pypy / pypy / jit / backend / x86 / assembler.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
import sys, os
from pypy.jit.backend.llsupport import symbolic
from pypy.jit.backend.llsupport.asmmemmgr import MachineDataBlockWrapper
from pypy.jit.metainterp.history import Const, Box, BoxInt, ConstInt
from pypy.jit.metainterp.history import AbstractFailDescr, INT, REF, FLOAT
from pypy.jit.metainterp.history import JitCellToken
from pypy.rpython.lltypesystem import lltype, rffi, rstr, llmemory
from pypy.rpython.lltypesystem.lloperation import llop
from pypy.rpython.annlowlevel import llhelper
from pypy.rlib.jit import AsmInfo
from pypy.jit.backend.model import CompiledLoopToken
from pypy.jit.backend.x86.regalloc import (RegAlloc, get_ebp_ofs, _get_scale,
    gpr_reg_mgr_cls, xmm_reg_mgr_cls, _valid_addressing_size)

from pypy.jit.backend.x86.arch import (FRAME_FIXED_SIZE, FORCE_INDEX_OFS, WORD,
                                       IS_X86_32, IS_X86_64)

from pypy.jit.backend.x86.regloc import (eax, ecx, edx, ebx,
                                         esp, ebp, esi, edi,
                                         xmm0, xmm1, xmm2, xmm3,
                                         xmm4, xmm5, xmm6, xmm7,
                                         r8, r9, r10, r11,
                                         r12, r13, r14, r15,
                                         X86_64_SCRATCH_REG,
                                         X86_64_XMM_SCRATCH_REG,
                                         RegLoc, StackLoc, ConstFloatLoc,
                                         ImmedLoc, AddressLoc, imm,
                                         imm0, imm1, FloatImmedLoc)

from pypy.rlib.objectmodel import we_are_translated, specialize
from pypy.jit.backend.x86 import rx86, regloc, codebuf
from pypy.jit.metainterp.resoperation import rop, ResOperation
from pypy.jit.backend.x86 import support
from pypy.rlib.debug import (debug_print, debug_start, debug_stop,
                             have_debug_prints)
from pypy.rlib import rgc
from pypy.rlib.clibffi import FFI_DEFAULT_ABI
from pypy.jit.backend.x86.jump import remap_frame_layout
from pypy.jit.codewriter.effectinfo import EffectInfo
from pypy.jit.codewriter import longlong
from pypy.rlib.rarithmetic import intmask
from pypy.rlib.objectmodel import compute_unique_id

# darwin requires the stack to be 16 bytes aligned on calls. Same for gcc 4.5.0,
# better safe than sorry
CALL_ALIGN = 16 // WORD

def align_stack_words(words):
    return (words + CALL_ALIGN - 1) & ~(CALL_ALIGN-1)


class GuardToken(object):
    def __init__(self, faildescr, failargs, fail_locs, exc,
                 is_guard_not_invalidated):
        self.faildescr = faildescr
        self.failargs = failargs
        self.fail_locs = fail_locs
        self.exc = exc
        self.is_guard_not_invalidated = is_guard_not_invalidated

DEBUG_COUNTER = lltype.Struct('DEBUG_COUNTER', ('i', lltype.Signed),
                              ('type', lltype.Char), # 'b'ridge, 'l'abel or
                                                     # 'e'ntry point
                              ('number', lltype.Signed))

class Assembler386(object):
    _regalloc = None
    _output_loop_log = None

    def __init__(self, cpu, translate_support_code=False,
                            failargs_limit=1000):
        self.cpu = cpu
        self.verbose = False
        self.rtyper = cpu.rtyper
        self.loop_run_counters = []
        self.float_const_neg_addr = 0
        self.float_const_abs_addr = 0
        self.malloc_slowpath1 = 0
        self.malloc_slowpath2 = 0
        self.wb_slowpath = [0, 0, 0, 0]
        self.memcpy_addr = 0
        self.setup_failure_recovery()
        self._debug = False
        self.debug_counter_descr = cpu.fielddescrof(DEBUG_COUNTER, 'i')
        self.datablockwrapper = None
        self.stack_check_slowpath = 0
        self.propagate_exception_path = 0
        self.gcrootmap_retaddr_forced = 0
        self.teardown()

