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What is computer science? 
 “The discipline of computing is the 
systematic study of the algorithmic 
processes that describe and transform 
information: their theory, analysis, 
design, efficiency, implementation, and 
application.  The fundamental question 
underlying all of computing is, ‘What 
can be (efficiently) automated?’ ” 
Denning et al., “Computing as a Discipline,” 
Communications of the ACM 32, 1 (Jan 1989) pp. 9–23. 

• 

• 

• 

a young discipline that arose from 
several more established fields 
(mathematics, science, engineering) 

key words: algorithm, information (“informatics”)  

term coined by George Forsythe, a 
numerical analyst and founding head 
(1965-1972) of Stanford Univ. CS 
Department  
CS at Waterloo: formally founded in 
1967 as the Department of Applied 
Analysis and Computer Science  
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Aspects of computer science 
• 

• 

• 

Design (from engineering) 
− establish requirements and specifications; create 

artefacts based on sound design principles 
− application: create hardware and software that is 

flexible, efficient, and usable 

Theory (from mathematics) 
− develop model; prove theorems 
− application: analyze the efficiency of algorithms 

before implementation; discover limits to 
computation 

Experimentation (from science) 
− form hypothesis, design experiments, and test 

predictions 
− application: simulate real-world situations; test 

effectiveness of programs whose behaviour 
cannot be modelled well 

These aspects appear throughout CS, 
often concurrently. 
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Abstraction 
“Fundamentally, computer science is a 
science of abstraction – creating the right 
model for a problem and devising the 
appropriate mechanizable techniques to 
solve it.  Confronted with a problem, we 
must create an abstraction of that problem 
that can be represented and manipulated 
inside a computer.  Through these 
manipulations, we try to find a solution to 
the original problem.” 

A. V. Aho & J. D. Ullman, Foundations of Computer Science 
 

Object-oriented design concentrates on data abstraction: 
1. identify entities occurring in problem domain 
2. partition similar entities into sets 
3. identify properties and operations common to all 

entities in each set 
4. define interfaces to support operations on objects 

that belong to each entity set 
5. define code modules to implement the entity sets 

∗ choose representations for objects 
∗ implement methods for constructing and 

manipulating objects conforming to the 
interfaces 
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Abstract Data Types 
• 

• 

• 

• 
• 

• 

An abstract data type (ADT) includes 
− set of values (data space) 
− set of operators (methods) 

examples: 
− real numbers with addition, subtraction, absolute 

value, square root, ... 
− ordered sequences of characters with 

concatenate, substring, length, ... 
− sets of objects with union, intersection, size, ... 
− points in the plane with x-coordinate, distance, ... 

allows us to define further types 
tailored to applications’ needs 
independent of programming language  
also applicable to procedural 
programming languages 
independent of data representation and 
operator implementation 
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ADTs (cont'd)  
• 

• 

Use the principle of information hiding 
coined by David Parnas in 1972 
“Every module [should be] characterized by its 
knowledge of a design decision which it hides 
from all others.” 

− particularly important to hide decisions that are 
likely to change (when they are found to be 
wrong or the environment has changed) 

− benefits software maintenance and reuse  

ADT List 
− collection of n objects indexed from 1 to n  

∗ <i1, i2, i3, … , in> 
− can create an empty list 

∗ createList() 
− can get the number of items 

∗ s.size() 
− can access element at an arbitrary index of List s 

∗ s.get(index) 
− can insert new elements 

∗ s.add(index, item) 
− can remove elements 

∗ s.remove(index) or s.removeAll() 
− special check for empty List 

∗ s.isEmpty() ≡ (s.size() == 0) 
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Assertions in programs 
• 

• 

• 

An assertion is: 
− a logical claim about the state of a program  
− located at a specific point in the program 
− assumed true whenever that point is reached  

Example:   0 ≤ i < a.length 
precise, concise, and convincing 
documentation  
can be used to  
− guide the creation of a program (design) 
− reason formally about a program and verify its 

correctness (theory) 
− drive formulation of test cases and debugging 

strategy (experiment) 
 

Properties of assertions 
− comments 
− snapshots of what is claimed to be true 

during execution at some specific point in the 
code 

− noteworthy static statements 
− not descriptions of action or change 

 



CS 134  Slide 7 

Specification by assertions 
• 

• 

•

•

preconditions: assertions that must be 
true when the method is invoked 
postconditions: assertions that will be 
true when the method returns 
Specify the syntax and semantics of each method: 
− its signature : 

∗ name of method and type of result 
∗ names and types of parameters  

− assumed properties of its inputs 
− intended effects of its execution  

public static int valueAt (int[] a, int i); 
// pre: 0 ≤ i < a.length 
// post: returns a[i] 

public boolean equals (Object other); 
// post: returns true iff this has the same value as other 
 

 

A method with preconditions and 
postconditions specifies a contract 
between the implementer and its 
users. 
− preconditions need not be checked within method 

Pre- and postconditions give the basis 
of testing and of formal verification. 
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Specification of ADT List 
 
public interface ListInterface { 
/* finite (possibly empty) collection of objects, indexed from 1 to size() */ 
  
 public boolean isEmpty(); 
 // post: Returns true iff this is empty 
 
 public int size(); 
 // post: Returns the number of items that are currently in this 
 
 public void removeAll(); 
 // post: this is empty 
 
 public void add(int index, Object item)  
   throws ListIndexOutOfBoundsException, 
     ListException; 
 // post: If index >= 1, index <= size()+1 and this is not full, then, item  
 // is at index and other items are renumbered accordingly;  
 // if index < 1 or index > size() + 1, 
 //  throws ListIndexOutOfBoundsException;  
 // if list is full, throws ListException  
 
 public Object get(int index) 
  throws ListIndexOutOfBoundsException; 
 // post: If 1 <= index <= size(), the item at position index in the list is  
 // returned; throws ListIndexOutOfBoundsException if index < 1 or  
 // index > size() 
 
 public void remove(int index)  
  throws ListIndexOutOfBoundsException; 
 // post: If 1 <= index <= size(), the item at position index in the list is 
 // deleted, and other items are renumbered accordingly; throws 
 // ListIndexOutOfBoundsException if index < 1 or index > size(). 
 

}  
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ADTs in Java 
• 

• 

• 

• 

Classes provide representations and 
implementations of an ADT allowing 
for their instantiation 
We would like to separate these 
details from the ADT's specification 
Java provides specific mechanism 
that it calls an interface. 
− Java “interface” is a set of method signatures. 

∗ no code for the methods 
∗ no constructors 

− Java interfaces can extend other Java interfaces. 
∗ interfaces form a hierarchy 

− A class implements one or more interfaces. 
∗ For each method in an interface, such a class 

must provide a method that matches the 
interface method signature exactly.  

interface TA extends Student, Employee { ... } 
class teachAsst implements TA, Cloneable { ... } 

syntax and semantics of the operators 
are defined by the interface 
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Java Data Types 
• Program variables contain either 
− values of primitive types (int, char, etc.), or  
− references to arrays or to objects (values of 

subclasses of the class Object)  
int temperature; 
int [] dailyHighTemperatures; 
Object highAndLowTemperatures; 

ListInterface temperatureReadings; 

∗ Variable declared with a class name can refer 
to objects in any subclass. 

∗ Variables declared with an interface name can 
refer to objects in any class implementing that 
interface. 

• Casting 
− When an object is constructed (using new), its 

type is established. 
Square sq = new Square(3); 

− An object of type T can always be treated as if it 
were of a supertype of T (upcast). 
Rectangle rec = sq; 

∗ Thus all objects can be treated as type Object. 
∗ If an object is cast to some supertype (upcast), 

it can later be downcast to its original type. 
sq = (Square) rec; /* could raise exception */ 
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Wrapper classes 
To use primitive values in situations requiring objects, 
need to “wrap” them.  For example: 
public final class java.lang.Integer  
     extends java.lang.Number { 
  ... 
    public Integer(int value); 
  // post: constructs wrapper object to hold value 
     
    public boolean equals(Object obj); 
  // post: returns true iff this.intValue() == obj.intValue() 
 
    public int intValue(); 
  // post: returns value wrapped by this 
 
    public String toString(); 
  // post: returns string representation of this.intValue(); 
 ... 

} 
 

− N.B. These wrapper classes define “immutable” 
objects: there are no “set” or “update” methods.  

− Similar classes exist for booleans, doubles, etc. 
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ADT Hierarchy 
• 

• 

• 

• 

• 

ADT SortedList is a finite collection of 
objects maintained in a specified 
order together with the operations: 
− createSortedList, sortedIsEmpty, sortedSize, 

sortedAdd(item), sortedRemove(item), 
sortedGet(index), locateIndex(item)  

operations in common with ADT List 
can be put into a more general ADT 
BasicList ADT 
− methods: size, isEmpty, removeAll, get  

hierarchy is reflected in the Java 
interfaces, not the Java classes 
classes that implement this interface 
must provide 
− one or more constructors 

∗ basic constructor inherits default implementation 
− correct implementation for each method  

∗ semantics of each method specified by 
pre-and postconditions 

∗ equals and toString inherit default 
implementations from Object 
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Representation independence 
• 

• 

Define all variables using the name of 
the ADT’s interface, not any of the 
classes that implement that interface. 

ListInterface s; 

...  
s.add(i,x); 

− ADT user need not be aware of representation. 
− Implementation can be changed without altering 

any user code. 

