or array is explicitly allocated and
initialized upon construction.
− in response to use of new or array initializer

45

space for “local”
method variables

space for explicitly
allocated storage

93123456

student

where reference
or primitive value
is stored where object or array

is stored

count

 grades 73 99 65

Jane Doe
Honours CS

CS 134 Slide 21

Using references in Java
Assume Student is a class that includes:
 int id; String name; String major;
 public int silly (int k, int [] c, Student s) {
 k++; c[1]++; this.setID(k);
 if (s != null) s.setID(c[0]);
 if (!s.equals(this)) s = this;
 return(k);
 }
 public void setID (int newID) {id = newID;}

Line # Code
1,2,3 int i, j; int[] a, b; Student p, q, r;
4,5,6 i = 5; j = 6; j = i;

7,8,9,10 a = new int[3]; b = a; b[0] = 5; a[1]++;
11 p = new Student(8, ”Jo”, ”CS”);
12 q = new Student(9, ”Lee”, ”C&O”);
13 r = p;
14 j = p.silly(i,a,q);

i

j

a

b

p

q

r

CS 134 Slide 22

Implementation of List as a
partially-filled array

• Uses two instance variables:
int numItems; // number of elements in List
Object [] items; // storage for List's elements

list

items

numItems 4

 ? ... ?

i1 i4 i2 i3

or more simply diagrammed as

4

numItems items

0 1 2
...

length-1 3 4

i1 i2 i3 i4

• Straightforward implementations for
size(), isEmpty() and get(index) using

 private int translate(int position) {
 // pre: 1 ≤ position ≤ numItems+1
 // post: position - 1
 return position - 1;
 }

CS 134 Slide 23

Updating an array-based List
simple loop needed to close gap •

•

public void remove (int index)throws
ListIndexOutOfBoundsException {
// post: If 1 <= index <= size(), the item at position index in the
// list is deleted, and other items are renumbered accordingly;
// throws ListIndexOutOfBoundsException if index < 1 or
// index > size().

 if (index >= 1 && index <= numItems) {
 for (int pos = index+1; pos <= size(); pos++)
 {
 items[translate(pos-1)] =
 items[translate(pos)];
 }
 items[translate(numItems)] = null;
 numItems--;
 }
 else {
 throw new ListIndexOutOfBoundsException(
 "ListIndexOutOfBoundsException on remove");
 }
}

removeAll() simply requires setting
items to a new empty array

CS 134 Slide 24

Adding elements to an array-
based List

•

•

add(index, item) might require array
to be enlarged
replacing the array:
− allocate a larger array (but how much larger?)
− copy all the elements (object references) to the

new array
− replace (the reference to) the old array by (a

reference to) the new one

list

items

numItems 5

8 3

dup

20 15 7

CS 134 Slide 25

Alternative implementation of List:
singly-linked list

list

•

head

numItems 2

next

item

next

item

8 20

•
•

Expands and contracts as needed
Diagrammatic representation

O4 O1 O2 O3

•

4

0 •

CS 134 Slide 26

Manipulating linked list elements
Node methods: see Carrano & Prichard p 163

Node myNode = new Node(new Integer(5));
myNode.setItem(new Integer(7));
myNode.setNext(new Node(new Integer(9)));
myNode.getNext().setItem(new Integer(2));
Node temp = myNode.getNext();

Node node = new Node(myNode.getItem());
temp.setNext(node);

myNode

temp

node

CS 134 Slide 27

Implementation of List as a
singly-linked list

public class ListReferenceBased implements
 ListInterface {
 private Node head;
 private int numItems;

 private Node find(int index) {
 // pre: 1 ≤ index ≤ numItems
 // post: Returns a reference to the node at position index
 Node curr = head;
 for (int skip = 1; skip < index; skip++) {
 curr = curr.getNext();
 }
 return curr;
 }

 public void remove(int index)
 throws ListIndexOutOfBoundsException {
 // post: see previous slide for precondition and postcondition
 if (index >= 1 && index <= numItems) {
 if (index==1){ head=head.getNext();
 } else {
 Node prev = find(index-1);
 Node curr = prev.getNext();
 prev.setNext(curr.getNext());
 }
 numItems--;
 } else {
 throw new
 ListIndexOutOfBoundsException();
 }
 }
 ...
}

CS 134 Slide 28

Variations on linked lists
• circularly linked lists

O4 O1 O2 O3

4

• doubly-linked lists

O4 O1 O2 O3

•

4

•

• other variants: no counters; more links;
“sentinel” element at end

CS 134 Slide 29

ADT Deque
•
•

•

•

alternative linear collection
functionality:
− add only at either of the two ends
− read at ends
− test for membership via contains
− remove at ends

implementation alternatives:
− as linked list (singly-linked, doubly-linked, circular)
− as Vector or ArrayList
− as ADT List

efficiency trade-offs?

CS 134 Slide 30

Measuring efficiency
•

•

•

•

some possible measures:
− the amount of time it takes to code
− the amount of memory the code uses
− the amount of time it takes to run
− the amount of memory the data uses

costs to prepare and to maintain
software critical aspects of software
engineering
principal measures for this course:
efficiency of software execution
How can we compare several
possible choices of algorithm or
several possible implementations of
an interface?
− run the code (stopwatch approach)

∗ influenced by hardware
∗ influenced by compiler and system software
∗ influenced by simultaneous users’ activity
∗ influenced by selection of data

− analyze the code (or pseudo-code)
∗ still influenced by choice of data

CS 134 Slide 31

Comparing implementations
•

•

•

first approximation: abstraction that
ignores low level details
− calculate number of method invocations for

critical methods used
− typically interested in methods that read object’s

values or change object’s values
− for collections, often interested in

∗ number of data values encountered (e.g., how
many calls to getNext())

∗ number of data values moved or modified (e.g.,
how many calls to setNext() or setItem())

concerned with how algorithm
behaves across all possible inputs
− worst-case analysis (worst input)
− best-case analysis (best input)
− average-case analysis (depends on distributions)

usually analysis done with respect to
data of a given, but unknown, size
− e.g., Considering all collections having N

elements (for any fixed value of N), how many
times is operation P executed in the worst case?

CS 134 Slide 32

Code analysis: example
Consider possible implementation of a
remove by value method for array-
based representation of List

public Object removeByValue(Object obj){
// pre: obj is non-null
// post: removes and returns the first object equal to obj from the array;
// returns null if no objects are equal to obj
 int index;
 for (index = 0; index < numItems; index++){
 if (obj.equals(items[index])) break;
 }
 if (index == numItems) return null;
 Object val = items[index];
 numItems--;
 while (index < numItems) {
 items[index] = items[index+1];
 index++;
 }
 items[numItems] = null; // free reference
 return val;
}

•

•

How many calls will be made to
equals (comparing two data values)?
− best case? worst case?
− what would influence the average case?

How many elements are moved to a
new location in the array?
− best case? worst case?