    def leave_jitted_hook(self):
        ptrs = self.fail_boxes_ptr.ar
        llop.gc_assume_young_pointers(lltype.Void,
                                      llmemory.cast_ptr_to_adr(ptrs))

    def set_debug(self, v):
        r = self._debug
        self._debug = v
        return r

    def setup_once(self):
        # the address of the function called by 'new'
        gc_ll_descr = self.cpu.gc_ll_descr
        gc_ll_descr.initialize()
        self.memcpy_addr = self.cpu.cast_ptr_to_int(support.memcpy_fn)
        self._build_failure_recovery(False)
        self._build_failure_recovery(True)
        self._build_wb_slowpath(False)
        self._build_wb_slowpath(True)
        if self.cpu.supports_floats:
            self._build_failure_recovery(False, withfloats=True)
            self._build_failure_recovery(True, withfloats=True)
            self._build_wb_slowpath(False, withfloats=True)
            self._build_wb_slowpath(True, withfloats=True)
            support.ensure_sse2_floats()
            self._build_float_constants()
        self._build_propagate_exception_path()
        if gc_ll_descr.get_malloc_slowpath_addr is not None:
            self._build_malloc_slowpath()
        self._build_stack_check_slowpath()
        if gc_ll_descr.gcrootmap:
            self._build_release_gil(gc_ll_descr.gcrootmap)
        if not self._debug:
            # if self._debug is already set it means that someone called
            # set_debug by hand before initializing the assembler. Leave it
            # as it is
            debug_start('jit-backend-counts')
            self.set_debug(have_debug_prints())
            debug_stop('jit-backend-counts')

    def setup(self, looptoken):
        assert self.memcpy_addr != 0, "setup_once() not called?"
        self.current_clt = looptoken.compiled_loop_token
        self.pending_guard_tokens = []
        if WORD == 8:
            self.pending_memoryerror_trampoline_from = []
            self.error_trampoline_64 = 0
        self.mc = codebuf.MachineCodeBlockWrapper()
        #assert self.datablockwrapper is None --- but obscure case
        # possible, e.g. getting MemoryError and continuing
        allblocks = self.get_asmmemmgr_blocks(looptoken)
        self.datablockwrapper = MachineDataBlockWrapper(self.cpu.asmmemmgr,
                                                        allblocks)
        self.target_tokens_currently_compiling = {}

    def teardown(self):
        self.pending_guard_tokens = None
        if WORD == 8:
            self.pending_memoryerror_trampoline_from = None
        self.mc = None
        self.current_clt = None

    def finish_once(self):
        if self._debug:
            debug_start('jit-backend-counts')
            for i in range(len(self.loop_run_counters)):
                struct = self.loop_run_counters[i]
                if struct.type == 'l':
                    prefix = 'TargetToken(%d)' % struct.number
                elif struct.type == 'b':
                    prefix = 'bridge ' + str(struct.number)
                else:
                    prefix = 'entry ' + str(struct.number)
                debug_print(prefix + ':' + str(struct.i))
            debug_stop('jit-backend-counts')

    def _build_float_constants(self):
        datablockwrapper = MachineDataBlockWrapper(self.cpu.asmmemmgr, [])
        float_constants = datablockwrapper.malloc_aligned(32, alignment=16)
        datablockwrapper.done()
        addr = rffi.cast(rffi.CArrayPtr(lltype.Char), float_constants)
        qword_padding = '\x00\x00\x00\x00\x00\x00\x00\x00'
        # 0x8000000000000000
        neg_const = '\x00\x00\x00\x00\x00\x00\x00\x80'
        # 0x7FFFFFFFFFFFFFFF
        abs_const = '\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F'
        data = neg_const + qword_padding + abs_const + qword_padding
        for i in range(len(data)):
            addr[i] = data[i]
        self.float_const_neg_addr = float_constants
        self.float_const_abs_addr = float_constants + 16