Use a “data factory” to create all objects. 
− cannot define a constructor in an interface 

∗ therefore cannot create instance of ADT 
without reference to its representation 

− problem: every use of new exposes the representation 
− solution: restrict new to special “creator” methods 

public static ListInterface makeList() { 
 return new ListArrayBased(); 
} 

and collect all such constructing methods (at least 
one per ADT) in a “data factory” class. 

Then, wherever needed in an application: 
 
ListInterface s = DataFactory.makeList(); 
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Advantages of using ADTs 
 

ADT method calls  

program that 
uses ADT 

implementation
2 of ADT 

implementation
1 of ADT 

implementation
3 of ADT data factory 

module 2 

module 1 

module 3 

 

• 

• 

• 

Choice of which implementation to 
use is isolated within data factory. 
System recognizes actual types of 
objects and connects method calls to 
correct classes implicitly.  
result: increased modularity 
− software understandable and reusable  
− supports programming in teams or incrementally 
− separation protects proprietary code 
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Software testing 
“A man is his own easiest dupe, for what he wishes to be true 
he generally believes to be true.” Demosthenes 

• 

• 

• 

• 

part of initial development effort and 
integral part of the maintenance cycle 
provides some evidence that software 
meets its specifications 
− Must be systematic, not haphazard 
− Must be well-documented 
− Must be repeatable 

Unit testing: purpose is to show that 
components meet their specifications 
System testing: … integrated whole 
meets its specifications 

To be most effective, software testers 
must adopt the attitude that their goal is 
to show that the software does not 
meet its specifications. 
“Whatever is only almost true is quite false, and among the 
most dangerous of errors, because being so near the truth, it is 
the more likely to lead astray.”  Henry Ward Beecher 
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Black-box testing 
• 
• 

• 

• 

Design test cases based on specifications 
Recall: pre- and postconditions define 
a contract. 
− test input should meet preconditions 
− test runs should compare output to expected 

results implied by postconditions 

“typical” input: values of data 
expected to be common in practice 
boundary values: data that makes the 
precondition(s) “barely” true 

For example,  
public void removeMe (Object[] array); 
// pre: array not null  
// post: removes first occurrence of this, if any, closing  
//  gap and setting the last entry to null 

test cases involving x.removeMe(a): 
[] a.length == 0 
[x] x is the only member 
[null] null is the only member 
[y,…,x,…,z] x is in the middle 
[x,…,y] x is at the start 
[y,…,x] x is at the end 
[y,…,z] x is not in the array 
[y,…,x,…,x,…,z] x repeats 
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White-box testing 
• 

• 

Design test cases based on the 
structure of the code. 
Execute every line of code. 
− Branch testing: tests for each alternative 
− Loop testing: tests to iterate 

∗ 0 times ∗ exactly once 
∗ several times ∗ as often as possible 

− Exit testing: tests to cause each condition for 
loop or method exit  

− Exception testing: test of exception handling 

Continuing example: 
public void removeMe (Object[] array) { 
// pre: array not null  
// post: removes first occurrence of this, if any, closing  
//  gap and setting the last entry to null 
 int i;  
 for (i = 0; i < array.length; i++) { 
   if (array[i] == this) break; 
 } 
 if (i == array.length) return; 
 while (i < array.length-1) { 
  array[i] = array[i+1]; 
  i++; 
 } 
 array[i] = null; 
} 
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Systematic testing 
Test plan: collection of tests to perform; for each test:  

∗ describe condition(s) being tested 
∗ input data 
∗ expected results 

Test log: record of the results of running tests 
∗ pairing test from test plan to output produced 

Test harness: program that reads test plan from a 
data file, executes it, and writes test log to output file 
Regression testing: testing modified code with 
identical inputs used to test that code previously 

• 

• 

• 

Test each class implementing an ADT 
− include main method to invoke the test harness 

with suitable test plan  
− test each constructor and each method 
− rerun after each code change to ensure changes 

eliminated errors without introducing new ones  

Test application (system) 
− black-box: use system specifications only 
− white-box: use knowledge of components and 

their interactions 

Prepare system test report 
− test log for system as a whole 
− explain any deviations from specifications 
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Implementation of List 
• 

• 

• 

• 

• 

• 

might choose a data structure that will 
allow random access to elements at a 
given index  
a partially filled array of a fixed size 
might be a reasonable choice if an 
upper bound on the number of items 
to be inserted into the List is known 
a partially filled array which is resized 
when full is a data structure that will 
grow and shrink gracefully as objects 
are inserted into and removed from a 
List 
Carrano & Prichard only discuss this 
briefly on pp. 160-161 
this is precisely what a Vector or 
ArrayList is (java.util) 
N.B. A Vector or ArrayList is not really 
an ADT because of trimToSize() and 
capacity() 
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Dynamic storage in Java 
• 

• 

Space to hold the value of a variable 
“local” to a method is allocated 
automatically.  
Space to hold the value of an object 
or array is explicitly allocated and 
initialized upon construction.  
− in response to use of new or array initializer 
 

 

45 

space for “local” 
method variables 

space for explicitly  
allocated storage 

93123456 
 
 

student 

where reference 
or primitive value
is stored where object or array 

is stored 

count

 grades 73 99 65 

Jane Doe 
Honours CS 
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Using references in Java 
Assume Student is a class that includes: 
 int id; String name; String major; 
 public int silly (int k, int [ ] c, Student s) { 
  k++; c[1]++; this.setID(k); 
  if (s != null) s.setID(c[0]); 
  if (!s.equals(this)) s = this; 
  return(k); 
 } 
 public void setID (int newID) {id = newID;} 
 
Line # Code 
1,2,3 int i, j;  int[] a, b;  Student p, q, r; 
4,5,6 i = 5; j = 6; j = i; 

7,8,9,10 a = new int[3]; b = a; b[0] = 5; a[1]++; 
11 p = new Student(8, ”Jo”, ”CS”); 
12 q = new Student(9, ”Lee”, ”C&O”); 
13 r = p; 
14 j = p.silly(i,a,q); 

i

j

a

b

p

q

r
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Implementation of List as a 
partially-filled array 

• Uses two instance variables:  
int numItems;  // number of elements in List 
Object [] items; // storage for List's elements 

 

list 

items 

numItems 4 

 ?  ... ? 

i1 i4 i2 i3 

 
or more simply diagrammed as 

 
4 

numItems items 

0 1 2
... 

length-1 3 4

i1 i2 i3 i4

 

• Straightforward implementations for 
size(), isEmpty() and get(index) using 

 
 private int translate(int position) { 
 // pre: 1 ≤ position ≤ numItems+1 
 // post: position - 1 
    return position - 1; 
   }   
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Updating an array-based List 
simple loop needed to close gap  • 

• 

public void remove (int index)throws  
ListIndexOutOfBoundsException { 
// post: If 1 <= index <= size(), the item at position index in the  
// list is deleted, and other items are renumbered accordingly;  
// throws ListIndexOutOfBoundsException if index < 1 or  
// index > size(). 
  
  if (index >= 1 && index <= numItems) { 
     for (int pos = index+1; pos <= size(); pos++) 
     { 
       items[translate(pos-1)] = 
        items[translate(pos)]; 
     } 
   items[translate(numItems)] = null; 
     numItems--; 
  } 
  else { 
      throw new ListIndexOutOfBoundsException( 
       "ListIndexOutOfBoundsException on remove"); 
    } 
}   

removeAll() simply requires setting 
items to a new empty array 
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Adding elements to an array-
based List 

 

• 

• 

add(index, item) might require array 
to be enlarged  
replacing the array: 
− allocate a larger array (but how much larger?) 
− copy all the elements (object references) to the 

new array 
− replace (the reference to) the old array by (a 

reference to) the new one 
 

 

 

list 

items

numItems 5 

8 3 

   

dup 

20 15 7 
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Alternative implementation of List: 
singly-linked list 

 
list 

• 

head

numItems 2 

next

item  

next

item  

8 20 

 
• 
• 

Expands and contracts as needed 
Diagrammatic representation 

 

O4 O1 O2 O3 

• 

4 

0 • 
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Manipulating linked list elements 
Node methods: see Carrano & Prichard p 163 

 

Node myNode = new Node(new Integer(5)); 
myNode.setItem(new Integer(7)); 
myNode.setNext(new Node(new Integer(9))); 
myNode.getNext().setItem(new Integer(2)); 
Node temp = myNode.getNext(); 

Node node = new Node(myNode.getItem()); 
temp.setNext(node); 

 

 

myNode 
 

temp
 

node
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Implementation of List as a 
singly-linked list 

 
public class ListReferenceBased implements 
        ListInterface { 
 private Node head; 
 private int  numItems; 
 

 private Node find(int index) { 
 // pre: 1 ≤ index ≤ numItems   
 // post: Returns a reference to the node at position index  
  Node curr = head; 
  for (int skip = 1; skip < index; skip++) { 
   curr = curr.getNext(); 
  } 
  return curr; 
 } 
 
 public void remove(int index)  
 throws ListIndexOutOfBoundsException { 
 // post: see previous slide for precondition and postcondition 
  if (index >= 1 && index <= numItems) { 
   if (index==1){ head=head.getNext(); 
   } else { 
    Node prev = find(index-1); 
    Node curr = prev.getNext(); 
    prev.setNext(curr.getNext()); 
   } 
   numItems--; 
  } else {  
   throw new  
    ListIndexOutOfBoundsException(); 
  } 
 }  
 ... 
} 
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Variations on linked lists 
• circularly linked lists 