CS 134 Slide 33

ADT Stack
•

•

•

•

A linear collection, (s1, s2, ..., sn), of
elements accessed from one end only
− top: sn

Sometimes called a LIFO structure
(last-in first-out)
Operations:
∗ boolean isEmpty()
∗ void popAll()
∗ void push(Object newItem)
∗ Object pop()
∗ Object peek()

∗ plus an operation to create an initially empty

stack (e.g., DataFactory.makeStack())

Applications:
− processing nested elements (e.g., subroutine

flow control)
− reversing element ordering

CS 134 Slide 34

Using a stack to check that
parentheses are balanced

a(b()cd(e))(f)g is OK, but not
(h(i)k or l(m)) or n)(

•

class BalanceChecker {
 StackInterface S =
 DataFactory.makeStack();
 ...

public boolean check (String in) {
S.popAll();
for (int i=0; i < in.length(); i++) {
 if (in.charAt(i) == ‘(’)
 S.push(new Integer(i));
 else if (in.charAt(i) == ‘)’) {
 if (S.isEmpty())
 return false;
 Integer open =(Integer) S.pop();

 // open.intValue() position has matching ′(′
 }
}
return (S.isEmpty());

}
}

• Why does this algorithm work?

CS 134 Slide 35

Array-based implementation of
Stack

top items

0 1 2

...

length-1

s2 s1 1

CS 134 Slide 36

Linked-list-based implementation
of Stack

S1S4 S3 S2

•

count 4

CS 134 Slide 37

Implementing method calls using
a stack

•

•

•

An array-based stack is normally
used within generated code
All information needed to support a
particular method call is kept in an
activation record
− space for parameter values
− space for local variables
− space for location to which control is returned

During execution, maintain the stack
of activation records
− When method called: activation record created,

initialized, and pushed onto the stack
− When a method finishes, its activation record is

popped

CS 134 Slide 38

ADT Queue
•

•

•

•

A linear collection, (q1, q2, ..., qn), of
elements accessed in sequence
− front: q1; rear: qn

Sometimes called a FIFO structure
(first-in first-out)
Operations:
∗ createQueue()
∗ boolean isEmpty()
∗ void dequeueAll()
∗ void enqueue(Object newItem)
∗ Object dequeue()
∗ Object peek()

Applications:
− communications channel
− items waiting to be serviced

CS 134 Slide 39

The use of queues in producer-
consumer situations

• General situation: one software
package is producing data and
another is consuming the same data.

producer consumer

•

•

Rate of consumption or production
often data-dependent.
Producer can use enqueue to insert
and Consumer can use dequeue to
take data in insertion order.

CS 134 Slide 40

Queue using a circular linked list

q4 q1 q2 q3

4 Q:

public Object dequeue () {
// pre: queue is not empty
// post: the head of the queue is removed and returned
 Object val = tail.getNext().getItem();
 count--;
 if (count == 0) tail = null;
 else tail.setNext(
 tail.getNext().getNext());
 return val;
}
public void enqueue(Object val) {
// post: val is added to the tail of the queue
 Node temp = new Node(val);
 if (count == 0) {
 tail = temp;
 tail.setNext(tail);
 }
 else {
 temp.setNext(tail.getNext());
 tail.setNext(temp);
 tail = temp;
 }
 count++;
}

CS 134 Slide 41

Queue using a “circular” array
• Naïve use of array

count items

0 1 2

...

length-1

q2 q1 2

− dequeue ⇒ shuffling values to start of array

• Alternative: let queue drift down array

count items

0 1 2

...

length-1

front

1 2 x q1 q2

− when reaching end of array, wrap around to start

count items

0 1 2

...

length-1

front

length-1 2 q1 q2

• Implementation details . . .

see Carrano & Prichard, Chapter 7

CS 134 Slide 42

The use of queues in simulation
•
•

•

•

Example: a store’s cashier
Long periods of waiting punctuated by
occurrence of events
Possible events:
− arrival of a new customer
− completion of service to a customer checking out

Event-driven simulation
− concentrates on the events
− ignores the time in between when nothing

changes

CS 134 Slide 43

Event-driven simulation
•

•

•

pseudocode for event-driven simulation:
time = 0
while (simulation not over)
 time = time of next event
 update state according to event

for the example: arrivals and departures
− find which event is next by “polling” possible

sources (e.g., check time for next arrival vs. time
for next departure)

For an arrival, check for a free cashier:
− if there is one, the customer goes to that cashier
− otherwise, the customer joins the line of

previously waiting customers

cashier

• Determining times for various events:
− need to know arrival times and how long it takes

to service each customer
∗ use data from a log obtained from tracing

existing system (trace-driven simulation)
∗ use data generated from a model based on

probability distributions

CS 134 Slide 44

Collecting statistics
•

•

•

•

in the store example: average
customer wait, average length of the
line, amount of busy time of cashiers
only need to update statistics when
events occur
Where do queues come in?
− For a bank, there is usually one queue

representing the waiting customers; for
supermarkets there are several.

− There could be several classes of queues for
various services.

− Queue item: object representing customer (e.g.
recording arrival time)

What data to keep for simulating the
following system?

greeter

bar

food

CS 134 Slide 45

Ariane 5
On 4 June 1996, the maiden flight of the Ariane 5 launcher
ended in failure. Only about 40 seconds after initiation of
the flight sequence, at an altitude of about 3700 m, the
launcher veered off its flight path, broke up and exploded.

[Ariana 5 Flight 501 Failure, Report by the Inquiry Board, July 1996]

What happened?
− “At 36.7 seconds after H0 (approx. 30 seconds after lift-off) the

computer within the back-up inertial reference system, which
was working on stand-by for guidance and attitude control,
became inoperative. This was caused by an internal variable
related to the horizontal velocity of the launcher exceeding a
limit which existed in the software of this computer.

− “Approx. 0.05 seconds later the active inertial reference
system, identical to the back-up system in hardware and
software, failed for the same reason. Since the back-up inertial
system was already inoperative, correct guidance and attitude
information could no longer be obtained and loss of the mission
was inevitable.

− “As a result of its failure, the active inertial reference system
transmitted essentially diagnostic information to the launcher's
main computer, where it was interpreted as flight data and
used for flight control calculations.

− “On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the main
engine nozzle also, to make a large correction for an attitude
deviation that had not occurred.”

CS 134 Slide 46

Ariane 5 (cont’d)
The inertial reference system of Ariane 5 is essentially common to a
system which is presently flying on Ariane 4.

So, how did the failure happen?
− “The part of the software which caused the interruption in the

inertial system computers is used before launch to align the
inertial reference system and, in Ariane 4, also to enable a
rapid realignment of the system in case of a late hold in the
countdown. This realignment function, which does not serve
any purpose on Ariane 5, was nevertheless retained for
commonality reasons and allowed, as in Ariane 4, to operate
for approx. 40 seconds after lift-off.

− “In Ariane 4 flights using the same type of inertial reference
system there has been no such failure because the trajectory
during the first 40 seconds of flight is such that the particular
variable related to horizontal velocity cannot reach, with an
adequate operational margin, a value beyond the limit present
in the software.

− “Ariane 5 has a high initial acceleration and a trajectory which
leads to a build-up of horizontal velocity which is five times
more rapid than for Ariane 4. The higher horizontal velocity of
Ariane 5 generated, within the 40-second timeframe, the
excessive value which caused the inertial system computers to
cease operation.”

Lessons learned:

R5 … Identify all implicit assumptions made by the code and its
justification documents on the values of quantities provided
by the equipment. Check these assumptions against the
restrictions on use of the equipment….