    def _build_malloc_slowpath(self):
        # With asmgcc, we need two helpers, so that we can write two CALL
        # instructions in assembler, with a mark_gc_roots in between.
        # With shadowstack, this is not needed, so we produce a single helper.
        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        shadow_stack = (gcrootmap is not None and gcrootmap.is_shadow_stack)
        #
        # ---------- first helper for the slow path of malloc ----------
        mc = codebuf.MachineCodeBlockWrapper()
        if self.cpu.supports_floats:          # save the XMM registers in
            for i in range(self.cpu.NUM_REGS):# the *caller* frame, from esp+8
                mc.MOVSD_sx((WORD*2)+8*i, i)
        mc.SUB_rr(edx.value, eax.value)       # compute the size we want
        addr = self.cpu.gc_ll_descr.get_malloc_slowpath_addr()
        #
        # The registers to save in the copy area: with shadowstack, most
        # registers need to be saved.  With asmgcc, the callee-saved registers
        # don't need to.
        save_in_copy_area = gpr_reg_mgr_cls.REGLOC_TO_COPY_AREA_OFS.items()
        if not shadow_stack:
            save_in_copy_area = [(reg, ofs) for (reg, ofs) in save_in_copy_area
                   if reg not in gpr_reg_mgr_cls.REGLOC_TO_GCROOTMAP_REG_INDEX]
        #
        for reg, ofs in save_in_copy_area:
            mc.MOV_br(ofs, reg.value)
        #
        if shadow_stack:
            # ---- shadowstack ----
            mc.SUB_ri(esp.value, 16 - WORD)      # stack alignment of 16 bytes
            if IS_X86_32:
                mc.MOV_sr(0, edx.value)          # push argument
            elif IS_X86_64:
                mc.MOV_rr(edi.value, edx.value)
            mc.CALL(imm(addr))
            mc.ADD_ri(esp.value, 16 - WORD)
        else:
            # ---- asmgcc ----
            if IS_X86_32:
                mc.MOV_sr(WORD, edx.value)       # save it as the new argument
            elif IS_X86_64:
                # rdi can be clobbered: its content was saved in the
                # copy area of the stack
                mc.MOV_rr(edi.value, edx.value)
            mc.JMP(imm(addr))                    # tail call to the real malloc
            rawstart = mc.materialize(self.cpu.asmmemmgr, [])
            self.malloc_slowpath1 = rawstart
            # ---------- second helper for the slow path of malloc ----------
            mc = codebuf.MachineCodeBlockWrapper()
        #
        for reg, ofs in save_in_copy_area:
            mc.MOV_rb(reg.value, ofs)
            assert reg is not eax and reg is not edx
        #
        if self.cpu.supports_floats:          # restore the XMM registers
            for i in range(self.cpu.NUM_REGS):# from where they were saved
                mc.MOVSD_xs(i, (WORD*2)+8*i)
        #
        # Note: we check this after the code above, just because the code
        # above is more than 127 bytes on 64-bits...
        mc.TEST_rr(eax.value, eax.value)
        mc.J_il8(rx86.Conditions['Z'], 0) # patched later
        jz_location = mc.get_relative_pos()
        #
        nursery_free_adr = self.cpu.gc_ll_descr.get_nursery_free_addr()
        mc.MOV(edx, heap(nursery_free_adr))   # load this in EDX
        mc.RET()
        #
        # If the slowpath malloc failed, we raise a MemoryError that
        # always interrupts the current loop, as a "good enough"
        # approximation.  Also note that we didn't RET from this helper;
        # but the code we jump to will actually restore the stack
        # position based on EBP, which will get us out of here for free.
        offset = mc.get_relative_pos() - jz_location
        assert 0 < offset <= 127
        mc.overwrite(jz_location-1, chr(offset))
        mc.JMP(imm(self.propagate_exception_path))
        #
        rawstart = mc.materialize(self.cpu.asmmemmgr, [])
        self.malloc_slowpath2 = rawstart

    def _build_propagate_exception_path(self):
        if self.cpu.propagate_exception_v < 0:
            return      # not supported (for tests, or non-translated)
        #
        self.mc = codebuf.MachineCodeBlockWrapper()
        # call on_leave_jitted_save_exc()
        addr = self.cpu.get_on_leave_jitted_int(save_exception=True,
                                                default_to_memoryerror=True)
        self.mc.CALL(imm(addr))
        self.mc.MOV_ri(eax.value, self.cpu.propagate_exception_v)
        self._call_footer()
        rawstart = self.mc.materialize(self.cpu.asmmemmgr, [])
        self.propagate_exception_path = rawstart
        self.mc = None

