A TouchOSC MIDI Bridge for Linux

Albert GRAF
Computer Music Research Group
Institute of Art History and Musicology (IKM)
Johannes Gutenberg University (JGU) Mainz, Germany
aggraef@gmail.com

Abstract

Mobile applications such as hexler’s TouchOSC of-
fer a cheap and convenient alternative to traditional
controller hardware for computer music programs.
TouchOSC is available for Android and iOS devices
and supports both OSC and MIDI, two widespread
standards for transmitting control data between
computer music applications. On the host side the
TouchOSC MIDI Bridge is required for MIDI sup-
port, which unfortunately is proprietary software
and only available for Mac and Windows systems.
This paper presents pd-touchosc, a library of Pd ex-
ternals which aims to bring most of the functionality
of the TouchOSC MIDI Bridge to Linux.

Keywords
TouchOSC, controller, OSC, MIDI

1 Introduction

Any reader familiar with the area of computer
music will have heard of JazzMutant’s Lemur
controller [5], a big multitouch device with
built-in OSC! and MIDI? support, which was
fully configurable using a kind of GUI builder
for control surfaces. Nowadays, the Lemur’s
place is taken by mobile apps running on mod-
ern (and much cheaper) devices such as smart-
phones and tablets. (It is no accident that
the demise of the original Lemur hardware was
brought about by the advent of the iPad.) The
Lemur lives on as a mobile app on iOS3, and
there are other similar apps on both Android
and iO8S.

One of these is hexler’s TouchOSC [4]. While
it lacks some of the Lemur’s more advanced fea-
tures such as physical models and scripting ca-
pabilities, it certainly offers enough features to
create fairly sophisticated interfaces and is also
much cheaper. It comes with its own graphi-
cal layout editor (which is written in Java and
thus runs on Linux just as well as on Mac and

"http://opensoundcontrol.org/
*http://www.midi.org/
3http://liine.net/en/products/lemur/

Windows). Like the Lemur, TouchOSC sup-
ports both OSC and MIDI and the layout of the
controller elements is fully configurable, so that
the user can tailor the graphical interface to
the computer music application at hand. This
sets it apart from applications like TouchDAW*
which provide fixed interfaces usually inspired
by existing MIDI controller designs. There are
other apps similar to the Lemur and Touch-
OSC, such as OSCPad® which is more or less
compatible with the TouchOSC layout format,
and Charlie Roberts’ open-source app Control®
which features its own JSON format and is both
scriptable and extensible using JavaScript. But
among these TouchOSC seems to be the most
mature and popular option right now, not least
because of its graphical layout editor.

One of the downsides of TouchOSC for Linux
users, however, is its MIDI support which re-
quires either the TouchOSC MIDI Bridge pro-
gram or an RTP-MIDI” interface on the host
side, neither of which is readily available on
Linux. (The TouchOSC MIDI Bridge is closed
source software only available for Mac and Win-
dows, and drivers for RTP-MIDI are hard to
find for Linux these days. Moreover, the RTP-
MIDI protocol doesn’t seem to be supported in
the Android version of the TouchOSC app any-
way.) So the author set out to create a Touch-
OSC MIDI bridge replacement for Linux, which
is what this paper is about.

Why would you want to use MIDI with
TouchOSC anyway? It is true that MIDI is a
much more limited format for control data than
OSC, but you may find the conversion from/to
MIDI convenient when interfacing TouchOSC
to existing MIDI applications and hardware,
such as synthesizers, algorithmic composition
and music notation software, as well as DAW

‘http://www.humatic.de/htools/touchdaw/
“http://burnsmod.com/software/oscpad . html
http://charlie-roberts.com/Control/
"http://www.cs.berkeley.edu/~lazzaro/rtpmidi/

http://opensoundcontrol.org/
http://www.midi.org/
http://liine.net/en/products/lemur/
http://www.humatic.de/htools/touchdaw/
http://burnsmod.com/software/oscpad.html
http://charlie-roberts.com/Control/
http://www.cs.berkeley.edu/~lazzaro/rtpmidi/

(digital audio workstation) and sequencer pro-
grams. In particular, the conversion enables
you to record control and automation data with
DAW and sequencer programs, which typically
offer good facilities for recording, playing back
and editing MIDI sequences, but often provide
only limited support for OSC, if at all.