 

O4 O1 O2 O3 

4 

 
• doubly-linked lists 

 

O4 O1 O2 O3 

• 

4 

• 
 

 

• other variants: no counters; more links; 
“sentinel” element at end
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ADT Deque 
• 
• 

• 

• 

alternative linear collection 
functionality: 
− add only at either of the two ends 
− read at ends 
− test for membership via contains 
− remove at ends 

 
implementation alternatives: 
− as linked list (singly-linked, doubly-linked, circular) 
− as Vector or ArrayList 
− as ADT List 
 

efficiency trade-offs? 
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Measuring efficiency 
• 

• 

• 

• 

some possible measures: 
− the amount of time it takes to code 
− the amount of memory the code uses 
− the amount of time it takes to run 
− the amount of memory the data uses 

costs to prepare and to maintain 
software critical aspects of software 
engineering 
principal measures for this course: 
efficiency of software execution 
How can we compare several 
possible choices of algorithm or 
several possible implementations of 
an interface?  
− run the code (stopwatch approach) 

∗ influenced by hardware 
∗ influenced by compiler and system software 
∗ influenced by simultaneous users’ activity 
∗ influenced by selection of data 

− analyze the code (or pseudo-code) 
∗ still influenced by choice of data 

 



CS 134  Slide 31 

Comparing implementations 
• 

• 

• 

first approximation: abstraction that 
ignores low level details 
− calculate number of method invocations for 

critical methods used 
− typically interested in methods that read object’s 

values or change object’s values 
− for collections, often interested in  

∗ number of data values encountered (e.g., how 
many calls to getNext()) 

∗ number of data values moved or modified (e.g., 
how many calls to setNext() or setItem()) 

concerned with how algorithm 
behaves across all possible inputs 
− worst-case analysis (worst input) 
− best-case analysis (best input) 
− average-case analysis (depends on distributions) 

usually analysis done with respect to 
data of a given, but unknown, size 
− e.g., Considering all collections having N 

elements (for any fixed value of N), how many 
times is operation P executed in the worst case? 
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Code analysis: example 
Consider possible implementation of a 
remove by value method for array-
based representation of List 
 
public Object removeByValue(Object obj){ 
// pre: obj is non-null 
// post: removes and returns the first object equal to obj from the array; 
// returns null if no objects are equal to obj 
 int index; 
 for (index = 0; index < numItems; index++){ 
  if (obj.equals(items[index])) break; 
 } 
 if (index == numItems) return null; 
 Object val = items[index]; 
 numItems--; 
 while (index < numItems) { 
  items[index] = items[index+1]; 
  index++; 
 } 
 items[numItems] = null; // free reference 
 return val; 
} 

• 

• 

How many calls will be made to 
equals (comparing two data values)? 
− best case? worst case? 
− what would influence the average case? 

How many elements are moved to a 
new location in the array? 
− best case? worst case? 
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ADT Stack 
• 

• 

• 

• 

A linear collection, (s1, s2, ..., sn), of 
elements accessed from one end only 
− top: sn   

Sometimes called a LIFO structure 
(last-in first-out) 
Operations: 
∗ boolean isEmpty() 
∗ void popAll() 
∗ void push(Object newItem) 
∗ Object pop()  
∗ Object peek() 
 
∗ plus an operation to create an initially empty 

stack (e.g., DataFactory.makeStack()) 

Applications: 
− processing nested elements (e.g., subroutine 

flow control) 
− reversing element ordering 
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Using a stack to check that 
parentheses are balanced 

a(b()cd(e))(f)g is OK, but not 
(h(i)k or l(m)) or n)( 

• 

 

class BalanceChecker { 
 StackInterface S =  
     DataFactory.makeStack(); 
 ... 

public boolean check (String in) { 
S.popAll(); 
for (int i=0; i < in.length(); i++) { 
 if (in.charAt(i) == ‘(’) 
  S.push(new Integer(i)); 
 else if (in.charAt(i) == ‘)’) { 
  if (S.isEmpty()) 
   return false; 
  Integer open =(Integer) S.pop(); 

  // open.intValue() position has matching ′(′ 
 } 
} 
return (S.isEmpty()); 

} 
} 

•  Why does this algorithm work?  
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Array-based implementation of 
Stack 

 

top items

0 1 2

... 

length-1 

s2 s1 1 
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Linked-list-based implementation 
of Stack 

S1S4 S3 S2

•

count 4
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Implementing method calls using 
a stack 

• 

• 

• 

An array-based stack is normally 
used within generated code 
All information needed to support a 
particular method call is kept in an 
activation record 
− space for parameter values 
− space for local variables 
− space for location to which control is returned 

During execution, maintain the stack 
of activation records 
− When method called:  activation record created, 

initialized, and pushed onto the stack 
− When a method finishes, its activation record is 

popped 
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ADT Queue 
• 

• 

• 

• 

A linear collection, (q1, q2, ..., qn), of 
elements  accessed in sequence 
− front: q1;  rear: qn   

Sometimes called a FIFO structure 
(first-in first-out) 
Operations: 
∗ createQueue() 
∗ boolean isEmpty() 
∗ void dequeueAll() 
∗ void enqueue(Object newItem)  
∗ Object dequeue() 
∗ Object peek() 

Applications: 
− communications channel 
− items waiting to be serviced 
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The use of queues in producer-
consumer situations 

• General situation: one software 
package is producing data and 
another is consuming the same data. 

producer consumer

 

• 

• 

Rate of consumption or production 
often data-dependent.  
Producer can use enqueue to insert 
and Consumer can use dequeue to 
take data in insertion order.  
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Queue using a circular linked list 
 

q4 q1 q2 q3 

4 Q: 

 
public Object dequeue ( ) { 
// pre: queue is not empty 
// post: the head of the queue is removed and returned 
 Object val = tail.getNext().getItem(); 
 count--; 
 if (count == 0) tail = null; 
 else tail.setNext( 
    tail.getNext().getNext()); 
 return val; 
} 
public void enqueue(Object val) { 
// post: val is added to the tail of the queue 
 Node temp = new Node(val); 
 if (count == 0) { 
  tail = temp; 
  tail.setNext(tail); 
 } 
 else { 
  temp.setNext(tail.getNext()); 
  tail.setNext(temp); 
  tail = temp; 
 } 
 count++; 
} 
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Queue using a “circular” array 
• Naïve use of array 

 

count items

0 1 2

... 

length-1 

q2 q1 2 

 
− dequeue ⇒ shuffling values to start of array 

• Alternative: let queue drift down array 

 

count items

0 1 2

... 

length-1 

front 

1 2 x q1 q2 

 
− when reaching end of array, wrap around to start 

 

count items

0 1 2

... 

length-1 

front 

length-1 2  q1 q2 

 
• Implementation details . . . 

see Carrano & Prichard, Chapter 7 
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The use of queues in simulation 
• 
• 

• 

• 

Example: a store’s cashier 
Long periods of waiting punctuated by 
occurrence of events 
Possible events:   
− arrival of a new customer 
− completion of service to a customer checking out 

Event-driven simulation 
− concentrates on the events  
− ignores the time in between when nothing 

changes  
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Event-driven simulation 
• 

• 

• 

pseudocode for event-driven simulation: 
time = 0 
while (simulation not over) 
 time = time of next event 
 update state according to event 

for the example: arrivals and departures  
− find which event is next by “polling” possible 

sources (e.g., check time for next arrival vs. time 
for next departure) 

For an arrival, check for a free cashier: 
− if there is one, the customer goes to that cashier  
− otherwise, the customer joins the line of 

previously waiting customers 

cashier
 

• Determining times for various events: 
− need to know arrival times and how long it takes 

to service each customer 
∗ use data from a log obtained from tracing 

existing system (trace-driven simulation) 
∗ use data generated from a model based on 

probability distributions 
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Collecting statistics 
• 

• 

• 

• 

in the store example: average 
customer wait, average length of the 
line, amount of busy time of cashiers  
only need to update statistics when 
events occur 
Where do queues come in?  
− For a bank, there is usually one queue 

representing the waiting customers; for 
supermarkets there are several.  

− There could be several classes of queues for 
various services. 

− Queue item:  object representing customer (e.g. 
recording arrival time) 

What data to keep for simulating the 
following system? 

greeter

bar

food
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Ariane 5 
On 4 June 1996, the maiden flight of the Ariane 5 launcher 
ended in failure. Only about 40 seconds after initiation of 
the flight sequence, at an altitude of about 3700 m, the 
launcher veered off its flight path, broke up and exploded. 

[Ariana 5 Flight 501 Failure, Report by the Inquiry Board, July 1996] 

What happened? 
− “At 36.7 seconds after H0 (approx. 30 seconds after lift-off) the 

computer within the back-up inertial reference system, which 
was working on stand-by for guidance and attitude control, 
became inoperative. This was caused by an internal variable 
related to the horizontal velocity of the launcher exceeding a 
limit which existed in the software of this computer. 

− “Approx. 0.05 seconds later the active inertial reference 
system, identical to the back-up system in hardware and 
software, failed for the same reason. Since the back-up inertial 
system was already inoperative, correct guidance and attitude 
information could no longer be obtained and loss of the mission 
was inevitable. 

− “As a result of its failure, the active inertial reference system 
transmitted essentially diagnostic information to the launcher's 
main computer, where it was interpreted as flight data and 
used for flight control calculations. 

