
OWM	JAPIs
Java	Wrapper	Library	for	OpenWeatherMap.org	Web	APIs

Create	weather-aware	applications	for	Java	and	Android	platforms	in	minimum	time	using
OWM	JAPIs,	an	easy-to-use,	detailed	and	documented	weather	API	library	for	retrieving	weather
data	from	OpenWeatherMap.org.	You	can	easily	retrieve	and	use	weather	data	in	your
applications	using	this	library.

OWM	JAPIs	lets	you	get	weather	data	in	only	3-5	lines	of	code	(excluding	any	other/skeleton
code,	of	course).	You	can	develop	applications	for	multiple	platforms	using	this	library,	such	as
Windows,	Mac	OS	X,	Linux,	and	Android.

Why	to	use	OWM	JAPIs?

1.	 Free
2.	 Easy	to	use
3.	 Minimizes	your	code

OWM	JAPIs	lets	you	focus	just	on	your	application's	logic	and	weather	retrieval	code	is
provided	by	this	library.	Additionally,	weather	retrieval	code	becomes	very	short	using	this
library	–	as	less	as	3-5	lines	of	code	can	get	you	weather	data	from	OpenWeatherMap.org	in	your
Java	or	Android	application.	Surprising,	right?	Have	a	look	on	the	example(s)	below.

Downloads
Download	the	library's	source	and	binaries	from	OWM	JAPIs	Downloads.

Versions
2.5	(Compatible	with	OpenWeatherMap.org's	API	v2.5)

2.5.0.3	(latest)

Implemented:

1.	 Current	Weather
2.	 Daily	Forecasts
3.	 Hourly	Forecasts

New	Features:

1.	 Faster	than	ever	before
2.	 Raw	Response	for	Caching	purposes
3.	 APIs'	URL	building	using	StringBuilder
4.	 Multi-lingual	(multiple	languages)	support
5.	 Support	for	external/third-party	HTTP	libraries	(like	Apache's	HttpComponents)
6.	 Units	and	Language	enums	for	setting	configuration	easily	and	correctly
7.	 Better	maintain-able	source	code	(for	developers)
8.	 Ported	the	project	to	Gradle	(for	developers)

Changed:

1.	 Package's	name	from	net.aksingh.java.api.owm	to	net.aksingh.owmjapis
2.	 Class's	name	from	CurrentWeatherData	to	CurrentWeather
3.	 Class's	name	from	DailyForecastData	to	DailyForecast
4.	 Class's	name	from	ForecastWeatherData	to	HourlyForecast
5.	 Some	functions'	name	and	signature

Apologies	for	making	such	changes,	but	it	was	required	to	make	things	simpler.	Don't
worry,	they're	not	going	to	change	again.	:)

2.5.0.2

Bug-fix	version:

1.	 Fixed	bugs	which	caused	wrong	parsing	of	date	and	time.
2.	 Improved	code	formatting	and	readability	(for	developers).

2.5.0.1

Implemented:

1.	 Current	Weather
2.	 Weather	Forecasts
3.	 Daily	Forecasts
4.	 Wind	degree	to	direction	converter

Not	implemented	but	planned:

1.	 Searching	of	City
2.	 Weather	Maps
3.	 Country	code	to	name	converter
4.	 Direction	code	to	name	converter

How	to	use	OWM	JAPIs?
Anyone	with	little	coding	knowledge	of	Java	will	feel	at	home	while	using	this	library.	Identifiers
are	written	to	be	self-explanatory	and	APIs'	documentation	is	also	provided.	It	makes	the
coding	process	very	easy,	even	for	beginners.

1.	 Add	this	JAR	file	in	your	project's	libraries:
1.	 owm-japis.jar

2.	 Write	your	code	as	such:
1.	 Create	and	initialize	object	{obj1}	of	"OpenWeatherMap"	class
2.	 Call	this	object's	{obj1}	functions	to	get	the	desired	weather	data	(such	as	current

weather,	daily	forecast,	etc.).
3.	 The	data	is	returned	as	a	new	object	{obj2}	of	a	compatible	class	based	on	the	type	of

asked/retrieved	weather	data	(current	weather	data	comes	in	a	different	class's	object
than	daily	forecast	data).

4.	 Call	this	returned	object's	{obj2}	functions	to	get	the	required	information	from	the
collective	weather	data	(such	as	temperature,	pressure,	wind	speed,	etc.).

Kindly	have	a	look	on	the	example(s)	below	for	clear	understanding.