So there are plenty of use cases for TouchOSC
MIDI on Linux. Given that neither the pro-
prietary TouchOSC Bridge protocol nor RTP-
MIDI will work for our purposes, the most
straightforward solution is to just take the MIDI
mapping information available in TouchOSC
layout files and convert OSC messages to/from
MIDI in an automatic fashion using that in-
formation. This approach obviously has some
shortcomings when compared to the “official”
TouchOSC MIDI Bridge which connects di-
rectly to the TouchOSC app on the device. In
particular, it requires a working OSC connec-
tion and that the TouchOSC layouts on the
device and the host side match up. But this
doesn’t seem to be much of an impediment, and
in any case it is better than not having any
MIDI connectivity at all.

Our current implementation of the Touch-
OSC MIDI bridge for Linux uses Miller Puck-
ette’s Pd a.k.a. Pure Data®, an interactive vi-
sual programming environment for computer
music and multimedia applications. This makes
it easy to create a working prototype of the soft-
ware and also opens up the interface so that
users can modify details of the implementation
inside Pd. However, the core code of our solu-
tion (which is written in the author’s Pure pro-
gramming language [1]) could certainly be mas-
saged into a stand-alone program which works
outside the Pd environment.

2 TouchOSC Layouts

Let us begin with a brief overview of TouchOSC
layouts. For further details we refer the reader
to the documentation available at the Touch-
OSC website [4].

Layouts are created with the TouchOSC edi-
tor which can store them in zipped XML files or
transfer them directly to a TouchOSC instance
running on a device.

Figure 1 shows one page of a typical layout,
as it is rendered on a device (an Android tablet
in this case). When creating a layout with the
editor, the user can choose from a built-in col-
lection of various GUI widgets such as faders,

Shttp://puredata.info/

Figure 1: TouchOSC layout.

rotary controls, push and toggle buttons and
XY pads. These can be placed freely on the
screen. A layout may consist of multiple pages
which can be selected using the tabs at the top
of the screen.

Fach TouchOSC widget has one or more OSC
messages associated with it, which are emitted
when the status of the widget changes in some
way (button pressed, fader moved, etc.). Con-
versely, OSC messages can also be transmitted
to the device in order to change the current
value of a widget. The following status vari-
ables are supported by most widgets:

e z, y: x is the primary value of a control,
such as the value of a fader or a rotary, or
the status of a button (0 = off, 1 = on).
XY pads have a secondary y value, so they
encode two values z and y (position of the
control along the x and y axis, respectively)
at the same time. These variables are for
both input and output, i.e., they are trans-
mitted to the host in response to a touch
event, but the host can also send them back
to the device in order to change the value.
The latter is useful for setting up presets
or providing visual feedback for some host-
side operations on the device.

http://puredata.info/

OSC message Meaning

/1 first page
/1/faderl 0.1
/1/fader1/color red
/1/faderil/z 1

/1/xy1 0.1 0.7
/1/multifaderi/1 0.1
/1/multifaderi/1/z 1
/1/multixy1/1 0.1 0.7
/1/multipush1/2/3 0.1

value of faderl on the first page

color of fader1 (input only)

touch variable of fader1 (output only)

x, y values of a XY pad

value of the first subcontrol of a multi-fader

the subcontrol’s z value

x, y values of the first subcontrol of a multi-XY pad
value of the subcontrol in column 2, row 3

Figure 2: TouchOSC message examples.

e 2 is the touch variable which can be either
1 if the widget is being touched or 0 oth-
erwise. In the case of a touch button this
will be the same as the primary value of
the widget, but this value is output-only (it
cannot be changed by transmitting a cor-
responding OSC message to the device).

e ¢ is the color variable. TouchOSC offers
a built-in palette of nine different colors
which are usually set when editing the lay-
out. But the color can also be changed dy-
namically by transmitting a corresponding
OSC message to the device. This variable
is input-only.

