
MATH 128 = Calculus 2 for the Sciences, Fall 2006
Assignment 8 SOLUTIONS

DueWednesday, November 22in Drop Box 9 before class
To receive full marks, correct answers must be fully justified.

1. Manipulate a known power series (from the list at the bottom of pages 612 and 618 of your textbook) to
find a Maclaurin series for the following functions. Determine the radius of convergence of each series.

(a) f (x) =
x2

(1− 2x)2

Solution 1Notice thatf (x) is the derivative of the sum of a geometric series multiplied by
x2

2
:

d
dx

(
1

1− 2x

)
=

d
dx

(1− 2x)−1 = −(1− 2x)−2(−2) =
2

(1− 2x)2
=

2
x2

f (x)

⇒ f (x) =
x2

2

[
d
dx

(
1

1− 2x

)]
=

x2

2


d
dx

∞∑

n=0

(2x)n

 =
x2

2


d
dx

∞∑

n=0

2nxn



=
x2

2

∞∑

n=0

2nnxn−1 =

∞∑

n=0

2n−1nxn−1+2 =

∞∑

n=0

2n−1nxn+1

with radius of convergenceR = 1
2, since the radius of convergence of

∑∞
n=0(2x)n is 1

2.

ASIDE: Although a correct answer, since then = 0 term will be 0, we can omit this index value to obtain:

f (x) =

∞∑

n=1

2n−1nxn+1

and to make the index start at 0 now, we can shift it back to 0 to obtain:

f (x) =

∞∑

n=0

2n(n + 1)xn+2

so that we see it is equivalent to the result in Solution 2.

Solution 2 We can expressf (x) as the product ofx2 and the binomial series for
1

(1− 2x)2
which

converges when| − 2x| < 1⇒ |x| < 1
2 so it has radius of convergenceR = 1

2:

1
(1− 2x)2

= (1− 2x)−2 =

∞∑

n=0

(−2
n

)
(−2x)n =

∞∑

n=0

(−2
n

)
(−1)n2nxn

=

∞∑

n=0

(−2)(−3)(−4) · · · (−2− n + 1)
n!

(−1)n2nxn =

∞∑

n=0

(−1)n[(2)(3)(4)· · · (n + 1)]
n!

(−1)n2nxn

=

∞∑

n=0

(−1)n[n!(n + 1)]
n!

(−1)n2nxn =

∞∑

n=0

(n + 1)2nxn

⇒ f (x) = x2
∞∑

n=0

(n + 1)2nxn =

∞∑

n=0

(n + 1)2nxn+2, with radius of convergenceR = 1
2.
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(b) S(x) =

∫ x

0
sin

(
πt2

2

)
dt (Note of interest:S(x) is the Fresnel function. See page 380 of your textbook.)

Solution We will integrate a form of the Maclaurin series for sint to expressS(x) as a Maclaurin series:

sint =

∞∑

n=0

(−1)nt2n+1

(2n + 1)!
⇒ sin

(
πt2

2

)
=

∞∑

n=0

(−1)n( πt2

2 )2n+1

(2n + 1)!
=

∞∑

n=0

(−1)n( π2)2n+1t4n+2

(2n + 1)!
,R = ∞

⇒ S(x) =

∫ x

0


∞∑

n=0

(−1)n( π2)2n+1t4n+2

(2n + 1)!

 dt =

∞∑

n=0

(−1)n( π2)2n+1

(2n + 1)!
· t4n+3

4n + 3


x

0

=

∞∑

n=0

(−1)n( π2)2n+1x4n+3

(2n + 1)!(4n + 3)
,R = ∞

2. Find the Taylor series centered atx = π for f (x) = cos2x.

Solution 1Since f (x) = cos2x =
1 + cos 2x

2
and since cosA = cos(A± 2π), then

cos 2x = cos(2x− 2π) = cos(2(x− π)) ⇒ f (x) =
1 + cos(2(x− π))

2
=

1
2

[1 + cos(2(x− π))].