R11 Review the test coverage of existing equipment and extend
it where it is deemed necessary.

R12 Give the justification documents the same attention as code.
Improve the technique for keeping code and its justifications
consistent….

CS 134 Slide 47

Software in the real world
•
•
•
•

•

•

Specifications change
People change
Support systems change
Intended applications change

Programs must survive these changes.
well-designed programs are
adaptable
well-designed components can be
reused

Guideline: Design and document
software components as you would
have others design and document them
for you.

CS 134 Slide 48

The “Software Life Cycle”

ImplementationDesign

TestingAnalysis

ReleaseMarketing

Requirements

Specification

Architecture

Software

Correction Product

Iterative model of software evolution

[Hume, West, Holt, and Barnard]

•

•

Note the cycle!
− more accurate than including a maintenance box

as part of the traditional “waterfall model”
− for correcting software
− for responding to new marketing information

Throughout the whole life cycle,
documentation is critical: to capture
rationale and communicate intent

CS 134 Slide 49

Professional Ethics
References:
Michael J. Quinn, Ethics for the Information Age,
Addison-Wesley, 2005.
Deborah G. Johnson, Computer Ethics, Third
Edition, Prentice Hall, 2001.

•

•

Computing affects society at large
− Safety (e.g., Ariane 5, Therac-25)
− Security (and hence privacy)
− Reliability (i.e., systems and applications fulfill

their purpose)
− Protection of intellectual and other property

Computer scientists need to address
variety of responsibilities:
− Role responsibility results from assigned duties
− Causal responsibility results from previous

actions (or inactions)
− Legal responsibility results from laws
− Moral responsibility results from human society

Note: Unlike the others, moral responsibility is
not exclusive; it cannot be avoided by passing it
on to others.

Responsibilities arise in a variety of relationships:
with employers, support staff, clients, society at
large, and other computing specialists.

CS 134 Slide 50

Dealing with Responsibilities
Unfortunately, responsibilities sometimes
conflict (e.g., dilemma of whistle-blowers).
Example scenarios:
• [Johnson, p.55] You are in charge of

designing a database management system
for the personnel office of a medium-sized
company. After reviewing the options for
providing security, the client insists that the
cheapest security system be implemented, in
spite of your detailed explanation of the
security risks. You know that highly
confidential information will be stored in the
database. What should you do?

CS 134 Slide 51

Further scenarios
•

•

[Quinn, pp. 386-7] While installing a software
package on a colleague’s computer, you
accidentally come across directories with
suspicious looking names. In spite of company
policy against reading other peoples email, web
logs, and personal files, you look further and
discover that several files contain child
pornography. What should you do?

[Quinn, pp. 387-88] While battling a new computer
worm, you realize that one way to close the
responsible software loophole is to write an anti-
worm program that spreads like a worm, patching
the loophole on each machine that it reaches. You
implement the anti-worm, prove that it will not
cause any other damage to any target machines,
and release it, taking precautions that the anti-
worm cannot be traced back to you. Is this ethical?

CS 134 Slide 52

Computing Profession
•

•

Characteristics of a profession
Typified by doctors, lawyers, engineers, architects,
accountants, clergy

− Mastery of an esoteric body of knowledge.
− Autonomy.
− Formal organization.
− Code of ethics.
− Fulfillment of an important social function.

Members of a profession are held to higher
standards of responsibility.

Infrastructure to support a profession
− Initial professional education
− Accreditation
− Skills development
− Certification
− Licensing (in case of exclusive right to practice)
− Ongoing professional development
− Code of ethics
− Professional society

CS 134 Slide 53

Fundamental ethical principles
•
•

•
•
•

•

•
•
•

Be impartial.
Disclose information that others ought
to know.
Respect the rights of others.
Treat others justly.
Take responsibility for your actions
and inactions.
Take responsibility for the actions of
those you supervise.
Maintain your integrity.
Continually improve your abilities.
Share your knowledge, expertise, and
values.

CS 134 Slide 54

Code of Ethics and Standards of
Conduct (CIPS)

P) To the public: I will endeavour at all times to protect the
public interest. I will strive to promote understanding of
information systems and their application. I will not represent
myself as an authority on topics in which I lack competence.

M) To myself and my profession: I will guard my competence
and effectiveness as a valuable possession. I will work to
maintain them despite changing circumstances and
requirements. I will demonstrate the highest personal
standards of moral responsibilities, character, and integrity
when acting in my professional capacity.

C) To my colleagues: I will treat my colleagues with integrity
and respect their right to success. I will contribute to the
information systems profession to the best of my ability

E) To my employer and/or clients: I will give conscientious
service to further my employer's and/or client's legitimate
best interests through management's direction.

R) To my employees and contracted staff: I will observe their
obligation to uphold the Code of Ethics of the professional
societies to which they belong.

S) To my students: I will provide a scholarly education to my
students in a supportive and helpful manner.

These are refined in the code though a list of specific, non-
exhaustive obligations.

CS 134 Slide 55

Principles of the Software Engineering
Code of Ethics (ACM/IEEE)
(with cross-references to CIPS categories)

1. Software engineers shall act consistently with the public
interest. (P)

2. Software engineers shall act in a manner that is in the best
interests of their clients and employer, consistent with the
public interest. (E)

3. Software engineers shall ensure that their products and
related modifications meet the highest professional
standards possible. (C,E)

4. Software engineers shall maintain integrity and
independence in their professional judgment. (P,M)

5. Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the
management of software development and maintenance.
(E,R)

6. Software engineers shall advance the integrity and
reputation of the profession consistent with the public
interest. (P,C)

7. Software engineers shall be fair and supportive of their
colleagues. (C,R)

8. Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall promote
an ethical approach to the practice of the profession. (M)

These are refined in the code though a list of clauses giving
specific, but non-exhaustive examples.

CS 134 Slide 56

Recursive definitions
• common in mathematics

Recursive definition defines an object in terms of
smaller objects of the same type.

• includes base (degenerate) cases
and recursive cases

• Example 1: factorial function
n! = 1 if n=0 {base case}
n! = n(n-1)! if n>0 {recursive case}

• Example 2: Fibonacci numbers
f0 = f1 = 1 {base cases}
fn = fn-1 + fn-2 if n≥2 {recursive case}

• Example 3: balanced strings
− base case:

A string containing no parentheses is balanced.
− recursive cases:
(x) is balanced if x is a balanced string.
xy is balanced if x and y are balanced strings.

CS 134 Slide 57

Recursive definitions (cont’d)
• Example 4: sublist

 an empty collection {base case}
 the pair <H,L> where H is a
head element and L, the
remainder, is a sublist

{recursive case}

e.g., <6,<2,<9,φ>>> where φ is the empty collection
− alternative “pictures”

6 2 9

{ 6 { 2 { 9 { } } } }

< 6 2 9 >

• Example 5: contains
 sublist L contains object x if L is not empty and
∗ the head element of L is x or
∗ the remainder of L contains x

• Example 6: encompasses
 sublist L1 encompasses sublist L2 if
∗ L1 is L2 (i.e., they both name the same thing), or
∗ L1 is the pair <E, L1′> and L1′ encompasses L2.

