
MATH 128 Calculus 2, Solutions to Term Test 2, Winter 2007

[10] 1: (a) Let a1 = 1 and for n ≥ 1 let an+1 = 2
√

an. Show that the sequence {an} converges, and find
the limit.

Solution: If the sequence does converge, with say lim
n→∞

an = l, then by taking the limit on both

sides of the equation an+1 = 2
√

an we find that l = 2
√

l, so l2 = 4l and so l = 0 or l = 4. The first
few terms of the sequence are a1 = 1, a2 = 2 and a3 = 2

√
3. We claim that 0 < an < an+1 < 4

for all n ≥ 1. Note that we do have 0 < a1 < a2 < 4. Suppose that 0 < ak < ak+1 < 4. Then
0 <

√
ak <

√
ak+1 < 2 and so 0 < 2

√
ak < 2√ak+1 < 4, that is 0 < ak+1 < ak+2 < 4. Thus the

claim is true for all n ≥ 1, by induction. This shows that {an} is increasing and bounded above
by 4, so it does converge. Since it converges, the limit must be 0 or 4 (as shown above). Since
a1 = 1 and {an} increases, we must have lim

n→∞
an = 4.

(b) Evaluate the sum
∞∑

n=1

3n+1 − 2
5n

.

Solution:
∞∑

n=1

3n+1 − 2
5n

=
∞∑

n=1

3n+1

5n
−

∞∑
n=1

2
5n

=
9
5

1− 3
5

−
2
5

1− 1
5

= 9
2 −

1
2 = 4.
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[10] 2: Test each of the following series for convergence. Indicate which convergence tests you use for
each series.

(a)
∞∑

n=1

n√
n3 + 2

Solution: Let an =
n√

n3 + 2
and let bn =

n√
n3

=
1

n1/2
. Then lim

n→∞

an

bn
= 1 and

∑
bn diverges, so∑

an diverges too, by the L.C.T.

(b)
∞∑

n=1

(−1)n n
√

2

Solution: Let an = (−1)n n
√

2. Then |an| = n
√

2 = 21/n. As n →∞ we have 1
n → 0 so |an| → 20 =

1. Since |an| 6→ 0, we have an 6→ 0 so
∑

an diverges by the D.T.

(c)
∞∑

n=2

1
n lnn

Solution: Let an =
1

n lnn
and let f(x) =

1
x lnx

so that an = f(n). Note that f(x) is decreasing

for n ≥ 2 so we can apply the I.T. Letting u = ln x so that du = 1
x dx we have

∫
f(x) dx =∫

dx

x lnx
=

∫
du

u
= lnu + c = ln(lnx) + c, so

∫ ∞

2

f(x) =
[
ln(lnx)

]∞
2

= ∞. Thus
∑

an diverges

by the I.T.

(d)
∞∑

n=0

n!

2(n2)

Solution: Let an =
n!
2n2 . Then

an+1

an
=

(n + 1)!
2n2+2n+1

· 2n2

n!
=

n + 1
22n+1

=
n + 1
2 · 4n

. By l’Hôpital’s Rule,

lim
n→∞

an+1

an
= lim

x→∞

x + 1
2 · 4x

= lim
x→∞

1
2 · ln 4 · 4x

= 0. Thus
∑

an converges by the R.T.
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[10] 3: (a) Find the interval of convergence of the power series
∞∑

n=1

(3− 2x)n

√
n

.

Solution: Let an =
(3− 2x)n

√
n

. Then
|an+1|
|an|

=
|3− 2x|n+1

√
n + 1

·
√

n

|3− 2x|
=

√
n

n+1 |3 − 2x|, so

lim
n→∞

|an+1|
|an|

= |3 − 2x| = |2x − 3|. By the R.T,
∑

an converges when |2x − 3| < 1 and diverges

when |2x−3| > 1. Note that |2x−3| < 1 ⇐⇒ −1 < 2x−3 < 1 ⇐⇒ 2 < 2x < 4 ⇐⇒ 1 < x < 2.
When x = 1 we have an = 1√

n
so

∑
an diverges, and when n = 2 we have an = (−1)n

√
n

, so
∑

an

converges by the A.S.T. Thus the interval of convergence is (1, 2].