    def _build_stack_check_slowpath(self):
        _, _, slowpathaddr = self.cpu.insert_stack_check()
        if slowpathaddr == 0 or self.cpu.propagate_exception_v < 0:
            return      # no stack check (for tests, or non-translated)
        #
        # make a "function" that is called immediately at the start of
        # an assembler function.  In particular, the stack looks like:
        #
        #    |  ...                |    <-- aligned to a multiple of 16
        #    |  retaddr of caller  |
        #    |  my own retaddr     |    <-- esp
        #    +---------------------+
        #
        mc = codebuf.MachineCodeBlockWrapper()
        #
        stack_size = WORD
        if IS_X86_64:
            # on the x86_64, we have to save all the registers that may
            # have been used to pass arguments
            stack_size += 6*WORD + 8*8
            for reg in [edi, esi, edx, ecx, r8, r9]:
                mc.PUSH_r(reg.value)
            mc.SUB_ri(esp.value, 8*8)
            for i in range(8):
                mc.MOVSD_sx(8*i, i)     # xmm0 to xmm7
        #
        if IS_X86_32:
            stack_size += 2*WORD
            mc.PUSH_r(eax.value)        # alignment
            mc.PUSH_r(esp.value)
        elif IS_X86_64:
            mc.MOV_rr(edi.value, esp.value)
        #
        # esp is now aligned to a multiple of 16 again
        mc.CALL(imm(slowpathaddr))
        #
        mc.MOV(eax, heap(self.cpu.pos_exception()))
        mc.TEST_rr(eax.value, eax.value)
        mc.J_il8(rx86.Conditions['NZ'], 0)
        jnz_location = mc.get_relative_pos()
        #
        if IS_X86_32:
            mc.ADD_ri(esp.value, 2*WORD)    # cancel the two PUSHes above
        elif IS_X86_64:
            # restore the registers
            for i in range(7, -1, -1):
                mc.MOVSD_xs(i, 8*i)
            mc.ADD_ri(esp.value, 8*8)
            for reg in [r9, r8, ecx, edx, esi, edi]:
                mc.POP_r(reg.value)
        #
        mc.RET()
        #
        # patch the JNZ above
        offset = mc.get_relative_pos() - jnz_location
        assert 0 < offset <= 127
        mc.overwrite(jnz_location-1, chr(offset))
        # call on_leave_jitted_save_exc()
        addr = self.cpu.get_on_leave_jitted_int(save_exception=True)
        mc.CALL(imm(addr))
        #
        mc.MOV_ri(eax.value, self.cpu.propagate_exception_v)
        #
        # footer -- note the ADD, which skips the return address of this
        # function, and will instead return to the caller's caller.  Note
        # also that we completely ignore the saved arguments, because we
        # are interrupting the function.
        mc.ADD_ri(esp.value, stack_size)
        mc.RET()
        #
        rawstart = mc.materialize(self.cpu.asmmemmgr, [])
        self.stack_check_slowpath = rawstart