CS 134 Slide 58

Recursive structures
public interface NestingInterface {

public boolean isEmpty();
// post: Returns true iff this is empty.

public Object getRootItem() throws
NestingException;

// post: Returns value associated with the root if this is not
// empty; otherwise throws NestingException.

 public void setRootItem(Object newItem);
// post: Sets the value associated with the root to be newItem
// if this is not empty; otherwise sets this to consist of a
// root node only, with root item set to newItem.

public void makeEmpty();
// post: this is empty.

}

CS 134 Slide 59

Sublist ADT
•
•

linear nestings
need nesting + access to nested sublists

class SubListException extends NestingException{}
public interface SubListInterface extends
 NestingInterface {

 public void attachRemainder
 (SubListInterface newRem)
 throws SubListException;

// pre: newRem is non-null.
// post: Throws SubListException if this is empty or the
// remainder of this is non-empty; otherwise, attaches
// the sublist referenced by newRem as the remainder
// of this and sets newRem to be the empty sublist.

 public SubListInterface detachRemainder()
 throws SubListException;

// post: Throws SubListException if this is empty; otherwise,
// returns the sublist that is the remainder of this and sets
// the remainder to be the empty sublist.

}

<a<b<>>> <>

<x<>>

b

x a

CS 134 Slide 60

Implementing SubListInterface
• Assume the class SubList implements

the SubListInterface.

 public class SubList implements
 SubListInterface {

•

 ... code for each method in the interface ...

 protected SubList remainder()
 throws SubListException {

 // post: throws SubListException if this is empty; otherwise,
 // returns the remainder.

 ... code similar to code for detachRemainder, but
 without changing the sublist denoted by this ...

 }
 }

remainder() must be used with care!
− useful for accessing components of SubList without

deconstruction and subsequent reconstruction
− returned object shares its value with part of some

other object
SubList s1 =

SubList s2 = s1.remainder();

s2.setRootItem(x); // s1 has also been changed!!

− available to any class in the same package and
to any class extending SubList, but not to other
users of SubList

CS 134 Slide 61

A non-linear recursive structure
• A binary tree is a finite collection of

nodes that is
 empty, or
 partitioned into 3 sub-collections: a designated
node, called the root, together with two binary
trees, designated as left and right subtrees

or is

base case, empty tree recursive case

• Tree terms for nodes: root and leaf
• Familial terms for nodes: parent,

child, sibling, ancestor, descendant

CS 134 Slide 62

Binary trees on three nodes

• Note: one-to-one correspondence
between nodes in a binary tree and
non-empty binary subtrees
encompassed by that tree

CS 134 Slide 63

Labelled binary trees
• Typically nodes are labelled.
• Examples:
− yes-no decision tree

congestion?

sneezing?

cough?

back pain?

itchy eyes?

allergies cold

− expression tree (for binary operators)
-

9 *

2

41

+

• Semantics captured by nesting

CS 134 Slide 64

Binary Tree ADT
• based on recursive definition of tree
class TreeException extends NestingException{}
public interface BinaryTreeInterface extends

 NestingInterface {

 public void attachLeft (Object newItem);

// pre: this is not empty.
// post: No change if the left subtree is non-empty; otherwise, sets
// the left subtree to be a leaf node with associated value set
// to newItem.

 public void attachLeftSubtree (BinaryTreeInterface

leftTree) throws TreeException;
// pre: leftTree is non-null.
// post: Throws TreeException if this is empty or the left subtree
// is non-empty; otherwise, attaches value of leftTree as the
// left subtree of this and sets leftTree to be the empty tree.

 public BinaryTreeInterface detachLeftSubtree() throws

 TreeException;
// post: Throws TreeException if this is empty; otherwise,
// returns the left subtree of this and sets the left subtree
// to be the empty tree.

... and analagous methods for right subtrees

}

• leftSubtree and rightSubtree useful protected
methods in classes implementing
BinaryTreeInterface

• Carrano & Prichard extend BinaryTreeBasis
instead of Nesting and do not include
leftSubtree() and rightSubtree() methods

CS 134 Slide 65

Recursive programs
• Solution defined in terms of solutions

for smaller problems of the same type
int solve (int n) {. . .
 value = solve(n-1) + solve(n/2);

. . .}

• One or more base cases defined
. . . if (n < 10) value = 1; . . .

• Some base case is always reached
eventually.

Example:

static public int fib (int n) {
// pre: n ≥ 0
// post: returns the nth Fibonacci number

 if (n < 2) return 1;
 else return fib(n-1) + fib(n-2);
}

• N.B. structure of code typically
parallels structure of definition

CS 134 Slide 66

Tracing recursive programs
• recall: stack of activation records
− When method called: activation record created,

initialized, and pushed onto the stack
− When a method finishes, its activation record is

popped

A

C

D

B

• same mechanism for recursive
programs

A
A

A

A

CS 134 Slide 67

Recursive sublist programs
• Some additional methods that might

be included in the SubList class
1. calculating the size of a sublist

public int size() {
// post: Returns number of elements in this.
 if (isEmpty()) return 0;
 return 1 + remainder().size();
}

2. searching for an item in a sublist

public boolean contains (Object key) {
// pre: key is not null.
// post: Returns true iff a sublist has a head value matching key.
 if (isEmpty()) return false;
 if (key.equals(getRootItem())) return true;
 return remainder().contains(key);
}

3. printing the values of a sublist in reverse order

public void printReverse() {
// pre: this is not empty.
// post: Prints the elements of this in reverse order.
 if (!isEmpty()){
 remainder().printReverse();
 System.out.println(getRootItem());
}

CS 134 Slide 68

Recursive binary tree programs
• Similarly, possible additional methods

for the BinaryTree class
1. calculating the size of a binary tree

public int size() {
// post: Returns number of elements in this.
 if (isEmpty()) return 0;
 else return 1 + leftSubtree().size()
 + rightSubtree().size();
}

2. following a path to find a subtree

public Object follow(Queue path) {
// pre: path is not null and path objects are all Boolean.
// post: Returns item at root of subtree identified by path of booleans s.t.
// true ⇒ follow left branch, false ⇒ right
// and path is set to empty queue; returns null if
// path invalid, and valid prefix of path is dequeued.
 if (isEmpty()) return null;
 if (path.isEmpty()) return getRootItem();
 if (((Boolean) path.dequeue()).booleanValue())
 return leftSubtree().follow(path);
 else
 return rightSubtree().follow(path);
}

CS 134 Slide 69

Linked implementation
•

•

•

Carrano & Prichard Chapter 10
sublist can be implemented using the
Node class, similarly, linked
implementation for binary trees can use a
TreeNode class:
3 data fields (item, leftChild, rightChild)

 root

rightChildleftChild

item

rightChildleftChild

item

rightChildleftChild

item

rightChildleftChild

item

 • • •

 • •

 ?

 ?

 ?

 ?

our approach: use recursive BinaryTree
references in place of TreeNode references

•

•
•

could also store count or parent references
representation of an empty binary subtree?

CS 134 Slide 70

Tree traversals
• want to traverse a tree in some orderly

manner
• we visit each node exactly once (e.g. print its

contents or determine if it meets certain
criteria)

• one option is to visit the nodes level by level:
− for each level of the tree

visit each node at that level

X

O

B

AI

S

C

K

EZ

L

− traversal: X B S K O I A C L Z E

• known as a breadth-first traversal.