− “On the basis of those calculations the main computer 
commanded the booster nozzles, and somewhat later the main 
engine nozzle also, to make a large correction for an attitude 
deviation that had not occurred.” 
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Ariane 5 (cont’d) 
The inertial reference system of Ariane 5 is essentially common to a 
system which is presently flying on Ariane 4.  

So, how did the failure happen? 
− “The part of the software which caused the interruption in the 

inertial system computers is used before launch to align the 
inertial reference system and, in Ariane 4, also to enable a 
rapid realignment of the system in case of a late hold in the 
countdown. This realignment function, which does not serve 
any purpose on Ariane 5, was nevertheless retained for 
commonality reasons and allowed, as in Ariane 4, to operate 
for approx. 40 seconds after lift-off. 

− “In Ariane 4 flights using the same type of inertial reference 
system there has been no such failure because the trajectory 
during the first 40 seconds of flight is such that the particular 
variable related to horizontal velocity cannot reach, with an 
adequate operational margin, a value beyond the limit present 
in the software. 

− “Ariane 5 has a high initial acceleration and a trajectory which 
leads to a build-up of horizontal velocity which is five times 
more rapid than for Ariane 4. The higher horizontal velocity of 
Ariane 5 generated, within the 40-second timeframe, the 
excessive value which caused the inertial system computers to 
cease operation.” 

Lessons learned:  

R5 … Identify all implicit assumptions made by the code and its 
justification documents on the values of quantities provided 
by the equipment. Check these assumptions against the 
restrictions on use of the equipment…. 

R11 Review the test coverage of existing equipment and extend 
it where it is deemed necessary. 

R12 Give the justification documents the same attention as code. 
Improve the technique for keeping code and its justifications 
consistent…. 
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Software in the real world  
• 
• 
• 
• 

• 

• 

Specifications change 
People change 
Support systems change 
Intended applications change 

Programs must survive these changes. 
well-designed programs are 
adaptable 
well-designed components can be 
reused 

Guideline: Design and document 
software components as you would 
have others design and document them 
for you. 
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The “Software Life Cycle”  

ImplementationDesign

TestingAnalysis

ReleaseMarketing

Requirements

Specification

Architecture

Software

Correction Product

 
Iterative model of software evolution 

[Hume, West, Holt, and Barnard] 

• 

• 

Note the cycle! 
− more accurate than including a maintenance box 

as part of the traditional “waterfall model” 
− for correcting software 
− for responding to new marketing information 

Throughout the whole life cycle, 
documentation is critical: to capture 
rationale and communicate intent 
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Professional Ethics 
References: 
Michael J. Quinn, Ethics for the Information Age, 
Addison-Wesley, 2005. 
Deborah G. Johnson, Computer Ethics, Third 
Edition, Prentice Hall, 2001. 

• 

• 

Computing affects society at large 
− Safety (e.g., Ariane 5, Therac-25) 
− Security (and hence privacy) 
− Reliability (i.e., systems and applications fulfill 

their purpose) 
− Protection of intellectual and other property 

Computer scientists need to address 
variety of responsibilities: 
− Role responsibility results from assigned duties 
− Causal responsibility results from previous 

actions (or inactions) 
− Legal responsibility results from laws 
− Moral responsibility results from human society 

Note: Unlike the others, moral responsibility is 
not exclusive; it cannot be avoided by passing it 
on to others. 

 

Responsibilities arise in a variety of relationships: 
with employers, support staff, clients, society at 
large, and other computing specialists. 
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Dealing with Responsibilities 
Unfortunately, responsibilities sometimes 
conflict (e.g., dilemma of whistle-blowers). 
Example scenarios: 
• [Johnson, p.55] You are in charge of 

designing a database management system 
for the personnel office of a medium-sized 
company.  After reviewing the options for 
providing security, the client insists that the 
cheapest security system be implemented, in 
spite of your detailed explanation of the 
security risks. You know that highly 
confidential information will be stored in the 
database.  What should you do? 
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Further scenarios 
• 

• 

[Quinn, pp. 386-7] While installing a software 
package on a colleague’s computer, you 
accidentally come across directories with 
suspicious looking names.  In spite of company 
policy against reading other peoples email, web 
logs, and personal files, you look further and 
discover that several files contain child 
pornography. What should you do? 

[Quinn, pp. 387-88] While battling a new computer 
worm, you realize that one way to close the 
responsible software loophole is to write an anti-
worm program that spreads like a worm, patching 
the loophole on each machine that it reaches. You 
implement the anti-worm, prove that it will not 
cause any other damage to any target machines, 
and release it, taking precautions that the anti-
worm cannot be traced back to you. Is this ethical? 
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Computing Profession 
• 

• 

Characteristics of a profession 
Typified by doctors, lawyers, engineers, architects, 
accountants, clergy 

− Mastery of an esoteric body of knowledge. 
− Autonomy. 
− Formal organization. 
− Code of ethics. 
− Fulfillment of an important social function. 

Members of a profession are held to higher 
standards of responsibility. 

Infrastructure to support a profession 
− Initial professional education  
− Accreditation 
− Skills development 
− Certification 
− Licensing (in case of exclusive right to practice) 
− Ongoing professional development 
− Code of ethics 
− Professional society 
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Fundamental ethical principles 
• 
• 

• 
• 
• 

• 

• 
• 
• 

Be impartial. 
Disclose information that others ought 
to know. 
Respect the rights of others. 
Treat others justly. 
Take responsibility for your actions 
and inactions. 
Take responsibility for the actions of 
those you supervise. 
Maintain your integrity. 
Continually improve your abilities. 
Share your knowledge, expertise, and 
values. 
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Code of Ethics and Standards of 
Conduct (CIPS) 

P) To the public: I will endeavour at all times to protect the 
public interest. I will strive to promote understanding of 
information systems and their application. I will not represent 
myself as an authority on topics in which I lack competence. 

M) To myself and my profession: I will guard my competence 
and effectiveness as a valuable possession. I will work to 
maintain them despite changing circumstances and 
requirements. I will demonstrate the highest personal 
standards of moral responsibilities, character, and integrity 
when acting in my professional capacity. 

C) To my colleagues: I will treat my colleagues with integrity 
and respect their right to success. I will contribute to the 
information systems profession to the best of my ability 

E) To my employer and/or clients: I will give conscientious 
service to further my employer's and/or client's legitimate 
best interests through management's direction. 

R) To my employees and contracted staff: I will observe their 
obligation to uphold the Code of Ethics of the professional 
societies to which they belong. 

S) To my students: I will provide a scholarly education to my 
students in a supportive and helpful manner.  

These are refined in the code though a list of specific, non-
exhaustive obligations. 
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Principles of the Software Engineering 
Code of Ethics (ACM/IEEE) 
(with cross-references to CIPS categories) 

1. Software engineers shall act consistently with the public 
interest. (P) 

2. Software engineers shall act in a manner that is in the best 
interests of their clients and employer, consistent with the 
public interest. (E) 

3. Software engineers shall ensure that their products and 
related modifications meet the highest professional 
standards possible. (C,E) 

4. Software engineers shall maintain integrity and 
independence in their professional judgment. (P,M) 

5. Software engineering managers and leaders shall 
subscribe to and promote an ethical approach to the 
management of software development and maintenance. 
(E,R) 

6. Software engineers shall advance the integrity and 
reputation of the profession consistent with the public 
interest. (P,C) 

7. Software engineers shall be fair and supportive of their 
colleagues. (C,R) 

8. Software engineers shall participate in lifelong learning 
regarding the practice of their profession and shall promote 
an ethical approach to the practice of the profession. (M) 

These are refined in the code though a list of clauses giving 
specific, but non-exhaustive examples. 
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Recursive definitions 
• common in mathematics 

Recursive definition defines an object in terms of 
smaller objects of the same type. 

• includes base (degenerate) cases 
and recursive cases 

• Example 1: factorial function 
n! = 1 if n=0 {base case} 
n! = n(n-1)! if n>0 {recursive case} 

• Example 2: Fibonacci numbers 
f0 = f1 = 1  {base cases} 
fn = fn-1 + fn-2  if n≥2 {recursive case} 

• Example 3: balanced strings 
− base case: 

A string containing no parentheses is balanced. 
− recursive cases: 
(x) is balanced if x is a balanced string. 
xy is balanced if x and y are balanced strings. 
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Recursive definitions (cont’d) 
• Example 4: sublist  

 an empty collection  {base case} 
 the pair <H,L> where H is a 
head element and L, the 
remainder, is a sublist 

{recursive case} 

e.g., <6,<2,<9,φ>>> where φ is the empty collection 
− alternative “pictures” 

6 2 9

 
{ 6 { 2 { 9 { } } } } 

< 6 2 9 > 

• Example 5: contains 
 sublist L contains object x if L is not empty and 
∗ the head element of L is x or  
∗ the remainder of L contains x  
 

• Example 6: encompasses 
 sublist L1 encompasses sublist L2 if  
∗ L1 is L2 (i.e., they both name the same thing), or  
∗ L1 is the pair <E, L1′> and L1′ encompasses L2.  
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Recursive structures 
public interface NestingInterface { 

public boolean isEmpty(); 
// post: Returns true iff this is empty. 

public Object getRootItem() throws 
NestingException; 

// post: Returns value associated with the root if this is not 
//  empty; otherwise throws NestingException. 
 

 public void setRootItem(Object newItem); 
// post: Sets the value associated with the root to be newItem 
//   if this is not empty; otherwise sets this to consist of a 
//   root node only, with root item set to newItem. 
 
public void makeEmpty(); 
// post: this is empty. 