    def _build_wb_slowpath(self, withcards, withfloats=False):
        descr = self.cpu.gc_ll_descr.write_barrier_descr
        if descr is None:
            return
        if not withcards:
            func = descr.get_write_barrier_fn(self.cpu)
        else:
            if descr.jit_wb_cards_set == 0:
                return
            func = descr.get_write_barrier_from_array_fn(self.cpu)
            if func == 0:
                return
        #
        # This builds a helper function called from the slow path of
        # write barriers.  It must save all registers, and optionally
        # all XMM registers.  It takes a single argument just pushed
        # on the stack even on X86_64.  It must restore stack alignment
        # accordingly.
        mc = codebuf.MachineCodeBlockWrapper()
        #
        frame_size = (1 +     # my argument, considered part of my frame
                      1 +     # my return address
                      len(gpr_reg_mgr_cls.save_around_call_regs))
        if withfloats:
            frame_size += 16     # X86_32: 16 words for 8 registers;
                                 # X86_64: just 16 registers
        if IS_X86_32:
            frame_size += 1      # argument to pass to the call
        #
        # align to a multiple of 16 bytes
        frame_size = (frame_size + (CALL_ALIGN-1)) & ~(CALL_ALIGN-1)
        #
        correct_esp_by = (frame_size - 2) * WORD
        mc.SUB_ri(esp.value, correct_esp_by)
        #
        ofs = correct_esp_by
        if withfloats:
            for reg in xmm_reg_mgr_cls.save_around_call_regs:
                ofs -= 8
                mc.MOVSD_sx(ofs, reg.value)
        for reg in gpr_reg_mgr_cls.save_around_call_regs:
            ofs -= WORD
            mc.MOV_sr(ofs, reg.value)
        #
        if IS_X86_32:
            mc.MOV_rs(eax.value, (frame_size - 1) * WORD)
            mc.MOV_sr(0, eax.value)
        elif IS_X86_64:
            mc.MOV_rs(edi.value, (frame_size - 1) * WORD)
        mc.CALL(imm(func))
        #
        if withcards:
            # A final TEST8 before the RET, for the caller.  Careful to
            # not follow this instruction with another one that changes
            # the status of the CPU flags!
            mc.MOV_rs(eax.value, (frame_size - 1) * WORD)
            mc.TEST8(addr_add_const(eax, descr.jit_wb_if_flag_byteofs),
                     imm(-0x80))
        #
        ofs = correct_esp_by
        if withfloats:
            for reg in xmm_reg_mgr_cls.save_around_call_regs:
                ofs -= 8
                mc.MOVSD_xs(reg.value, ofs)
        for reg in gpr_reg_mgr_cls.save_around_call_regs:
            ofs -= WORD
            mc.MOV_rs(reg.value, ofs)
        #
        # ADD esp, correct_esp_by --- but cannot use ADD, because
        # of its effects on the CPU flags
        mc.LEA_rs(esp.value, correct_esp_by)
        mc.RET16_i(WORD)
        #
        rawstart = mc.materialize(self.cpu.asmmemmgr, [])
        self.wb_slowpath[withcards + 2 * withfloats] = rawstart

    @staticmethod
    @rgc.no_collect
    def _release_gil_asmgcc(css):
        # similar to trackgcroot.py:pypy_asm_stackwalk, first part
        from pypy.rpython.memory.gctransform import asmgcroot
        new = rffi.cast(asmgcroot.ASM_FRAMEDATA_HEAD_PTR, css)
        next = asmgcroot.gcrootanchor.next
        new.next = next
        new.prev = asmgcroot.gcrootanchor
        asmgcroot.gcrootanchor.next = new
        next.prev = new
        # and now release the GIL
        before = rffi.aroundstate.before
        if before:
            before()

    @staticmethod
    @rgc.no_collect
    def _reacquire_gil_asmgcc(css):
        # first reacquire the GIL
        after = rffi.aroundstate.after
        if after:
            after()
        # similar to trackgcroot.py:pypy_asm_stackwalk, second part
        from pypy.rpython.memory.gctransform import asmgcroot
        old = rffi.cast(asmgcroot.ASM_FRAMEDATA_HEAD_PTR, css)
        prev = old.prev
        next = old.next
        prev.next = next
        next.prev = prev

    @staticmethod
    @rgc.no_collect
    def _release_gil_shadowstack():
        before = rffi.aroundstate.before
        if before:
            before()

    @staticmethod
    @rgc.no_collect
    def _reacquire_gil_shadowstack():
        after = rffi.aroundstate.after
        if after:
            after()

    _NOARG_FUNC = lltype.Ptr(lltype.FuncType([], lltype.Void))
    _CLOSESTACK_FUNC = lltype.Ptr(lltype.FuncType([rffi.LONGP],
                                                  lltype.Void))

    def _build_release_gil(self, gcrootmap):
        if gcrootmap.is_shadow_stack:
            releasegil_func = llhelper(self._NOARG_FUNC,
                                       self._release_gil_shadowstack)
            reacqgil_func = llhelper(self._NOARG_FUNC,
                                     self._reacquire_gil_shadowstack)
        else:
            releasegil_func = llhelper(self._CLOSESTACK_FUNC,
                                       self._release_gil_asmgcc)
            reacqgil_func = llhelper(self._CLOSESTACK_FUNC,
                                     self._reacquire_gil_asmgcc)
        self.releasegil_addr  = self.cpu.cast_ptr_to_int(releasegil_func)
        self.reacqgil_addr = self.cpu.cast_ptr_to_int(reacqgil_func)