• can be implemented using a queue

CS 134 Slide 71

Iterators
•

•

•

•

•

•

•

Auxiliary types that provide access to the
elements of a collection
− each element is “visited” once, and only once

Iterator interface from java.util
Iterator i = someTree.getLevelOrderIterator();
while (i.hasNext()) {
 … i.next(); …
}

May promise a particular order for visiting
the elements
Subclasses may add two more operators:
− void reset()
− Object value()

remove() will delete the last element
returned by an iterator
however, in general, behaviour usually
undefined if a collection changes during
iteration
Note: several iterators can visit a single
structure simultaneously

CS 134 Slide 72

Depth-first traversals
• visit tree’s components (root, left subtree,

right subtree) in some order
• preorder traversal:
− visit the root
− visit the left subtree recursively
− visit the right subtree recursively

congestion?

sneezing?

cough?

back pain?

itchy eyes?

allergies cold

• Preorder traversal yields parents before
children, but does not completely
characterize a tree’s structure.

CS 134 Slide 73

Implementing tree iterators
• In the absence of parent pointers, iterator

supporting depth-first traversal requires a
stack.

• For preorder, stack maintains list of non-
empty subtrees remaining to be visited
− when visiting a node, push right subtree (if non-empty)

and then left subtree (if non-empty) onto stack
− peek the top of the stack to find current node
− pop the stack to find next node to visit
− iterator completes when stack is empty

• Alternatively, all the work can be done
during construction of the iterator using
recursion

CS 134 Slide 74

Inorder traversal
• ordering:
− visit the left subtree recursively
− visit the root
− visit the right subtree recursively

• inorder traversal of expression tree gives
an infix expression

-

7

-

32

*

2

*

53

+

− traversal: 2 * 3 + 5 – 7 – 2 * 3
− but need to insert (before visiting any subtree and)

after visiting any subtree
((((2)*((3)+(5)))-(7))-((2)*(3)))

or perhaps (((2*(3+5))-7)-(2*3))

• does not characterize which value labels
the root

CS 134 Slide 75

Postorder traversal
• ordering
− visit the left subtree recursively
− visit the right subtree recursively
− visit the root

• Postorder traversal yields children before
parents.

• Postorder traversal of an expression tree
gives a postfix expression (used for some
calculators)

-

7

-

32

*

2

*

53

+

2 3 5 + * 7 – 2 3 * -

− unambiguous without parentheses !
− “reverse Polish notation” created in 1920s by logician

Jan Lukasiewicz

CS 134 Slide 76

Properties of binary trees
• often expressed recursively (following

definition of binary tree)
• depth (or level) of a node:
− root has level 1
− otherwise 1+ level of parent

• height of a tree:
− if the tree is empty, its height is 0
− otherwise, it height is

1 + max{height TL, height TR }, where TL and TR
designate left and right subtrees

Assume that height is defined in BinaryTree class
public int height () {
// post: Returns height of subtree.
 if (isEmpty()) return 0;
 else {
 int leftHt = leftSubtree().height();
 int rightHt = rightSubtree().height();
 return 1 + Math.max(leftHt,rightHt);
 }
}

CS 134 Slide 77

Proving properties about trees
Theorem: A binary tree of height h has at
most 2h -1 nodes.
Proof: (by induction on tree height)

base case: h = 0
By definition, h = 0 implies the tree is
empty. Thus, there are 0 nodes. Since
20 -1 = 0, theorem is true for this case.

inductive case: Assume the theorem is
true for all h < k, for some k>0, and prove

of height h = k. it for trees
A
s
s

the induc

ssume T has height k for
ome value of k>0. Then both
ubtrees are of height < k. By
tive hypothesis, TL has at

most 2k-1 -1 nodes and TR has at most
2k-1 -1 nodes. Thus T has at most
1+2(2k-1 -1) = 2k -1 nodes.

TL TR

T

CS 134 Slide 78

“Strong” induction
• To prove P(n) true for all n≥0:
− Base case: Show that P(0) is true
− Inductive hypothesis: Assume property P(i) is true for

i=0,1,...,k-1.
− Inductive conclusion: Show, using the inductive

hypothesis, that P(k) is true.

• Variations
− base case something other than 0
− several base cases
− assume P(0), P(1),...,P(k) true and use them to prove

P(k+1) is true
− “weak” induction: assume P(k-1) true and use it alone

to prove P(k) is true

• The form of the inductive proof usually
matches the form of the recursion.

CS 134 Slide 79

Number of leaves in a binary tree
• Define a full node to be a node with

exactly two children.
N.B. A tree of height h having the maximum number
of nodes (2h-1) is called a full tree.

• Theorem: In any non-empty binary tree,
the number of leaves is one more than
the number of full nodes.
• Proof:

CS 134 Slide 80

ADT Table
• Components: associations from keys

(from some domain space) to values
− simple (partial) functions: values are atomic
− databases: values are records of field-value pairs

(often including the key-value pair too)
− sets: values are empty; ~ characteristic function

• Examples:
− mapping from student ID to name
− mapping from student ID to student record
− set of student IDs for students in CS 134

(mapping from ID to “taking CS 134”)

• Intuitive operations:
− look up given key ≡ tableRetrieve
− insert a new association ≡ tableInsert
− delete association for a given key ≡ tableDelete

• Keys are unique; values need not be.
− at most one value per key (although that value

can be a collection for some tables)
− does not support inverse mapping except

through enumeration

• Iterators do not necessarily encounter
keys in order.

CS 134 Slide 81

Simple representations
• Keep table as a sequence of

associations in no particular order,
with no keys repeated.
− using a vector
− using a linked list

• efficiency of operations:
Consider a vector representation.
Look at number of comparisons of two keys and
number of elements whose locations in the
vector change:
∗ e.g., how many comparisons are executed

during a call to “retrieve” in the worst case? or
in the best case? how many moves are
needed during a call to “delete”?

Similar analyses can be applied to reason about
linked list representations.

• implementation convenience: use a
single private (non-ADT) method
“position” to find the location of
association matching a given key, if it
exists

CS 134 Slide 82

Ordering collections
Why does a vocabulary dictionary keep
words in alphabetical order?
• To find a word, we could start at the

beginning and scan every word in the
dictionary.

• We can do better if the dictionary is
sorted by key.

• Idea: open a dictionary near the
middle, and then determine whether
to search in the first or second half

a sorted dictionary is either empty or the
concatenation of two sorted sub-dictionaries of
(approx.) half the size for which every word in the
first is smaller than every word in the second

⇔

• requires that keys be “comparable”

CS 134 Slide 83

Binary search
Given a Vector of comparable objects in
ascending order, find the index matching
a target key if it is present, or otherwise
return the index of the slot where it would
be inserted.

returns index such that 0 ≤ index ≤ data.size(),
data[0..index-1] < target, and
data[index..data.size()-1] ≥ target

int position(Comparable target){
// pre: target is non-null and data values ascending
// post: returns ideal position of target in data vector
 return search(0,data.size(),target);
}

int search(int lo, int hi, Comparable key) {
// pre: 0 ≤ lo ≤ hi ≤ data.size(); key not null
// post: returns ideal position of key in data[lo..hi]
 Comparable m;
 int mid = (lo + hi)/2;
 if (lo == hi) return lo;
 else {
 m = (Comparable)data.elementAt(mid);
 if (m.compareTo(key) < 0) // m < key
 return search(mid+1, hi, key);
 else return search(lo, mid, key);
 }
}

• How efficient is binary search?