The OSC address of a widget can either be
assigned automatically by the TouchOSC editor
(in which case it takes the form /n/widget-name
where n is the number of the page on which the
widget is located) or the user can set it manually
to any valid OSC address string. This address is
used for the primary widget value(s) (x and y),
whereas the z and c values are specified by tack-
ing on /z or /color to the OSC address. The
OSC ranges of the numeric values are usually
0-1 by default, but this can be adjusted in the
editor. The color variables have symbolic values
such as red, green etc. in the OSC encoding.

Faders, buttons and XY pads also have multi-
widget variations which consist of multiple con-
trols of the same type making up a single wid-
get. In this case the individual controls have
separate OSC addresses of the form /widget-
addr/i with an index ¢ ranging from 1 to the
number of subcontrols, or (in the case of multi-
button widgets) /widget-addr/i/j where i de-
notes the column and j the row index (note
that the column index comes first, even though
TouchOSC arranges the subcontrols in row-
major order internally).

Layout pages themselves also have an OSC

address (by default, this will be simply /1, /2,
etc.). A message with just the OSC address
(without any parameters) will be emitted when-
ever the page is clicked in the tab strip, and the
host can also send a message of this form to
change the page that’s currently displayed on
the device.

Figure 2 summarizes the syntax of typical
TouchOSC messages and their meaning.

3 MIDI Assignments

The TouchOSC editor allows MIDI messages to
be assigned to any status variable of a widget
in a layout. The details are a little intricate
at first because of the distinct characteristics
of the various widgets and the different kinds
of MIDI messages, but work in rather intuitive
and straightforward manner once the user is fa-
miliar with the available configuration options.
TouchOSC supports all the different types of
voice messages MIDI has on offer, as well as
the sequencer-related system real-time messages
(start, stop and continue).

The start, stop and continue messages offer
no further configuration options. They can only
be assigned to on/off variables, i.e., the primary
value of buttons, or the touch value of any con-
trol. In our implementation, this kind of MIDI
message is triggered whenever the correspond-
ing control variable goes to a non-zero value.’

Voice messages generally map a control vari-
able to the last data byte of the message. This
will be the note velocity or control value for

9Note that, in contrast, the official TouchOSC MIDI
Bridge seems to emit the message for each status change,
i.e., also when the variable drops back to zero. We do
not consider this behavior very useful, however, as it
causes a sequencer message to be sent twice when press-
ing and releasing a push button. Nevertheless, there’s
a compilation time option in our code which provides
compatibility with the TouchOSC MIDI Bridge in this
respect if this is needed.

No. | Type Channel | Fixed Data Value Mapped Data Range

0 control change 1-16 controller number (0-127) | controller value (0-127)
1 note 1-16 note number (0-127) velocity (0-127)

2 program change | 1-16 - program number (0-127)
3 start - - -

4 stop - - -

) continue - - -

6 key pressure 1-16 note number (0-127) velocity (0-127)

7 channel pressure | 1-16 - velocity (0-127)

8 pitch bend 1-16 - pitch bend (0-16383)

Figure 3: TouchOSC MIDI mappings.

voice messages having two data bytes, and the
single data byte of channel pressure (aftertouch)
and program change messages. The pitch bend
message gets special treatment; in this case the
value of the control variable is mapped to the
entire 14 bit range of 0-16383. (In MIDI this
value is the combination of the two data bytes
of the message, hence the 14 bit value range.)

Considering a variable with the source (OSC)
range r1—x2 and the target (MIDI) range y1—ya,
the variable (OSC) value z is mapped to:

T — 2

y=v1+ (Y2 — 1) :
Tr9 — I1

In the case of the default OSC value range
(1 =0, 9 = 1), this can be simplified to:

y=uy1+ (y2 —y1)z.