(b) Find the Taylor polynomial of degree 3 centered at x = 0 for f(x) =
ln(1 + x)

ex
.

Solution: We have

f(x) = ln(1 + x)e−x

=
(
x− 1

2 x2 + 1
3 x3 − · · ·

)(
1− x + 1

2 x2 − · · ·
)

= x +
(
−1− 1

2

)
x2 +

(
1
2 + 1

2 + 1
3

)
x3 + · · ·

= x− 3
2 x2 + 4

3 x3 + · · · .

Thus the Taylor polynomial is T3(x) = x− 3
2 x2 + 4

3 x3.
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[10] 4: (a) Let f(x) = cos(x2/2). Find the 8th derivative f (8)(0).

Solution: We have cos x = 1− 1
2! x2 + 1

4! x4 − · · · so

cos
(

x2

2

)
= 1− 1

2!

(
x2

2

)2

+ 1
4!

(
x2

2

)4

− · · ·

= 1− 1
22 2! x4 + 1

24 4! x8 − · · ·

Thus f (8)(0) = 8! c8 = 8!
24 4! = 8·7·6·5

24 = 7 · 3 · 5 = 105.

(b) Evaluate the sum
∞∑

n=0

n + 1
2nn!

. Hint: use the Taylor series centered at 0 for f(x) = x ex.

Solution: We have ex =
∞∑

n=0

1
n!

xn so x ex =
∞∑

n=0

1
n!

xn+1. Take the derivative on both sides to get

(x + 1) ex =
∞∑

n=0

n + 1
n!

xn. Put in x = 1
2 to get 3

2 e1/2 =
∞∑

n=0

n + 1
2n n!

.
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[10] 5: Estimate the value of 1√
30

so that the absolute error is E ≤ 1
10,000 .

Hint: use the Taylor series centered at 0 for f(x) = (25 + x)−1/2.

Solution: We have

f(x) = (25 + x)−1/2

= 1
5

(
1 + x

25

)−1/2

= 1
5

(
1 +

(
− 1

2

) (
x
25

)
+ (− 1

2 )(− 3
2 )

2!

(
x
25

)2 + (− 1
2 )(− 3

2 )(− 5
2 )

3!

(
x
25

)3 + (− 1
2 )(− 3

2 )(− 5
2 )(− 7

2 )
4!

(
x
25

)4 + · · ·
)

for all x with
∣∣ x
25

∣∣ < 1, that is all x with |x| < 25, and so

1√
30

= f(5)

= 1
5

(
1 +

(
− 1

2

) (
1
5

)
+ (− 1

2 )(− 3
2 )

2!

(
1
5

)2 + (− 1
2 )(− 3

2 )(− 5
2 )

3!

(
1
5

)3 + (− 1
2 )(− 3

2 )(− 5
2 )(− 7

2 )
4!

(
1
5

)4 + · · ·
)

= 1
5 −

1
2·52 + 1·3

22·2!·53 − 1·3·5
23·3!·54 + 1·3·5·7

24·4!·55 − · · ·
∼= 1

5 −
1

2·52 + 1·3
22·2!·53 − 1·3·5

23·3!·54 = 1
5 −

1
50 + 3

1000 −
1

2000 = 400−40+6−1
2000 = 365

2000 = 73
400

with absolute error E ≤ 1·3·5·7
24·4!·55 = 7

80,000 < 1
10,000 by the A.S.T.

To be completely rigorous, we should verify that the A.S.T. can be applied. To do this, let

an = (−1)n1·3·5···(2n−1)
2n·n!·5n+1 so that 1√

30
= 1 +

∞∑
n=1

an. We already know that the sum converges, and

so we know that an → 0 (and hence |an| → 0) by the D.T, but we also need to check that
{
|an|}

is decreasing in order to be able to apply the A.S.T. Note that

|an+1|
|an| = 1·3·5···(2n+1)

2n+1(n+1)! 5n+2 · 2nn! 5n+1

1·3·5···(2n−1) = 2n+1
2·5·(n+1) < 2(n+1)

2·5·(n+1) = 1
5

and so we do have |an+1| < |an| for all n, as required.

5