CS 134 Slide 84

Bounding efficiency
• Running time of a program is a

function of the “size” of the problem
being solved
− for collections: size = number of elements
− for binary search: size = hi – lo

Consider solution to a problem of size n
• Running time using one compiler and

one machine might be

.33365n2 - .43n + 3.4 µsec
• Another compiler and another

machine might take 4.5n2 + 17n msec
• In either case, doubling the size of a

large problem means that the solution
takes about 4 times as long to run

• simplify both to "order n-squared",
written O(n2)

CS 134 Slide 85

Big-O notation
• Intuitively:
− keep dominant term,
− remove leading constant,
− put O(..) around it

• Informally: f(n) is O(g(n)) if f(n) and
g(n) differ by at most a fixed constant
for sufficiently large n.

• Formally: f(n) is O(g(n)) if there exist
two positive constants, c and n0, such
that f(n) ≤ c*g(n) for all n ≥ n0

• Algorithm A is O(g(n)) if for any
reasonable implementation of the
algorithm on any reasonable
computer, the time required by A to
solve a problem of size n is O(g(n)).

(1/2 n2 + 1/2 n) is O(n2)
(13.3 n + 4 n3 + 3/4 n2) is O(n3)

CS 134 Slide 86

Big-O notation (intuition)

n

running time
of A1

c1 * g1(n)

n sufficiently large

n

running time
of A2

c2 * g2(n)

n sufficiently large

Algorithm Ai has running time O(gi(n))

CS 134 Slide 87

Use of Big-O notation
• Common classes of functions
− constant: O(1)
− logarithmic: O(log n)
− linear: O(n)
− quadratic: O(n2)
− cubic: O(n3)
− exponential: O(2n)

• We don’t need an exact analysis of
every operation; constants can be
accumulated

• Examples:
− popping an element from a stack:

− removing an element from a list:

− calculating the size of a binary tree:

CS 134 Slide 88

Comparing algorithms
[Jon Bentley, “Programming Pearls: Algorithm Design
Techniques,” Comm. ACM 27, 9 (Sept. 1984) pp. 865-871]
• problem: given an integer array A,

find the values i and j which maximize

Σ A[k]
k=i

j

25 -5 -12 -9 14 12 -13 5 8 -2 18 -8
0 1 2 3 4 5 6 7 8 9 10 11

A

• O(n3) algorithm: try all possible values
of i and j
− How many choices for i?
− How many choices for j, given i?
− Cost of figuring out the value for a given i and j?

CS 134 Slide 89

Alternative approach
• O(n) algorithm: possible through more

clever analysis
− in single pass over array, keep track of best

range so far as well as best starting point for a
range ending at current index

• Bentley’s implementations:
− O(n3) algorithm in finely-tuned FORTRAN on a

Cray-1 supercomputer
− O(n) algorithm in interpreted BASIC on a Radio

Shack TRS-80 Model III microcomputer

• estimated running times:
− 3.0n3 nanoseconds on Cray computer
− 19.5n milliseconds (19500000n nanoseconds) on

Radio Shack computer

CS 134 Slide 90

Bentley’s results

 Cray TRS-80

n 3.0n3 ns 19.5n ms

10 3 µs .195 s

100 .003 s 1.95 s

1000

2500

104

105

106
. . .

Faster hardware isn’t good enough!

CS 134 Slide 91

Efficiency of binary search
• asymptotic analysis: interested in

behaviour for large vectors
int search(int lo, int hi, Comparable key) {
 int mid = (lo + hi)/2;
 if (lo == hi) return lo;
 else ... // compare key to value of data.elementAt(mid)
 return search(mid+1, hi, key);
 or return search(lo, mid, key);
}

•

•

Each recursive call halves vector:
n n/2 n/4 n/8 n/16 …
after i comparisons, hi-lo = n/2i
but search ends when hi-lo < 1

and there is O(1) work between calls

⇒ time for binary search is O(log2n)
Doubling the size of the vector
requires only one more call to search!

CS 134 Slide 92

O(log n)
We usually write O(log n) with no subscript.

Theorem: f(n) is O(log2n) iff f(n) is
O(logkn) for any constant k ≥ 2.

Proof:

CS 134 Slide 93

Efficiency of implementing Table
using a resizable array

Re-examine worst case:
unordered vector ordered vector

method comps moves comps moves

tableRetrieve

tableDelete

tableInsert
(with array large

enough)

tableInsert
(with array fully

occupied)

Exercise: Fill in the corresponding chart
for implementing Table using a linked
list in place of a resizable array.

CS 134 Slide 94

Binary search trees
• A binary search tree is an empty

binary tree or a labelled binary tree
such that:
− The labels can be compared.
− The label of the root of a binary search tree is

greater than all labels in its left subtree.
− The label of the root of a binary search tree is

less than all labels in its right subtree.
− The left and right subtrees are also binary search

trees.

k

<k >k

• Note: Binary search tree for a given set not unique
40

3010

20 50

70

60

3010

20

50

7040

60

CS 134 Slide 95

Binary search trees as
implementations of tables

• labels represent associations (or just keys if
no associated values)

• simple code for retrieving an item:

public TableBSTBased implements TableInterface{
 BinaryTree table;

 ...

public KeyedItem tableRetrieve(Comparable SearchKey) {
 BinaryTree subtree = locate(searchKey,table);
 if (subtree.isEmpty()) return null; // not in tree
 else return (KeyedItem) subtree.getRootItem();
}

protected static BinaryTree locate
 (Comparable searchKey, BinaryTree tree) {
// post: returns subtree where the root node contains the sought key,
// or empty tree if not found
 if (tree.isEmpty()) return tree; // not in tree
 KeyedItem treeItem = (KeyedItem) tree.getRootItem();
 if (searchKey.compareTo(treeItem.getKey()) == 0)
 return tree; // found it
 else if (searchKey.compareTo(treeItem.getKey()) < 0)
 // if it's there it must be in the left subtree
 return locate(searchKey, tree.leftSubtree());
 // otherwise, if it's there it must be in the right subtree
 else return locate(searchKey, tree.rightSubtree());
}

...

}

• efficiency?

CS 134 Slide 96

Maintaining a binary search tree
• Inorder traversal encounters values in

increasing order.
• Insertion

Postcondition can be expressed recursively.
− Empty tree: replaced by a leaf node containing

the new value
− Otherwise: if the new value is less than the root’s

value, inserted in the left subtree; else inserted in
the right subtree
What should be done for duplicate keys?