The resulting value y is then rounded to an in-
teger and clamped to the MIDI data byte range
(or the 14 bit range for pitch bend messages).
By default, y; = 0 and y, = 127 (y2 = 16383
for a pitch bend message).

For voice messages the user may configure
the (MIDI) value range for the control variable,
the (fixed) value of the MIDI channel and the
(fixed) value of the first data byte of the mes-
sage, if any.

Figure 3 summarizes the MIDI conversions
supported in the latest TouchOSC version. The
MIDI message type numbers in the first col-
umn are as given inside the XML layout file.
(TouchOSC uses its own encoding for the mes-
sage types which has nothing to do with the
actual MIDI status bytes of these messages.)

Note that while it’s possible to map a variable
to the velocity of a note or the value of a con-
trol change message, you cannot map it to the
note number or MIDI controller number. While
this kind of setup might occasionally be useful,
TouchOSC doesn’t allow it. Still it’s possible to

implement most kinds of controller configura-
tions, such as mixer interfaces, DJ controls and
even MIDI keyboards without much trouble.

The (OSC) source value for a MIDI control
can be any of the z, y, z and c status vari-
ables. In a multi-control widget, each of the
subcontrols has its own MIDI assignments. The
TouchOSC editor allows you to pick those from
a dropdown list in the MIDI properties (in the
left side pane of the editor) after selecting a wid-
get.

Note that it’s possible to map the color (c)
variable as well, so that you can change the color
of a widget by sending a corresponding MIDI
message. In this case the MIDI value range is
fixed at 0-8, where 0 denotes red, 1 green, etc.
Another special case that deserves mentioning
are mappings of the page messages (/1, /2, etc.
in OSC). You can map any of the MIDI voice
messages to a given page, so that a MIDI mes-
sage will be emitted if the user switches tabs
on the device, and the current page will be
switched when the MIDI message is sent to the
device.

Our implementation fully supports all types
of MIDI assignments described above. Note,
however, that in order to receive touch mes-
sages (z variable), the corresponding OSC mes-
sage type must be enabled in TouchOSC’s OSC
configuration dialog.

4 Interfacing TouchOSC and Pd

Our TouchOSC MIDI Bridge does its job by
converting OSC messages from/to MIDI and
thus a working OSC connection between Pd
and the device running TouchOSC is required.
While Pd doesn’t offer any built-in OSC sup-
port, this can easily be added by means of cor-
responding Pd externals (plugins). Two well-
known external libraries for this purpose are
OSCx and mrpeach. These are both included in

Pd distribution packages such as Pd-Extended!?
and Pd-L20rk''. The mrpeach externals offer
additional features, such as the ability to access
the source address of an incoming OSC message
which is useful in order to set up bidirectional
communication in an automatic fashion. Our
sample patches employ this feature and are thus
written using the mrpeach externals.

To make these facilities available, you only
need to make sure that you have the mrpeach
externals installed and on your Pd library
search path. This should already be the case
if you're running Pd-Extended or Pd-L20rk.
The only other required setup is to verify your
TouchOSC configuration on the device. In the
OSC setup, the host address should be set to
the IP address of the computer running Pd (un-
der Linux, you can find this by running the
ifconfig program). You should also verify that
the outgoing and incoming ports in the Touch-
OSC configuration are set to 8000 and 9000,
respectively, since these are the default values
our sample patches assume. These port num-
bers match the TouchOSC defaults, however,
so chances are that you only need to enter the
correct host address on the device.'?

5 The MIDI Bridge

Our TouchOSC MIDI bridge is distributed
in the form of a Pd external library called
touchosc which implements two objects tomidi
and toosc. Both objects take the name of a
TouchOSC layout as their single creation argu-
ment. Thus, for instance, to have OSC messages
converted to MIDI using the MIDI assignments
in a layout named sample.touchosc, you’d
create the object in Pd as tomidi sample.
To make this work, the layout file needs to
be in the same directory as the Pd patch
containing the object. You can also use
a full path name including the .touchosc
extension, enclosed in double quotes, as in
tomidi "/some/path/sample.touchosc".
The operation of the Pd objects is fairly
straightforward and doesn’t require any addi-
tional configuration. Both objects provide a
single inlet and a single outlet. The tomidi

Ohttp://puredata.info/downloads/pd-extended

"http://puredata.info/downloads/Pd-L20rk

12TouchOSC also supports Zeroconf, which is imple-
mented in the latest versions of our software as well.
This makes it much easier to set up the network con-
nections, see Section 6. But if necessary you can also
configure the network connection by manually entering
IP addresses and port numbers as explained above.