} 
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Sublist ADT 
• 
• 

linear nestings 
need nesting + access to nested sublists 

class SubListException extends NestingException{} 
public interface SubListInterface extends  
        NestingInterface { 
 
 public void attachRemainder  
      (SubListInterface newRem) 
     throws SubListException; 

// pre: newRem is non-null. 
// post: Throws SubListException if this is empty or the  
//  remainder of this is non-empty; otherwise, attaches  
//  the sublist referenced by newRem as the remainder  
//  of this and sets newRem to be the empty sublist. 
 

 public SubListInterface detachRemainder() 
     throws SubListException; 

// post: Throws SubListException if this is empty; otherwise,  
//  returns the sublist that is the remainder of this and sets  
//  the remainder to be the empty sublist. 
 

} 

<a<b<>>> <> 

<x<>> 

b 

x a 
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Implementing SubListInterface 
• Assume the class SubList implements 

the  SubListInterface. 
  
 public class SubList implements  
       SubListInterface { 
 
 

• 

 ... code for each method in the interface ... 
 
  protected SubList remainder() 
      throws SubListException { 

 // post: throws SubListException if this is empty; otherwise,  
 //  returns the remainder. 
 

   ...  code similar to code for detachRemainder, but  
    without changing the sublist denoted by this  ... 
 
  } 
 } 

remainder() must be used with care! 
− useful for accessing components of SubList without 

deconstruction and subsequent reconstruction  
− returned object shares its value with part of some 

other object 
SubList s1 = .... 

SubList s2 = s1.remainder(); 

s2.setRootItem(x); // s1 has also been changed!! 

− available to any class in the same package and 
to any class extending SubList, but not to other 
users of SubList
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A non-linear recursive structure  
• A binary tree is a finite collection of 

nodes that is 
 empty, or 
 partitioned into 3 sub-collections: a designated 
node, called the root, together with two binary 
trees, designated as left and right subtrees 

 

or is 

base case, empty tree recursive case 
 

• Tree terms for nodes: root and leaf 
• Familial terms for nodes: parent, 

child, sibling, ancestor, descendant 
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Binary trees on three nodes 
 

 

• Note: one-to-one correspondence 
between nodes in a binary tree and 
non-empty binary subtrees 
encompassed by that tree 
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Labelled binary trees 
• Typically nodes are labelled. 
• Examples: 
− yes-no decision tree 

congestion?

sneezing? 

cough? 

back pain? 

itchy eyes? 

allergies cold 

 

− expression tree (for binary operators) 
-

9 *

2

41

+

 

• Semantics captured by nesting 
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Binary Tree ADT 
• based on recursive definition of tree 
class TreeException extends NestingException{} 
public interface BinaryTreeInterface extends    

        NestingInterface { 
 
 public void attachLeft (Object newItem); 

// pre: this is not empty. 
// post: No change if the left subtree is non-empty; otherwise, sets 
//  the left subtree to be a leaf node with associated value set 
//  to newItem. 

 
 public void attachLeftSubtree (BinaryTreeInterface 

leftTree) throws TreeException; 
// pre: leftTree is non-null. 
// post: Throws TreeException if this is empty or the left subtree 
//  is non-empty; otherwise, attaches value of leftTree as the  
//  left subtree of this and sets leftTree to be the empty tree. 

 
 public BinaryTreeInterface detachLeftSubtree() throws 

     TreeException; 
// post: Throws TreeException if this is empty; otherwise, 
//  returns the left subtree of this and sets the left subtree 
//  to be the empty tree. 

 
... and analagous methods for right subtrees  

} 

• leftSubtree and rightSubtree useful protected 
methods in classes implementing 
BinaryTreeInterface 

• Carrano & Prichard extend BinaryTreeBasis 
instead of Nesting  and do not include 
leftSubtree() and rightSubtree() methods  
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Recursive programs 
• Solution defined in terms of solutions 

for smaller problems of the same type 
int solve (int n) {. . . 
 value = solve(n-1) + solve(n/2); 

. . .} 

• One or more base cases defined 
. . . if (n < 10) value = 1; . . . 

• Some base case is always reached 
eventually. 

Example: 
 

static public int fib (int n) { 
// pre: n ≥ 0 
// post: returns the nth Fibonacci number 

 

  if (n < 2) return 1; 
  else return fib(n-1) + fib(n-2); 
} 

• N.B. structure of code typically 
parallels structure of definition 
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Tracing recursive programs 
• recall: stack of activation records 
− When method called:  activation record created, 

initialized, and pushed onto the stack 
− When a method finishes, its activation record is 

popped 

A

C

D

B

 

• same mechanism for recursive 
programs 

A
A

A

A
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Recursive sublist programs 
• Some additional methods that might 

be included in the SubList class 
1. calculating the size of a sublist 
 
public int size() { 
// post: Returns number of elements in this. 
 if (isEmpty()) return 0; 
 return 1 + remainder().size(); 
} 

2. searching for an item in a sublist 
 
public boolean contains (Object key) { 
// pre: key is not null. 
// post: Returns true iff a sublist has a head value matching key. 
 if (isEmpty()) return false; 
 if (key.equals(getRootItem())) return true; 
 return remainder().contains(key); 
}  

3. printing the values of a sublist in reverse order 
 
public void printReverse() { 
// pre: this is not empty. 
// post: Prints the elements of this in reverse order. 
 if (!isEmpty()){ 
  remainder().printReverse(); 
  System.out.println(getRootItem()); 
} 
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Recursive binary tree programs 
• Similarly, possible additional methods 

for the BinaryTree class 
1. calculating the size of a binary tree 
 

public int size() { 
// post: Returns number of elements in this. 
 if (isEmpty()) return 0; 
 else return 1 + leftSubtree().size() 
   + rightSubtree().size(); 
} 

2. following a path to find a subtree 
 
public Object follow(Queue path) { 
// pre: path is not null and path objects are all Boolean. 
// post: Returns item at root of subtree identified by path of booleans s.t. 
//  true ⇒ follow left branch, false ⇒ right 
//  and path is set to empty queue; returns null if 
//  path invalid, and valid prefix of path is dequeued. 
  if (isEmpty()) return null; 
  if (path.isEmpty()) return getRootItem(); 
  if (((Boolean) path.dequeue()).booleanValue()) 
    return leftSubtree().follow(path); 
  else 
    return rightSubtree().follow(path); 
} 
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Linked implementation 
• 

• 

• 

Carrano & Prichard Chapter 10 
sublist can be implemented using the 
Node class, similarly, linked 
implementation for binary trees can use a 
TreeNode class: 
3 data fields (item, leftChild, rightChild) 

 root 

rightChildleftChild 

item 

rightChildleftChild

item

rightChildleftChild

item

rightChildleftChild

item

 •  •  • 

 •  • 

 ? 

 ? 

 ? 

 ? 

 
our approach: use recursive BinaryTree 
references in place of TreeNode references 

• 

• 
• 

could also store count or parent references 
representation of an empty binary subtree? 
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Tree traversals 
• want to traverse a tree in some orderly 

manner 
• we visit each node exactly once (e.g. print its 

contents or determine if it meets certain 
criteria) 

• one option is to visit the nodes level by level: 
− for each level of the tree 

visit each node at that level 
 

X

O

B 

AI

S

C 

K 

EZ 

L 

 
− traversal:    X B S K O I A C L Z E 

• known as a breadth-first traversal. 
                 

• can be implemented using a queue 
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Iterators 
• 

• 

• 

• 

• 

• 

• 

Auxiliary types that provide access to the 
elements of a collection 
− each element is “visited” once, and only once 

Iterator interface from java.util 
Iterator i = someTree.getLevelOrderIterator(); 
while (i.hasNext()) { 
 … i.next(); … 
} 

May promise a particular order for visiting 
the elements 
Subclasses may add two more operators: 
− void reset() 
− Object value() 

remove() will delete the last element 
returned by an iterator  
however, in general,  behaviour usually 
undefined if a collection changes during 
iteration  
Note: several iterators can visit a single 
structure simultaneously 
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Depth-first traversals  
• visit tree’s components (root, left subtree, 

right subtree) in some order 
• preorder traversal:  
− visit the root 
− visit the left subtree recursively 
− visit the right subtree recursively 

 

congestion?

sneezing? 

cough? 

back pain?

itchy eyes? 

allergies cold 
 

• Preorder traversal yields parents before 
children, but does not completely 
characterize a tree’s structure. 

 



CS 134  Slide 73 

Implementing tree iterators 
• In the absence of parent pointers, iterator 

supporting depth-first traversal requires a 
stack. 

 

• For preorder, stack maintains list of non-
empty subtrees remaining to be visited 
− when visiting a node, push right subtree (if non-empty) 

and then left subtree (if non-empty) onto stack 
− peek the top of the stack to find current node 
− pop the stack to find next node to visit 
− iterator completes when stack is empty 

• Alternatively, all the work can be done 
during construction of the iterator using 
recursion 
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Inorder traversal 
• ordering:  
− visit the left subtree recursively 
− visit the root 
− visit the right subtree recursively 

• inorder traversal of expression tree gives 
an infix expression  

-

7

-

32

*

2

*

53

+

 

− traversal:    2 * 3 + 5 – 7 – 2 * 3 
− but need to insert ( before visiting any subtree and ) 

after visiting any subtree 
((((2)*((3)+(5)))-(7))-((2)*(3))) 

or perhaps (((2*(3+5))-7)-(2*3)) 

• does not characterize which value labels 
the root 
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Postorder traversal 
• ordering  
− visit the left subtree recursively 
− visit the right subtree recursively  
− visit the root 

• Postorder traversal yields children before 
parents. 