Example
Basic	Example

Sample	Code

import	java.io.IOException;
import	java.net.MalformedURLException;
import	net.aksingh.owmjapis.CurrentWeather;
import	net.aksingh.owmjapis.OpenWeatherMap;
import	org.json.JSONException;

public	class	OwmJapisExample1	{

				public	static	void	main(String[]	args)
												throws	IOException,	MalformedURLException,	JSONException	{

								//	declaring	object	of	"OpenWeatherMap"	class
								OpenWeatherMap	owm	=	new	OpenWeatherMap("");

								//	getting	current	weather	data	for	the	"London"	city
								CurrentWeather	cwd	=	owm.currentWeatherByCityName("London");

								//printing	city	name	from	the	retrieved	data
								System.out.println("City:	"	+	cwd.getCityName());

								//	printing	the	max./min.	temperature
								System.out.println("Temperature:	"	+	cwd.getMainInstance().getMaxTemperature()
																												+	"/"	+	cwd.getMainInstance().getMinTemperature()	+	"\'F");
				}
}

Output

City:	London
Temperature:	73.4/68.72	'F

Advance	Example

You	can	simply	use	the	APIs	(as	given	in	basic	example)	for	learning,	testing	or	experimenting
with	the	functions	provided	in	this	library.	But	it	may	not	be	good	enough	for	production	or
deployment	environment.

Professionally,	you	should	always	write	code	which	can	handle	errors/exceptions	at	the
runtime.	OWM	JAPIs	also	helps	here	–	by	providing	checker	functions	which	allows	you	to	check
if	a	data	is	available	or	not,	i.e.,	that	particular	data	is	retrieved	and	parsed	properly	or	not.	Of
course,	exception	handling	can	still	be	used,	but	these	functions	are	really	useful	and	make	the
retrieved-data-error-handling	task	very	simple.

Using	OWM	JAPIs,	you	can	always	check	if	a	particular	data	is	available	or	not.	This	is	done	by
using	the	has<DataName>()	functions.	For	example,	hasResponseCode()	function	checks	if
the	retrieved	data	has	a	response	code	or	not;	and	if	available,	response	code	can	be	used	to
check	if	the	whole	data	was	downloaded	and	parsed	correctly	or	not.

Sample	Code

import	java.io.IOException;
import	java.net.MalformedURLException;
import	net.aksingh.owmjapis.CurrentWeather;
import	net.aksingh.owmjapis.OpenWeatherMap;
import	org.json.JSONException;

public	class	OwmJapisExample2	{

				public	static	void	main(String[]	args)
												throws	IOException,	MalformedURLException,	JSONException	{

								//	declaring	object	of	"OpenWeatherMap"	class
								OpenWeatherMap	owm	=	new	OpenWeatherMap("");

								//	getting	current	weather	data	for	the	"London"	city
								CurrentWeather	cwd	=	owm.currentWeatherByCityName("London");

								//	checking	data	retrieval	was	successful	or	not
								if	(cwd.isValid())	{

												//	checking	if	city	name	is	available
												if	(cwd.hasCityName())	{
																//printing	city	name	from	the	retrieved	data
																System.out.println("City:	"	+	cwd.getCityName());
												}

												//	checking	if	max.	temp.	and	min.	temp.	is	available
												if	(cwd.getMainInstance().hasMaxTemperature()	&&	cwd.getMainInstance().hasMinTemperature())	{
																//	printing	the	max./min.	temperature
																System.out.println("Temperature:	"	+	cwd.getMainInstance().getMaxTemperature()
																												+	"/"	+	cwd.getMainInstance().getMinTemperature()	+	"\'F");
												}
								}
				}
}

Output

City:	London
Temperature:	73.4/68.72	'F

Source	code
Download	the	library's	source	code	from	OWM	JAPIs	Source.

Bugs	/	Requests
Got	a	problem,	error	or	bug	in	the	library?	Or	want	a	new	feature	that's	not	present	in	OWM
JAPIs?

Kindly	post	bugs	or	feature	requests	at	OWM	JAPIs	Bugs/Requests	and	I	will	try	to	solve/add	it	in
the	next	release.

Developer
Ashutosh	Kumar	Singh	|	AKSingh.net	|	me@aksingh.net

Credits
1.	 OpenWeatherMap.org	for	providing	free	weather	data	and	creating	easy-to-use	web	APIs.

2.	 JSON.org	for	providing	such	a	great	data	interchange	language	and	its	library	in	Java.

3.	 ForecastIO-Lib-Java	for	providing	ideas	like	support	for	third-party	Http	libraries.

4.	 Bug	Reporters	for	reporting	bugs,	and	even	finding	and	sharing	possible	solutions	for	them.

License
Copyright	(c)	2013-2014	Ashutosh	Kumar	Singh	<me@aksingh.net>

Released	under	the	terms	of	MIT	license.	It's	open	source	and	developer-friendly.