Message Type Format

control change ctlvnc

note noten v c
program change | pgm n c

key pressure polytouch v n c
channel pressure | touch v ¢

pitch bend bend v ¢

start start

stop stop

continue cont

Figure 4: MIDI representation of the Pd Touch-
OSC bridge. n denotes the note or controller

number, v the velocity or controller value, ¢ the
MIDI channel number.

object takes OSC messages on its inlet and pro-
duces the corresponding MIDI messages on its
outlet. The toosc object does the reverse op-
eration, mapping MIDI messages to their OSC
counterparts. The conversion is fully automatic
once you've configured the MIDI mappings in
your TouchOSC layout. No manual processing
of OSC messages is required.

OSC messages are represented in the same
symbolic format that’s also used by the OSCx
and mrpeach externals, so the output of
unpack0SC (mrpeach) or dump0SC (OSCx) can
be piped directly into tomidi, while the output
of toosc is ready to be used with mrpeach’s
pack0SC or OSCx’s send0SC.

MIDI messages are also encoded in a sym-
bolic format, i.e., as Pd meta messages. As Pd
doesn’t have a standard representation of MIDI
messages other than as a numbers graveyard, we
invented our own, but it’s fairly straightforward
if you're familiar with Pd’s objects for MIDI in-
put and output. A summary of the message
syntax can be found in Figure 4. The format
and, in particular, the somewhat idiosyncratic
order of arguments has been designed so that
it’s easy to dispatch on the different message
types using a Pd route object and pass the re-
maining data to the corresponding MIDI output
objects. Conversely, MIDI messages can be re-
ceived from Pd’s MIDI input objects and con-
verted to our format by just packing together
the data and tacking on the proper message
selector. Two helper patches midi-input and
midi-output are included in the distribution to
do this.

The distribution also includes a helper patch
named touchosc-bridge (cf. Figure 5) which
takes care of all the nitty-gritty details of set-

http://puredata.info/downloads/pd-extended
http://puredata.info/downloads/Pd-L2Ork

touchosc -bridge layout-file [inport outpert]

This patch reqguires the cyclone and mrpeach externals.

8000 1s the default input port, you can change this with the

second creation parameter.

1oadbang
F $2'=' 9000 is the default output port, you can change this with
= the third creation parameter.
sel O
= loadbang
ort 1 =
f f $3 irlet
udpreceive Clelef| =.SE.I‘ g handle connect messages
ZunpackDSC Zr'n:n.lte connecll:ul‘: disconnect
= 0SC 1nput
taa — tab // —
e = unpack s f / inlet
tomidi $1 outlet ,f= B = T
/ ; i
outlet 0SC output / /z discornect ,.’f
MIDI ocutput / e / I"‘I}B/I input
. . i
Autodetect the ip mddress of fthe clien to/énnect to on the osc §1
output side. L 2 - =
route Efom list prepend send
list trim
lgackﬁlsc
= -

= =
route cc\nnec?::
sprintf connecting to %s:%d

print touchosc-bridge

print the client we're cornected to

Figure 5: touchosc-bridge patch (simplified version).

ting up incoming and outgoing OSC connec-
tions, and provides a pair of tomidi and toosc
objects to handle conversions in both directions.
We describe this in the following section, where
we cover the installation and usage of the MIDI
bridge with Pd.

The latest versions of the touchosc library
also include a third oscbrowser object which
lets you discover available OSC clients, and can
also publish its own OSC service using Zero-
conf. This object is used to implement the Ze-
roconf support in the touchosc-bridge patch,
but will also be useful in its own right for Pd
users who wish to implement OSC applications;
please check the pd-touchosc sources [3] for de-
tails.