• Postorder traversal of an expression tree 
gives a postfix expression (used for some 
calculators) 

-

7

-

32

*

2

*

53

+

 
 

2 3 5 + * 7 – 2 3 * - 

− unambiguous without parentheses ! 
− “reverse Polish notation” created in 1920s by logician 

Jan Lukasiewicz 
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Properties of binary trees 
• often expressed recursively (following 

definition of binary tree) 
• depth (or level) of a node: 
− root has level 1 
− otherwise 1+ level of parent 

• height of a tree: 
− if the tree is empty, its height is 0  
− otherwise, it height is 

1 + max{height TL, height TR }, where TL  and TR 
designate left and right subtrees 

 
Assume that height is defined in BinaryTree class 
public int height () { 
// post: Returns height of subtree. 
 if (isEmpty()) return 0; 
 else { 
  int leftHt = leftSubtree().height(); 
  int rightHt = rightSubtree().height(); 
  return 1 + Math.max(leftHt,rightHt); 
 } 
} 
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Proving properties about trees 
Theorem: A binary tree of height h has at 
most 2h -1 nodes. 
Proof: (by induction on tree height) 

base case: h = 0 
By definition, h = 0 implies the tree is 
empty.  Thus, there are 0 nodes. Since 
20 -1 = 0, theorem is true for this case. 

inductive case: Assume the theorem is 
true for all h < k, for some k>0, and prove 

of height h = k. it for trees 
A
s
s

the induc

ssume T has height k for 
ome value of k>0.  Then both  
ubtrees are of height < k.  By 
tive hypothesis, TL has at 

most 2k-1 -1 nodes and TR has at most 
2k-1 -1 nodes.  Thus T has at most 
1+2(2k-1 -1) = 2k -1 nodes.       

TL TR

T
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“Strong” induction 
• To prove P(n) true for all n≥0: 
− Base case: Show that P(0) is true 
− Inductive hypothesis: Assume property P(i) is true for 

i=0,1,...,k-1. 
− Inductive conclusion: Show, using the inductive 

hypothesis, that P(k) is true. 

• Variations 
− base case something other than 0 
− several base cases 
− assume P(0), P(1),...,P(k) true and use them to prove 

P(k+1) is true 
− “weak” induction: assume P(k-1) true and use it alone 

to prove P(k) is true 

• The form of the inductive proof usually 
matches the form of the recursion. 
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Number of leaves in a binary tree 
• Define a full node to be a node with 

exactly two children. 
N.B. A tree of height h having the maximum number 
of nodes (2h-1) is called a full tree. 

• Theorem: In any non-empty binary tree, 
the number of leaves is one more than 
the number of full nodes. 
• Proof: 
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ADT Table 
• Components: associations from keys 

(from some domain space) to values 
− simple (partial) functions: values are atomic 
− databases: values are records of field-value pairs 

(often including the key-value pair too) 
− sets: values are empty; ~ characteristic function 

• Examples:  
− mapping from student ID to name 
− mapping from student ID to student record 
− set of student IDs for students in CS 134 

(mapping from ID to “taking CS 134”) 

• Intuitive operations:  
− look up given key ≡ tableRetrieve 
− insert a new association ≡ tableInsert 
− delete association for a given key ≡ tableDelete 

• Keys are unique; values need not be. 
− at most one value per key (although that value 

can be a collection for some tables) 
− does not support inverse mapping except 

through enumeration 

• Iterators do not necessarily encounter 
keys in order. 
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Simple representations 
• Keep table as a sequence of 

associations in no particular order, 
with no keys repeated. 
− using a vector 
− using a linked list 

• efficiency of operations: 
Consider a vector representation. 
Look at number of comparisons of two keys and 
number of elements whose locations in the 
vector change: 
∗ e.g., how many comparisons are executed 

during a call to “retrieve” in the worst case?  or 
in the best case?  how many moves are 
needed during a call to “delete”? 

Similar analyses can be applied to reason about 
linked list representations. 

• implementation convenience: use a 
single private (non-ADT) method 
“position” to find the location of 
association matching a given key, if it 
exists 
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Ordering collections 
Why does a vocabulary dictionary keep 
words in alphabetical order? 
• To find a word, we could start at the 

beginning and scan every word in the 
dictionary.  

• We can do better if the dictionary is 
sorted by key. 

• Idea: open a dictionary near the 
middle, and then determine whether 
to search in the first or second half  

a sorted dictionary is either empty or the 
concatenation of two sorted sub-dictionaries of 
(approx.) half the size for which every word in the 
first is smaller than every word in the second 

⇔

 

• requires that keys be “comparable” 
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Binary search 
Given a Vector of comparable objects in 
ascending order, find the index matching 
a target key if it is present, or otherwise 
return the index of the slot where it would 
be inserted. 

returns index such that 0 ≤ index ≤ data.size(), 
data[0..index-1] < target, and 
data[index..data.size()-1] ≥ target 

 
int position(Comparable target){  
// pre: target is non-null and data values ascending 
// post: returns ideal position of target in data vector 
 return search(0,data.size(),target); 
} 
 
int search(int lo, int hi, Comparable key) { 
// pre: 0 ≤ lo ≤ hi ≤ data.size( ); key not null 
// post: returns ideal position of key in data[lo..hi] 
 Comparable m; 
 int mid = (lo + hi)/2; 
 if (lo == hi) return lo; 
 else { 
  m = (Comparable)data.elementAt(mid); 
  if (m.compareTo(key) < 0)   // m < key 
    return search(mid+1, hi, key); 
  else return search(lo, mid, key); 
 } 
} 

• How efficient is binary search? 
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Bounding efficiency 
• Running time of a program is a 

function of the “size” of the problem 
being solved 
− for collections: size = number of elements  
− for binary search: size = hi – lo 

Consider solution to a problem of size n 
• Running time using one compiler and 

one machine might be 

.33365n2 - .43n + 3.4 µsec  
• Another compiler and another 

machine might take 4.5n2 + 17n msec 
• In either case, doubling the size of a 

large problem means that the solution 
takes about 4 times as long to run 

• simplify both to "order n-squared", 
written O(n2) 
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Big-O notation 
• Intuitively:  
− keep dominant term, 
− remove  leading constant, 
− put O(..) around it 

• Informally: f(n) is O(g(n)) if f(n) and 
g(n) differ by at most a fixed constant 
for sufficiently large n. 

• Formally: f(n) is O(g(n)) if there exist 
two positive constants, c and n0, such 
that f(n) ≤ c*g(n) for all n ≥ n0 

• Algorithm A is O(g(n)) if for any 
reasonable implementation of the 
algorithm on any reasonable 
computer, the time required by A to 
solve a problem of size n is O(g(n)). 

 
(1/2 n2 + 1/2 n) is O(n2) 
(13.3 n + 4 n3 + 3/4 n2) is O(n3) 
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Big-O notation (intuition) 

n

running time
of A1

c1 * g1(n)

n sufficiently large

n

running time
of A2

c2 * g2(n)

n sufficiently large

 

Algorithm Ai has running time O(gi(n)) 
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Use of Big-O notation 
• Common classes of functions 
− constant: O(1) 
− logarithmic: O(log n) 
− linear: O(n) 
− quadratic: O(n2) 
− cubic: O(n3) 
− exponential: O(2n) 

• We don’t need an exact analysis of 
every operation; constants can be 
accumulated 

• Examples: 
− popping an element from a stack:  

− removing an element from a list:  

− calculating the size of a binary tree: 

 



CS 134  Slide 88 

Comparing algorithms 
[Jon Bentley, “Programming Pearls: Algorithm Design 
Techniques,” Comm. ACM 27, 9 (Sept. 1984) pp. 865-871] 
• problem: given an integer array A, 

find the values i and j which maximize 
 

Σ A[k]
k=i

j

 

25 -5 -12 -9 14 12 -13 5 8 -2 18 -8
0 1 2 3 4 5 6 7 8 9 10 11

A

 

• O(n3) algorithm: try all possible values 
of i and j 
− How many choices for i? 
− How many choices for j, given i? 
− Cost of figuring out the value for a given i and j? 
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Alternative approach 
• O(n) algorithm: possible through more 

clever analysis 
− in single pass over array, keep track of best 

range so far as well as best starting point for a 
range ending at current index 

• Bentley’s implementations: 
− O(n3) algorithm in finely-tuned FORTRAN on a 

Cray-1 supercomputer 
− O(n) algorithm in interpreted BASIC on a Radio 

Shack TRS-80 Model III microcomputer 

• estimated running times:  
− 3.0n3 nanoseconds on Cray computer 
− 19.5n milliseconds (19500000n nanoseconds) on 

Radio Shack computer 
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Bentley’s results 
 

 Cray TRS-80 

n 3.0n3 ns 19.5n ms 

10 3 µs .195 s 

100 .003 s 1.95 s 

1000   

2500   

104   

105   

106   
. . . 