Then we can use the known Maclaurin series for cosx to obtain:

f (x) =
1
2

1 +

∞∑

n=0

(−1)n(2(x− π))2n

(2n)!

 =
1
2

+
1
2

∞∑

n=0

(−1)n22n(x− π)2n

(2n)!

=
1
2

+

∞∑

n=0

(−1)n22n−1

(2n)!
(x− π)2n

or, extracting then = 0 term and adding it to the12 we have:

f (x) = 1 +

∞∑

n=1

(−1)n22n−1

(2n)!
(x− π)2n

Either answer is fine.

Solution 2Compute the coefficients of the Taylor series directly:

f (x) = cos2 x = 1
2 + 1

2 cos 2x f(π) = 1
f ′(x) = − sin(2x) f ′(π) = 0
f ′′(x) = −2 cos(2x) f ′′(π) = −2
f ′′′(x) = 4 sin(2x) f ′′′(π) = 0
f (iv)(x) = 8 cos(2x) f (iv)(π) = 8
f (v)(x) = −16 sin(2x) f (v)(π) = 0
f (vi)(x) = −32 cos(2x) f (vi)(π) = −32
etc. etc.



⇒ f (x) = 1− 2
2! (x− π)2 + 8

4! (x− π)4 − 32
6! (x− π)6 + . . .

= 1− (x− π)2 + 1
3(x− π)4 − 2

45(x− π)6 + . . .

Although this answer is correct, we can write it using summation notation by noting the pattern in the
coefficients:

Clearly, the coefficients of odd powers of (x− π) will be 0. The even derivatives evaluated at
x = π alternate in sign and are powers of 2: 20 = 1,−21 = −2, 23 = 8,−25 = −32, etc. Hence
f (2n)(π) = (−1)n22n−1,n ≥ 1, wheref (0)(π) = f (π) = 1. Thus we can write

f (x) = 1 +

∞∑

n=1

(−1)n22n−1

(2n)!
(x− π)2n.

Solution 3 The Taylor series for cosx centered atx = π can be multiplied by itself and simplified by
collecting like terms. This approach is tedious and not shown here.



Solutions to Assignment 8 3

3. Find the Taylor polynomial of degree 3 centered atx = 1 for f (x) = ln(1 + x2).

Solution Compute the coefficients of the Taylor series directly:

f (x) = ln(1 + x2) f (1) = ln 2

f ′(x) =
2x

1 + x2
f (1) = 1

f ′′(x) =
2− 2x2

(1 + x2)2
f ′′(1) = 0

f ′′′(x) =
4x(x2 − 3)
(1 + x2)3

f ′′′(1) = −1



⇒ f (x) ≈ ln 2 + (x− 1)− (x−1)3

3! .

4. Consider the polar curver = − cost for π ≤ t ≤ 2π.

(a) Find all of the anglest where the curve has vertical tangents.

Solution With x = r cost = − cos2 t we have
dx
dt

= −2 cost(− sint) = 2 cost sint. When
dx
dt

= 0

the curve has vertical tangents, that is when cost = 0⇒ t = 3π
2 or when sint = 0⇒ t = π,2π (due

to the given restrictionπ ≤ t ≤ 2π).

(b) Find all of the anglest where the curve has horizontal tangents.

Solution With y = r sint = − cost sint we have
dy
dt

= sint cost− cost cost = sin2 t− cos2 t. When

dy
dt

= 0 the curve has horizontal tangents, that is when sin2 t − cos2 t = 0. We can deduce that

t = 5π
4 ,

7π
4 in two different ways:

(i) sin2 t − cos2 t = cos 2t = 0⇒ t = 5π
4 ,

7π
4 , or

(ii) sin2 t − cos2 t = 0⇒ sin2 t = cos2 t ⇒ tan2 t = 1⇒ tant = ±1 where tant = 1⇒ t = 5π
4 and

tant = −1⇒ t = 7π
4 ,

again keeping the given restriction ont in mind.

(c) Find the Cartesian equation of the curve.