6 Installation and Usage
Our TouchOSC MIDI bridge library for Pd is

written in the author’s Pure programming lan-
guage [1], so you first need to install the Pure
interpreter along with the pd-pure, pure-stldict

and pure-xml addon modules. The Pure web-
site will tell you how to do this. Binary packages
for various popular Linux distributions such as
Arch, Fedora and Ubuntu are also available, as
well as ports for Mac OS X and BSD systems.
Note that the pd-pure module is required to run
any Pure externals with Pd, and needs to be
enabled in Pd; please check the pd-pure docu-
mentation for details [2].

Next, to install our TouchOSC MIDI bridge,
go find the pd-touchosc repository on Bit-
bucket [3] and clone the repository, or down-
load it as a zip archive and extract it on
your hard disk. At the repository website
you can also find detailed installation instruc-
tions in the README.md file. Basically, you’ll
have to chdir to the source directory and run
make && sudo make install. If you have Pd
and all the other requisite software installed,
this should build the external library and in-
stall it under your /usr/lib/pd/extra direc-
tory, along with some helper patches and exam-

ples.® Then fire up Pd and add touchosc to
your startup libraries. Next time you start up
Pd you should see a message in the Pd console
showing that the touchosc library was loaded
and registered with pd-pure.

Last but not least, you’ll need TouchOSC, of
course. You can grab the mobile app on Google
Play or the iTunes Store and install it on your
Android or i0S device. The TouchOSC editor
can be downloaded for free on the TouchOSC
website; it’s a Java program, so you need to
have a suitable Java runtime installed to use it.

The recommended way to run pd-touchosc
is via the included touchosc-bridge helper
patch. This patch sets up a pair of tomidi
and toosc objects along with all the required
OSC input and output machinery to connect
with TouchOSC. The current version of the
touchosc-bridge patch is depicted in Figure
5.14 The patch is normally invoked with a single
creation argument, the TouchOSC layout to use
(in the same format as described in the previ-
ous section). Optionally, you can also configure
the TouchOSC UDP ports by specifying these
as the second and third argument.

The patch also detects the source IP address
of incoming OSC messages and connects its
output to it, so that after sending some data
from the device the reverse connection should
also work in an automatic fashion. Note that
TouchOSC has an option which makes it send
out OSC /ping messages in regular time in-
tervals. If you enable this option then the
touchosc-bridge patch will automatically set
up its output connection as soon as it receives
the first /ping message from the device.

Getting the network connections set up is
even easier with Zeroconf. The latest version
of pd-touchosc supports this via the Avahi Ze-
roconf daemon available for Linux and other
Unix-like systems.!> If you have Avahi in-
stalled and its daemon running, a client named
pd-touchosc should show up in the host list in
TouchOSC’s OSC configuration dialog. Click

on that to have the network address and port

"*This will work with vanilla Pd. For Pd-Extended
and Pd-L20rk you’ll have to specify the Pd flavor us-
ing the PD make variable, e.g.: make PD=pd-extended
&& sudo make install PD=pd-extended.

!For the sake of clarity, the figure actually shows a
simplified version of the patch, available in the distri-
bution as touchosc-bridge-simple.pd, which doesn’t
include Zeroconf support. The full version of the patch
can be found in the distribution as touchosc-bridge.pd.

Yhttp://avahi.org/

number filled in. On the host side, the full ver-
sion of the touchosc-bridge patch offers the
option to browse for available OSC services us-
ing Zeroconf. There’s a toggle which lets you
enable this; touchosc-bridge will then con-
nect to the first OSC service available in the
network (other than pd-touchosc itself). If
there’s more than one such service, you can
cycle through the available services with the
other GUI controls of the patch; see Figure
6. E.g., if you're running the Android version
of TouchOSC then you’ll have to look out for
services named Android (TouchOSC) or similar
(depending on which ZeroConf Name you chose
in TouchOSC’s OSC configuration) and pick the
one that you want.