Faster hardware isn’t good enough! 
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Efficiency of binary search 
• asymptotic analysis: interested in 

behaviour for large vectors 
int search(int lo, int hi, Comparable key) { 
 int mid = (lo + hi)/2; 
 if (lo == hi) return lo; 
 else ... // compare key to value of data.elementAt(mid) 
   return search(mid+1, hi, key); 
  or return search(lo, mid, key); 
} 

• 

• 

Each recursive call halves vector: 
n n/2 n/4 n/8 n/16 … 
after i comparisons, hi-lo = n/2i 
but search ends when hi-lo < 1 

and there is O(1) work between calls 

⇒ time for binary search is O(log2n) 
Doubling the size of the vector 
requires only one more call to search! 
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O(log n) 
We usually write O(log n) with no subscript. 

Theorem: f(n) is O(log2n) iff f(n) is 
O(logkn) for any constant k ≥ 2. 

Proof:   
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Efficiency of implementing Table 
using a resizable array 

Re-examine worst case: 
unordered vector ordered vector  

method comps moves comps moves 

tableRetrieve     

tableDelete     

tableInsert 
(with array large 

enough) 

    

tableInsert 
(with array fully 

occupied) 

    

 
Exercise: Fill in the corresponding chart 
for implementing Table using a linked 
list in place of a resizable array. 
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Binary search trees 
• A binary search tree is an empty 

binary tree or a labelled binary tree 
such that: 
− The labels can be compared.  
− The label of the root of a binary search tree is 

greater than all labels in its left subtree. 
− The label of the root of a binary search tree is 

less than all labels in its right subtree.  
− The left and right subtrees are also binary search 

trees.  

k

<k >k
 

• Note: Binary search tree for a given set not unique 
40

3010

20 50

70

60

3010

20

50

7040

60
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Binary search trees as 
implementations of tables 

• labels represent associations (or just keys if 
no associated values) 

• simple code for retrieving an item: 
 

public TableBSTBased implements TableInterface{ 
 BinaryTree table; 
 
 ... 
 
public KeyedItem tableRetrieve(Comparable SearchKey) { 
 BinaryTree subtree = locate(searchKey,table);  
 if (subtree.isEmpty()) return null; // not in tree 
 else return (KeyedItem) subtree.getRootItem(); 
} 
 
protected static BinaryTree locate 
  (Comparable searchKey, BinaryTree tree) { 
// post: returns subtree where the root node contains the sought key, 
//   or empty tree if not found 
 if (tree.isEmpty()) return tree; // not in tree 
 KeyedItem treeItem = (KeyedItem) tree.getRootItem(); 
 if (searchKey.compareTo(treeItem.getKey()) == 0) 
  return tree;  // found it 
 else if (searchKey.compareTo(treeItem.getKey()) < 0) 
  // if it's there it must be in the left subtree 
  return locate(searchKey, tree.leftSubtree()); 
       // otherwise, if it's there it must be in the right subtree 
   else return locate(searchKey, tree.rightSubtree()); 
} 
 
... 
 
} 

• efficiency? 
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Maintaining a binary search tree  
• Inorder traversal encounters values in 

increasing order. 
• Insertion  

Postcondition can be expressed recursively. 
− Empty tree: replaced by a leaf node containing 

the new value 
− Otherwise: if the new value is less than the root’s 

value, inserted in the left subtree; else inserted in 
the right subtree 
What should be done for duplicate keys? 

• Deletion 
Postcondition can be expressed by cases. 
1) Not present: no change to the tree 
2) Else value to delete found in leaf: that leaf 

deleted 
3) Else value to delete found in node having one 

empty subtree: that node deleted and other 
subtree attached to the parent 

4) Else value to delete found in node having two 
non-empty subtrees: that node contains the 
value previously found in its predecessor (or 
successor) node and that other node deleted 
(using either case 2 or 3 as appropriate) 
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Sorting 
• 

• 

• 

• 

goals for studying sorting: 
− “common knowledge” in computer science 
− wide variety of possible approaches 
− practice in the design and analysis of algorithms 

assumptions: 
− All the data can fit in memory.  
− Data is all comparable and stored in array of size n. 
− Sort methods are  public static void 
sort(Comparable[] theArray, int n)        or  
sort(Comparable[] theArray, int start, int end) 
2 important operations affecting time:  
− comparisons: comparing values of two data items 
− data movements: moving or copying a data item 
Ignore operations on index values, etc. 
Rationale:  

∗ data access and manipulation may be 
expensive for large objects 

∗ number of other operations executed between 
comparisons and data movements is bounded 
by a constant 

1 important factor affecting space: 
− amount of auxiliary storage: Always need O(n) 

space to hold the data itself, but how much other 
space is needed? 
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Selection sort 
• Idea: repeatedly extract maximal 

element from among those still 
unsorted 

 
int indexOfLargest(Comparable[] theArray, int size) { 
// pre: 0 ≤ size ≤ theArray.length, theArray is non-null and  
// elements of array between 0 and size –1 are non-null  
// post: returns index result such that theArray[i] <= theArray[result]  
// for all i in {0,...,size-1} 
 int indexSoFar = 0; 
 for (int currIndex=1; currIndex<size; currIndex++) { 
 // inv: theArray[indexSoFar] >=theArray[0..currIndex-1] 
  if (theArray[currIndex]. 
    compareTo(theArray[indexSoFar]) > 0) { 
   indexSoFar = currIndex; 
   } 
  } 
 return indexSoFar; 
} 
 
void selectionSort(Comparable[] theArray, int n) { 
// pre: 0 ≤ n ≤ theArray.length, theArray is non-null and every  
// element of the array is non-null 
// post: values in theArray[0..n-1] are a permutation of the  
// original values and in non-descending order 
 for (int last = n-1; last >= 1; last--) { 
 // inv: theArray[last+1..n-1] is sorted and each element is 
 // >= any element in theArray[0..last] 
  int largest = indexOfLargest(theArray, last+1); 
  Comparable temp = theArray[largest]; 
  theArray[largest] = theArray[last]; 
  theArray[last] = temp; 
 } 
} 
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Correctness of selection sort 
• Convince ourselves and others that 

precondition + execute(method body) 
⇒ postcondition 

• Examine preconditions, 
postconditions, and loop invariants 
− loop invariant: a major form of assertion 
− at the top of a loop: true on every iteration of the loop 
− constraints on loop variables and progress towards goal 

• For indexOfLargest, loop picks out the 
largest element not yet included in 
sorted part 

<p p unsorted 

• For main loop, largest elements have 
been identified and they are in sorted 
order 
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Efficiency of selection sort 
• 

• 

How much auxiliary space is needed?  

What is the running time? 
Look at the structure of the code: 
for (int last=n-1; last >= 1; last--) { 

   ... indexOfLargest(...) ... 

 } 

where indexOfLargest looks like: 
for (int currIndex=1; currIndex<size; 

currIndex++) { 

   ...  

 } 

and size = last+1 
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Linear insertion sort  
Idea: repeatedly insert the element that 
happens to be next into the proper 
place among those elements already 
sorted.  

see Carrano & Prichard, pp 392-395 

• 

• 

What is the running time and space? 

What is an appropriate loop invariant? 
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A recursive sorting algorithm: 
mergesort 

• Idea: merge results of applying 
mergesort to both halves of the data 

see Carrano & Prichard, pp 395-400 

• 

• 

• 

Important subroutine: merge 
− Input is two sorted ranges in an array. 
− Identify candidate at start of each input range. 
− Repeatedly copy the smaller of the two 

candidates to the temporary array.  
− When one input range is exhausted, simply copy 

the rest of the other one to the temporary array.  
− Copy the temporary array back to the input array. 
 

time = 

space = 
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Mergesort itself 
• 

• 

• 

Mergesort uses “divide and conquer”  
− divide a large problem into smaller problems  
− solve the smaller problems 
− put the solutions together to form an answer to 

the larger problem  

In mergesort,  
− smaller problems: sorting two half arrays 

∗ to be solved recursively 
− put the solutions of those two problems together 

using merge 

Code outline: 
 

void mergesort(d[0..n-1]) { 
 if (n>1) { 
  mergesort(d[0..n/2-1]); 

  // elements in first half of d now in increasing order 
  mergesort(d[n/2..n-1]); 
  // elements in second half of d now in increasing order 
  merge(d[0..n/2-1], d[n/2..n-1]); 

  // all elements of d now in increasing order 
 } 

} 
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Analysis of mergesort 
• If n is a power of 2, the “tree of 

problems to solve” looks like: 

n

n/2 n/2

n/4 n/4n/4 n/4

11

2

1 1

2

11

2

1 1

2

. . .

. . .

. . .

. . . . . . . . .

. . .

 

where labels represent sizes of the problems to solve 

• 

• 

Runtime =  

Auxiliary space = 
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Quicksort 
• Idea:  
1. partition: pick some pivot element and 

place it where it belongs;  
2. sort all elements less than the pivot; 
3. sort all elements greater than the pivot 

see Carrano & Prichard, pp 400-412 
 
int partition(Comparable theArray[], 

int first, int last); 
// pre: 0 ≤ first ≤ last < theArray.length 
// post: returns split s.t. first ≤ split ≤ last  
// and permutes theArray s.t 
// theArray [i] ≤ theArray [split] for first ≤ i < split 
// theArray [i] ≥ theArray [split] for split < i ≤ last 

• How could you code partition so it 
needs only O(1) auxiliary storage? 
1. We need to select a partitioning value. 
2. We need to move larger elements to the end of 

theArray and smaller elements to the beginning 
of theArray. 