Solution With x = r cost we have cost = x
r so our polar equationr = − cost becomesr = − x

r or
r2 = −x. Usingr2 = x2 + y2 we have−x = x2 + y2.

While this answer is correct, it does not reveal the type of curve we have. Completing the square
we have:

x2 + x + y2 = 0⇒ x2 + x +
1
4
− 1

4
+ y2 = 0⇒

(
x +

1
2

)2

+ y2 =
1
4
,

which is a circle of radius12 centered at (x, y) =
(
−1

2, 0
)
.

(d) Sketch the curve. Include a table of values (t, r) that justify your curve.

Solution

t r = − cost
π 1
7π
6

√
3

2
5π
4

√
2

2
4π
3

1
2

3π
2 0
5π
3 -1

2
7π
4 −

√
2

2
11π
6 -

√
3

2
2π −1

Note it is important to check the restric-

tion on t rather than assume the Carte-

sian equation represents the polar curve

entirely. Here, coincidentally, it does.

However, if we had begun with a differ-

ent restriction ont, e.g. π ≤ t ≤ 3π
2 , the

polar curve would resemble only part of

the circle (its bottom half).
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5. Find the area of the region that lies inside both curvesr = − cosθ andr = sin 2θ for π ≤ θ ≤ 2π.
(That is, find the area of the region that both curves have in common.)

Solution First we sketch both curves on the same polar grid. The curver = cost has been plotted in a
previous problem here. The second one is obtained by plotting points as shown.

t r = sin(2t)
π 0
7
6π

√
3

2
5
4π 1
4
3π

√
3

2
3
2π 0
5
3π -

√
3

2
7
4π -1
11
6 π -

√
3

2
2π 0

common

common

The sketch is needed to help set up the integral for the common areas of the two curves.

The curves intersect when− cost = sin(2t) = 2 sint cost ⇒ −1 = 2 sint such that cost , 0 (since we
have divided by cost).

sint = −1
2
⇒ t =

7π
6
,
11π
6

The special case of cost = 0 (which we isolated earlier) implies thatt =
3π
2

.

The total common areaA can be calculated two ways:

(i) Using symmetry, we can consider the top common area and multiply it by two to get the total area.
Furthermore, we must break up the common area into two parts, since the region is not bounded by
two curves in a simple way. We break up the common area along the dashed line in the following
figure and set up an integral for each section on either side of the dashed line.

common

common

A = 2
∫ 11π/6

3π/2

1
2

(− cost)2 dt + 2
∫ 2π

11π/6

1
2

(sin(2t))2 dt =

∫ 11π/6

3π/2

1
2

+
cos(2t)

2
dt +

∫ 2π

11π/6

1
2
− cos(4t)

2
dt

=

[
t
2

+
sin(2t)

4

]11π/6

3π/2
+

[
t
2
− sin(4t)

8

]2π

11π/6

=
11π
12

+
sin

(
11π
3

)

4
− 3π

4
− sin(3π)

4
+ π − sin(8π)

8
− 11π

12
+

sin(22π
3 )

8

=
π

4
− 3
√

3
16
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(ii) The second method involves seeingA as the difference of areas:

A = (area of the entire circle)− (area of region to left of the loops but inside the circle)

=
π

4
− 2

∫ 2π

11π/6

1
2

(
(cost)2 − (sin(2t))2

)
dt

=
π

4
−

∫ 2π

11π/6

1
2

+
cos(2t)

2
− 1

2
+

cos(4t)
2

dt

=
π

4
−

[
sin(2t)

4
+

sin(4t)
8

]2π

11π/6

=
π

4
−

(
sin(4π)

4
+

sin(8π)
8

− sin(11π/3)
4

− sin(22π/3)
8

)

=
π

4
− 3
√

3
16

where we have used symmetry in the integral.

Useful trigonometric identities:

sin 2t = 2 sint cost, cos2t = cos2t − sin2t, sin2t =
1− cos 2t

2
, cos2t =

1 + cos 2t
2

.

Refer to Appendix C for trigonometric function values for specific angles.