The left inlet/outlet pair of the patch is for
sending MIDI messages to and receiving them
from the device. In addition, the right in-
let/outlet pair can be used to send and re-
ceive untranslated OSC messages. If you con-
nect the left inlet and outlet to the midi-input
and midi-output patches provided in the dis-
tribution, and route Pd’s MIDI inputs and out-
puts to your MIDI devices and/or applications
as needed, you should be able to set up Pd
as a simple TouchOSC MIDI bridge with lit-
tle effort. Or, if your computer music applica-
tion is implemented as a Pd patch, you can use
touchosc-bridge directly in your patch and
hook it up to your existing control logic.

Figure 6 shows how touchosc-bridge can be
employed in a simple test patch. Several sam-
ple patches and corresponding TouchOSC lay-
outs are also included in the distribution. To
get started, just download the sample layouts
to your device, open the corresponding patches
with Pd and kick the tires to see how things
work.

7 Conclusion

We presented a TouchOSC MIDI bridge imple-
mentation which works on Linux, running inside
Miller Puckette’s Pd environment. This soft-
ware allows you to convert between TouchOSC-
formatted OSC and MIDI messages, following
the MIDI mappings defined in a TouchOSC lay-
out. It offers pretty much the same functional-
ity as the official TouchOSC MIDI Bridge ap-
plication, which is only supported on Mac and
Windows at this time. The main differences to
hexler’s bridge are that it requires an actual
OSC connection to the device and the Touch-
OSC layout file on the host side to work.

http://avahi.org/

explicitly connect output

Znnnect 152.168. 2. 102 2000

L
disconnect
£

NIDI contreller input

Etls111

gidi-input
I 1/faderl $1
!
/

/

?nuchnsc-bridge twofadars

direct 0SC input

[~ =]

browse Ejnext Ejpr'exr
Mexus4 | TouchOSC)
192.168. 2. 111 2000
™, direct 0SC output

3,

&
midi-output print osc

print midi

Figure 6: Sample patch using the touchosc-
bridge abstraction.

To the author’s knowledge, this is the first
(and at the time of this writing, the only) fully
automatic TouchOSC MIDI bridge application
on Linux. Compared to the “real” TouchOSC
MIDI Bridge, it also has the advantage that it
is available under an open source license and
doesn’t rely on any proprietary and undocu-
mented protocols, so it can easily be customized
by the user.

Future work should be directed towards turn-
ing the software into a stand-alone program
which can be run more easily by non-Pd users.
In principle, it should also be possible to adjust
our implementation to other OSC applications
such as Control and the Lemur, although this
will require some refactoring of the layout pars-
ing code.

References

[1] A. Gréaf. Signal processing in the Pure pro-
gramming language. In Proceedings of the
7th International Linuz Audio Conference,
Parma, 2009. Casa della Musica.

[2] A. Graf. pd-pure: Pd loader for Pure

scripts. http://puredocs.bitbucket.
org/pd-pure.html, 2014.

A. Graf. pd-touchosc: TouchOSC MIDI
Bridge for Pd. https://bitbucket.org/
agraef/pd-touchosc, 2014.

hexler. TouchOSC: Modular OSC and
MIDI control surface. http://hexler.net/
software/touchosc, 2014.

JazzMutant. Multitouch controllers for
audio production, live music and me-
dia performance. http://www. jazzmutant.
com, 2014.

http://puredocs.bitbucket.org/pd-pure.html
http://puredocs.bitbucket.org/pd-pure.html
https://bitbucket.org/agraef/pd-touchosc
https://bitbucket.org/agraef/pd-touchosc
http://hexler.net/software/touchosc
http://hexler.net/software/touchosc
http://www.jazzmutant.com
http://www.jazzmutant.com

	1 Introduction
	2 TouchOSC Layouts
	3 MIDI Assignments
	4 Interfacing TouchOSC and Pd
	5 The MIDI Bridge
	6 Installation and Usage
	7 Conclusion