• Deletion
Postcondition can be expressed by cases.
1) Not present: no change to the tree
2) Else value to delete found in leaf: that leaf

deleted
3) Else value to delete found in node having one

empty subtree: that node deleted and other
subtree attached to the parent

4) Else value to delete found in node having two
non-empty subtrees: that node contains the
value previously found in its predecessor (or
successor) node and that other node deleted
(using either case 2 or 3 as appropriate)

CS 134 Slide 97

Sorting
•

•

•

•

goals for studying sorting:
− “common knowledge” in computer science
− wide variety of possible approaches
− practice in the design and analysis of algorithms

assumptions:
− All the data can fit in memory.
− Data is all comparable and stored in array of size n.
− Sort methods are public static void
sort(Comparable[] theArray, int n) or
sort(Comparable[] theArray, int start, int end)
2 important operations affecting time:
− comparisons: comparing values of two data items
− data movements: moving or copying a data item
Ignore operations on index values, etc.
Rationale:

∗ data access and manipulation may be
expensive for large objects

∗ number of other operations executed between
comparisons and data movements is bounded
by a constant

1 important factor affecting space:
− amount of auxiliary storage: Always need O(n)

space to hold the data itself, but how much other
space is needed?

CS 134 Slide 98

Selection sort
• Idea: repeatedly extract maximal

element from among those still
unsorted

int indexOfLargest(Comparable[] theArray, int size) {
// pre: 0 ≤ size ≤ theArray.length, theArray is non-null and
// elements of array between 0 and size –1 are non-null
// post: returns index result such that theArray[i] <= theArray[result]
// for all i in {0,...,size-1}
 int indexSoFar = 0;
 for (int currIndex=1; currIndex<size; currIndex++) {
 // inv: theArray[indexSoFar] >=theArray[0..currIndex-1]
 if (theArray[currIndex].
 compareTo(theArray[indexSoFar]) > 0) {
 indexSoFar = currIndex;
 }
 }
 return indexSoFar;
}

void selectionSort(Comparable[] theArray, int n) {
// pre: 0 ≤ n ≤ theArray.length, theArray is non-null and every
// element of the array is non-null
// post: values in theArray[0..n-1] are a permutation of the
// original values and in non-descending order
 for (int last = n-1; last >= 1; last--) {
 // inv: theArray[last+1..n-1] is sorted and each element is
 // >= any element in theArray[0..last]
 int largest = indexOfLargest(theArray, last+1);
 Comparable temp = theArray[largest];
 theArray[largest] = theArray[last];
 theArray[last] = temp;
 }
}

CS 134 Slide 99

Correctness of selection sort
• Convince ourselves and others that

precondition + execute(method body)
⇒ postcondition

• Examine preconditions,
postconditions, and loop invariants
− loop invariant: a major form of assertion
− at the top of a loop: true on every iteration of the loop
− constraints on loop variables and progress towards goal

• For indexOfLargest, loop picks out the
largest element not yet included in
sorted part

<p p unsorted

• For main loop, largest elements have
been identified and they are in sorted
order

CS 134 Slide 100

Efficiency of selection sort
•

•

How much auxiliary space is needed?

What is the running time?
Look at the structure of the code:
for (int last=n-1; last >= 1; last--) {

 ... indexOfLargest(...) ...

 }

where indexOfLargest looks like:
for (int currIndex=1; currIndex<size;

currIndex++) {

 ...

 }

and size = last+1

CS 134 Slide 101

Linear insertion sort
Idea: repeatedly insert the element that
happens to be next into the proper
place among those elements already
sorted.

see Carrano & Prichard, pp 392-395

•

•

What is the running time and space?

What is an appropriate loop invariant?

CS 134 Slide 102

A recursive sorting algorithm:
mergesort

• Idea: merge results of applying
mergesort to both halves of the data

see Carrano & Prichard, pp 395-400

•

•

•

Important subroutine: merge
− Input is two sorted ranges in an array.
− Identify candidate at start of each input range.
− Repeatedly copy the smaller of the two

candidates to the temporary array.
− When one input range is exhausted, simply copy

the rest of the other one to the temporary array.
− Copy the temporary array back to the input array.

time =

space =

CS 134 Slide 103

Mergesort itself
•

•

•

Mergesort uses “divide and conquer”
− divide a large problem into smaller problems
− solve the smaller problems
− put the solutions together to form an answer to

the larger problem

In mergesort,
− smaller problems: sorting two half arrays

∗ to be solved recursively
− put the solutions of those two problems together

using merge

Code outline:

void mergesort(d[0..n-1]) {
 if (n>1) {
 mergesort(d[0..n/2-1]);

 // elements in first half of d now in increasing order
 mergesort(d[n/2..n-1]);
 // elements in second half of d now in increasing order
 merge(d[0..n/2-1], d[n/2..n-1]);

 // all elements of d now in increasing order
 }

}

CS 134 Slide 104

Analysis of mergesort
• If n is a power of 2, the “tree of

problems to solve” looks like:

n

n/2 n/2

n/4 n/4n/4 n/4

11

2

1 1

2

11

2

1 1

2

. . .

. . .

. . .

.

. . .

where labels represent sizes of the problems to solve

•

•

Runtime =

Auxiliary space =

CS 134 Slide 105

Quicksort
• Idea:
1. partition: pick some pivot element and

place it where it belongs;
2. sort all elements less than the pivot;
3. sort all elements greater than the pivot

see Carrano & Prichard, pp 400-412

int partition(Comparable theArray[],

int first, int last);
// pre: 0 ≤ first ≤ last < theArray.length
// post: returns split s.t. first ≤ split ≤ last
// and permutes theArray s.t
// theArray [i] ≤ theArray [split] for first ≤ i < split
// theArray [i] ≥ theArray [split] for split < i ≤ last

• How could you code partition so it
needs only O(1) auxiliary storage?
1. We need to select a partitioning value.
2. We need to move larger elements to the end of

theArray and smaller elements to the beginning
of theArray.

3. We’ll need a loop to compare elements in
theArray to the partitioning value.
− What should we use as a loop invariant?

p < p ≥ p ?

first lastS1 firstUnknown last

CS 134 Slide 106

Analysis of quicksort (time)
•

•

•

•

Like mergesort, quicksort also uses
divide and conquer, but the sizes of the
two problems depend on the input.
Best case
− each segment split exactly in two ⇒ O(n log n)

[similar “tree of problems” to that of mergesort]
− but splits having n/2 elements in each part not likely

Worst case
− each segment split on its first element ⇒ O(n2)
− but how likely are splits into 0 and n-1 elements?

So what can we expect on average?
− assume all elements distinct and each one could be

chosen as split element with equal probability
− splits having n/4 elements in one of the parts still yield

“logarithmic height tree” (but base of logarithm is
smaller, so value is larger by constant factor) and
probability of split at least this good is 0.5

− similarly for splits having n/k elements in one of the
parts, for any constant k

− Intuitively: average case is like best case but with
larger constant factor

− O(n log n) average case can be proven using material
from Stats 230.

CS 134 Slide 107

Analysis of quicksort (space)
•
•

•

O(1) space for partition
But space needed on program stack
to manage the recursion
− Stack will have an activation record for

each segment of A that still remains to
be sorted

− Worst case occurs when lots of small
segments remain to be sorted; could be
O(n)

Auxiliary space = O(log n) with clever
re-programming

CS 134 Slide 108

Speeding up quicksort
•

•

•

Try to avoid bad splits (e.g., do not
just choose first elements as pivots).
− randomization works well
− worst case still O(n2), but less likely in practice to

have “bad” inputs

Speed up the algorithm in practice by
using linear insertion sort on small
segments (e.g., < 10 elements).
− increases range of base cases
− also appropriate for speeding up mergesort

Even better: Stop recursion without
sorting small segments (e.g., < 10
elements) at all:
− every element within 10 of its final position
− final single call to linear insertion sort finishes

overall sort quickly

CS 134 Slide 109

Sorting summary

 select insert merge quick

best
time

O(n2) O(n) O(n log n) O(n log n)

average
time

O(n2) O(n2) O(n log n) O(n log n)

worst
time

O(n2) O(n2) O(n log n) O(n2)

time for
sorted
input

O(n2) O(n) O(n log n) O(n log n) ∗

aux.
space

O(1) O(1) O(n) † O(log n) ‡

− Other properties: stability

∗ But O(n2) if pivots not properly selected.
† But some implementations use O(n2) space.
‡ But many implementations use O(n) in the worst case.