3. We’ll need a loop to compare elements in 
theArray to the partitioning value. 
− What should we use as a loop invariant? 

p < p ≥ p ? 

first lastS1 firstUnknown last  
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Analysis of quicksort (time) 
• 

• 

• 

• 

Like mergesort, quicksort also uses 
divide and conquer, but the sizes of the 
two problems depend on the input. 
Best case 
− each segment split exactly in two ⇒ O(n log n) 

[similar “tree of problems” to that of mergesort] 
− but splits having n/2 elements in each part not likely  

Worst case 
− each segment split on its first element ⇒ O(n2) 
− but how likely are splits into 0 and n-1 elements? 

So what can we expect on average? 
− assume all elements distinct and each one could be 

chosen as split element with equal probability 
− splits having n/4 elements in one of the parts still yield 

“logarithmic height tree” (but base of logarithm is 
smaller, so value is larger by constant factor) and 
probability of split at least this good is 0.5 

− similarly for splits having n/k elements in one of the 
parts, for any constant k 

− Intuitively: average case is like best case but with 
larger constant factor   

− O(n log n) average case can be proven using material 
from Stats 230. 
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Analysis of quicksort (space) 
• 
• 

• 

O(1) space for partition 
But space needed on program stack 
to manage the recursion 
− Stack will have an activation record for 

each segment of A that still remains to 
be sorted 

− Worst case occurs when lots of small 
segments remain to be sorted; could be 
O(n) 

Auxiliary space = O(log n) with clever 
re-programming 
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Speeding up quicksort 
• 

• 

• 

Try to avoid bad splits (e.g., do not 
just choose first elements as pivots).  
− randomization works well 
− worst case still O(n2), but less likely in practice to 

have “bad” inputs 

Speed up the algorithm in practice by 
using linear insertion sort on small 
segments (e.g., < 10 elements).  
− increases range of base cases 
− also appropriate for speeding up mergesort 

Even better: Stop recursion without 
sorting small segments (e.g., < 10 
elements) at all: 
− every element within 10 of its final position 
− final single call to linear insertion sort finishes 

overall sort quickly 
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Sorting summary 
 
 select insert merge quick 

best 
time 

O(n2) O(n) O(n log n) O(n log n) 

average 
time 

O(n2) O(n2) O(n log n) O(n log n) 

worst 
time 

O(n2) O(n2) O(n log n) O(n2) 

time for 
sorted 
input 

O(n2) O(n) O(n log n) O(n log n) ∗

aux. 
space 

O(1) O(1) O(n)  † O(log n) ‡ 

− Other properties: stability 

                                                 
∗ But O(n2) if pivots not properly selected. 
† But some implementations use O(n2) space. 
‡ But many implementations use O(n) in the worst case. 
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History of some main ideas in 
Computer Science 

• Calculating machines: 17th Century 
− 1614 - John Napier 

∗ logarithms: Napier bones 
− 1642 - Blaise Pascal 

∗ digital adding machine 
− 1671 - Gottfried Wilhelm Leibniz  

∗ multiplication, division, and square roots 

• Punched card control: 19th Century 
− 1801 - Joseph-Marie Jacquard 

∗ Jacquard loom wove complicated patterns 
described by holes in perforated cards 

− 1835 - Charles Babbage 
∗ Analytical engine: operations and input values 

on perforated cards 
plus conditional execution and overwriting 

intermediate data (as well as instructions) 
∗ Lady Ada Lovelace: algorithm as program 

− 1886 - Herman Hollerith 
∗ Electrically read punched cards for tabulating  
∗ Sorting and punching peripherals 
∗ 1911: Computing Tabulating Recording Co. 

(evolved to become IBM) 
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What is computing? 
• Late 19th Century 
− Formal approaches to set theory and algebra 

• What can we compute? 
− 1900 - David Hilbert (Hilbert’s problems) 

∗ Presented 23 problems for the 20th Century 
∗ How to formulate axioms for all of arithmetic 

and show them to be consistent? 
− 1910-1913 - B. Russell and A. N. Whitehead 

∗ Principia Mathematica: axiomatic logic 
− 1931 - Kurt Gödel (Incompleteness) 

∗ In any consistent formulation of arithmetic, 
some formulae are not provably true or false 

∗ Gödel numbering of all formulae 
− 1936 - Alan Turing, Alonzo Church, Emil Post 

∗ Turing machine: model of computation having 
a finite automaton controller read and write 
symbols on an unbounded tape 

∗ Computable functions 
∗ Universal Turing machine: takes the Gödel 

number of the Turing machine to emulate as a 
parameter 

∗ Undecidability: the halting problem  
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Early computers 
• Motivating applications in 1940s 
− perform military computations 
− break codes 
− census 
− later, business applications 

• Automatic digital computers, 1939-46 
− John Atanasoff & Clifford Berry (Iowa) – ABC 
− Konrad Zuse (Berlin) – Z1, Z2, Z3 

∗ ( => … Siemens) 
∗ Plankalkül programming language 

− Howard Aiken (Harvard) – Mark I 
∗ electromechanical computer 

− Presper Eckert & John Mauchly (Penn) – ENIAC 
∗ electronic computer 
∗ later development of Univac ( => … Unisys) 

− John von Neumann (Princeton) – EDVAC 
∗ von Neumann machine: single processor, 

stored program, stored return address for 
procedure call 

∗ von Neumann, Arthur Burks, & Herman Goldstine: 
design for parallel processors 

− Alan Turing (Nat’l Physical Lab, London) – ACE 
∗ “reversion storage” provided a hardware stack 
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Programming languages 
• Algorithmic languages 
− Grace Murray Hopper’s A-0 compiler (1951) 
− Fortran (1957), Cobol (1959) 
− Algol  (1960) 
− PL/I (1965) 
− BCPL (1966), B (1972), C (1975) 
− Pascal (1970), Modula (1975) 
− Ada (1979) 

• Array, list and string languages 
− IPL (1957), LISP (1958), Scheme(1975) 
− APL (1962) 
− COMIT (1962), Snobol (1964) 
− sed (1978), AWK (1978), PERL (1991) 

• Object-oriented languages 
− Simula (1967) 
− Smalltalk (1972) 
− Alphard (1976), Clu (1979) 
− C++ (1983) 
− Java (1995) 
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Computer Science as a discipline 
• Encompasses hardware, software, 

theory, methods, applications 
− George Forsyth, Alan Perlis 

• CS subareas 
[Report of the ACM Task Force on the Core of 
Computer Science, Denning, et al., 1989] 

− Algorithms and data structures 
− Programming languages 
− Architecture 
− Numerical and symbolic computation 
− Operating systems 
− Software methodology and engineering 
− Database and information retrieval systems 
− Artificial intelligence and robotics 
− Human-computer communications 
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Some CS Notables 
• Hardware 
− J. Cocke, I. Sutherland, D. Englebart 
− Supercomputers, personal computers 
− storage devices, peripherals, graphics 
− communications & distributed computing 

• Operating systems 
− F. Brooks, E. W. Dijkstra 
− Multics (MIT), Unix (Bell Labs) 
− DOS, Mac-OS, Windows 

• Computability and complexity 
− N. Chomsky 
− What can be feasibly computed? 

∗ NP-Completeness (S. A. Cook, R. M. Karp) 
∗ Public Key Cryptosystems 

− models of parallelism 

• Correctness 
− R. W. Floyd, E. W. Dijkstra, C. A. R. Hoare 
− structured programming, software engineering 
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Motivating applications in the 1990s 
• Business 
− database management 
− process planning 
− telecommunications 
− electronic commerce 

• Science and engineering 
− scientific computation 
− symbolic computation 
− embedded systems 
− robotics 
− simulation 
− bioinformatics 

• Human-computer interaction and 
entertainment 
− graphics 
− vision 
− natural language processing 
− information retrieval 
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A. M. Turing Award Recipients 
“given to an individual … for contributions … of lasting 
and major technical importance to the computer field” 

1966 A.J. Perlis 
1967 Maurice V. Wilkes 
1968 Richard Hamming 
1969 Marvin Minsky 
1970 J.H. Wilkinson 
1971 John McCarthy 
1972 E.W. Dijkstra 
1973 C.W. Bachman 
1974 Donald E. Knuth 
1975 Allen Newell 
1975 Herbert A. Simon 
1976 Michael O. Rabin 
1976 Dana S. Scott 
1977 John Backus 
1978 Robert W. Floyd 
1979 Kenneth E. Iverson 
1980 C. Antony R. Hoare 
1981 Edgar F. Codd 
1982 Stephen A. Cook 
1983 Ken Thompson 
1983 Dennis M. Ritchie 
1984 Niklaus Wirth 
1985 Richard M. Karp 
1986 John Hopcroft 

1986 Robert Tarjan 
1987 John Cocke 
1988 Ivan Sutherland 
1989 William (Velvel) Kahan 
1990 Fernando J. Corbató 
1991 Robin Milner 
1992 Butler W. Lampson 
1993 Juris Hartmanis 
1993 Richard E. Stearns 
1994 Edward Feigenbaum 
1994 Raj Reddy 
1995 Manuel Blum 
1996 Amir Pnueli 
1997 Douglas Engelbart 
1998 James Gray 
1999 Frederick P. Brooks, Jr. 
2000 Andrew Chi-Chih Yao 
2001 Ole-Johan Dahl 
2001 Kristen Nygaard 
2002 Ronald L. Rivest 
2002 Adi Shamir 
2002 Leonard M. Adelman 
2003 Alan Kay 

 