CS 134 Slide 110

History of some main ideas in
Computer Science

• Calculating machines: 17th Century
− 1614 - John Napier

∗ logarithms: Napier bones
− 1642 - Blaise Pascal

∗ digital adding machine
− 1671 - Gottfried Wilhelm Leibniz

∗ multiplication, division, and square roots

• Punched card control: 19th Century
− 1801 - Joseph-Marie Jacquard

∗ Jacquard loom wove complicated patterns
described by holes in perforated cards

− 1835 - Charles Babbage
∗ Analytical engine: operations and input values

on perforated cards
plus conditional execution and overwriting

intermediate data (as well as instructions)
∗ Lady Ada Lovelace: algorithm as program

− 1886 - Herman Hollerith
∗ Electrically read punched cards for tabulating
∗ Sorting and punching peripherals
∗ 1911: Computing Tabulating Recording Co.

(evolved to become IBM)

CS 134 Slide 111

What is computing?
• Late 19th Century
− Formal approaches to set theory and algebra

• What can we compute?
− 1900 - David Hilbert (Hilbert’s problems)

∗ Presented 23 problems for the 20th Century
∗ How to formulate axioms for all of arithmetic

and show them to be consistent?
− 1910-1913 - B. Russell and A. N. Whitehead

∗ Principia Mathematica: axiomatic logic
− 1931 - Kurt Gödel (Incompleteness)

∗ In any consistent formulation of arithmetic,
some formulae are not provably true or false

∗ Gödel numbering of all formulae
− 1936 - Alan Turing, Alonzo Church, Emil Post

∗ Turing machine: model of computation having
a finite automaton controller read and write
symbols on an unbounded tape

∗ Computable functions
∗ Universal Turing machine: takes the Gödel

number of the Turing machine to emulate as a
parameter

∗ Undecidability: the halting problem

CS 134 Slide 112

Early computers
• Motivating applications in 1940s
− perform military computations
− break codes
− census
− later, business applications

• Automatic digital computers, 1939-46
− John Atanasoff & Clifford Berry (Iowa) – ABC
− Konrad Zuse (Berlin) – Z1, Z2, Z3

∗ (=> … Siemens)
∗ Plankalkül programming language

− Howard Aiken (Harvard) – Mark I
∗ electromechanical computer

− Presper Eckert & John Mauchly (Penn) – ENIAC
∗ electronic computer
∗ later development of Univac (=> … Unisys)

− John von Neumann (Princeton) – EDVAC
∗ von Neumann machine: single processor,

stored program, stored return address for
procedure call

∗ von Neumann, Arthur Burks, & Herman Goldstine:
design for parallel processors

− Alan Turing (Nat’l Physical Lab, London) – ACE
∗ “reversion storage” provided a hardware stack

CS 134 Slide 113

Programming languages
• Algorithmic languages
− Grace Murray Hopper’s A-0 compiler (1951)
− Fortran (1957), Cobol (1959)
− Algol (1960)
− PL/I (1965)
− BCPL (1966), B (1972), C (1975)
− Pascal (1970), Modula (1975)
− Ada (1979)

• Array, list and string languages
− IPL (1957), LISP (1958), Scheme(1975)
− APL (1962)
− COMIT (1962), Snobol (1964)
− sed (1978), AWK (1978), PERL (1991)

• Object-oriented languages
− Simula (1967)
− Smalltalk (1972)
− Alphard (1976), Clu (1979)
− C++ (1983)
− Java (1995)

CS 134 Slide 114

Computer Science as a discipline
• Encompasses hardware, software,

theory, methods, applications
− George Forsyth, Alan Perlis

• CS subareas
[Report of the ACM Task Force on the Core of
Computer Science, Denning, et al., 1989]

− Algorithms and data structures
− Programming languages
− Architecture
− Numerical and symbolic computation
− Operating systems
− Software methodology and engineering
− Database and information retrieval systems
− Artificial intelligence and robotics
− Human-computer communications

CS 134 Slide 115

Some CS Notables
• Hardware
− J. Cocke, I. Sutherland, D. Englebart
− Supercomputers, personal computers
− storage devices, peripherals, graphics
− communications & distributed computing

• Operating systems
− F. Brooks, E. W. Dijkstra
− Multics (MIT), Unix (Bell Labs)
− DOS, Mac-OS, Windows

• Computability and complexity
− N. Chomsky
− What can be feasibly computed?

∗ NP-Completeness (S. A. Cook, R. M. Karp)
∗ Public Key Cryptosystems

− models of parallelism

• Correctness
− R. W. Floyd, E. W. Dijkstra, C. A. R. Hoare
− structured programming, software engineering

CS 134 Slide 116

Motivating applications in the 1990s
• Business
− database management
− process planning
− telecommunications
− electronic commerce

• Science and engineering
− scientific computation
− symbolic computation
− embedded systems
− robotics
− simulation
− bioinformatics

• Human-computer interaction and
entertainment
− graphics
− vision
− natural language processing
− information retrieval

CS 134 Slide 117

A. M. Turing Award Recipients
“given to an individual … for contributions … of lasting
and major technical importance to the computer field”

1966 A.J. Perlis
1967 Maurice V. Wilkes
1968 Richard Hamming
1969 Marvin Minsky
1970 J.H. Wilkinson
1971 John McCarthy
1972 E.W. Dijkstra
1973 C.W. Bachman
1974 Donald E. Knuth
1975 Allen Newell
1975 Herbert A. Simon
1976 Michael O. Rabin
1976 Dana S. Scott
1977 John Backus
1978 Robert W. Floyd
1979 Kenneth E. Iverson
1980 C. Antony R. Hoare
1981 Edgar F. Codd
1982 Stephen A. Cook
1983 Ken Thompson
1983 Dennis M. Ritchie
1984 Niklaus Wirth
1985 Richard M. Karp
1986 John Hopcroft

1986 Robert Tarjan
1987 John Cocke
1988 Ivan Sutherland
1989 William (Velvel) Kahan
1990 Fernando J. Corbató
1991 Robin Milner
1992 Butler W. Lampson
1993 Juris Hartmanis
1993 Richard E. Stearns
1994 Edward Feigenbaum
1994 Raj Reddy
1995 Manuel Blum
1996 Amir Pnueli
1997 Douglas Engelbart
1998 James Gray
1999 Frederick P. Brooks, Jr.
2000 Andrew Chi-Chih Yao
2001 Ole-Johan Dahl
2001 Kristen Nygaard
2002 Ronald L. Rivest
2002 Adi Shamir
2002 Leonard M. Adelman
2003 Alan Kay