    def assemble_loop(self, loopname, inputargs, operations, looptoken, log):
        '''adds the following attributes to looptoken:
               _x86_function_addr   (address of the generated func, as an int)
               _x86_loop_code       (debug: addr of the start of the ResOps)
               _x86_fullsize        (debug: full size including failure)
               _x86_debug_checksum
        '''
        # XXX this function is too longish and contains some code
        # duplication with assemble_bridge().  Also, we should think
        # about not storing on 'self' attributes that will live only
        # for the duration of compiling one loop or a one bridge.

        clt = CompiledLoopToken(self.cpu, looptoken.number)
        clt.allgcrefs = []
        looptoken.compiled_loop_token = clt
        if not we_are_translated():
            # Arguments should be unique
            assert len(set(inputargs)) == len(inputargs)

        self.setup(looptoken)
        if log:
            operations = self._inject_debugging_code(looptoken, operations,
                                                     'e', looptoken.number)

        regalloc = RegAlloc(self, self.cpu.translate_support_code)
        #
        self._call_header_with_stack_check()
        stackadjustpos = self._patchable_stackadjust()
        clt._debug_nbargs = len(inputargs)
        operations = regalloc.prepare_loop(inputargs, operations,
                                           looptoken, clt.allgcrefs)
        looppos = self.mc.get_relative_pos()
        looptoken._x86_loop_code = looppos
        clt.frame_depth = -1     # temporarily
        frame_depth = self._assemble(regalloc, operations)
        clt.frame_depth = frame_depth
        #
        size_excluding_failure_stuff = self.mc.get_relative_pos()
        self.write_pending_failure_recoveries()
        full_size = self.mc.get_relative_pos()
        #
        rawstart = self.materialize_loop(looptoken)
        debug_start("jit-backend-addr")
        debug_print("Loop %d (%s) has address %x to %x (bootstrap %x)" % (
            looptoken.number, loopname,
            rawstart + looppos,
            rawstart + size_excluding_failure_stuff,
            rawstart))
        debug_stop("jit-backend-addr")
        self._patch_stackadjust(rawstart + stackadjustpos, frame_depth)
        self.patch_pending_failure_recoveries(rawstart)
        #
        ops_offset = self.mc.ops_offset
        if not we_are_translated():
            # used only by looptoken.dump() -- useful in tests
            looptoken._x86_rawstart = rawstart
            looptoken._x86_fullsize = full_size
            looptoken._x86_ops_offset = ops_offset
        looptoken._x86_function_addr = rawstart

        self.fixup_target_tokens(rawstart)
        self.teardown()
        # oprofile support
        if self.cpu.profile_agent is not None:
            name = "Loop # %s: %s" % (looptoken.number, loopname)
            self.cpu.profile_agent.native_code_written(name,
                                                       rawstart, full_size)
        return AsmInfo(ops_offset, rawstart + looppos,
                       size_excluding_failure_stuff - looppos)

    def assemble_bridge(self, faildescr, inputargs, operations,
                        original_loop_token, log):
        if not we_are_translated():
            # Arguments should be unique
            assert len(set(inputargs)) == len(inputargs)

        descr_number = self.cpu.get_fail_descr_number(faildescr)
        failure_recovery = self._find_failure_recovery_bytecode(faildescr)

        self.setup(original_loop_token)
        if log:
            operations = self._inject_debugging_code(faildescr, operations,
                                                     'b', descr_number)

        arglocs = self.rebuild_faillocs_from_descr(failure_recovery)
        if not we_are_translated():
            assert ([loc.assembler() for loc in arglocs] ==
                    [loc.assembler() for loc in faildescr._x86_debug_faillocs])
        regalloc = RegAlloc(self, self.cpu.translate_support_code)
        startpos = self.mc.get_relative_pos()
        operations = regalloc.prepare_bridge(inputargs, arglocs,
                                             operations,
                                             self.current_clt.allgcrefs)

        stackadjustpos = self._patchable_stackadjust()
        frame_depth = self._assemble(regalloc, operations)
        codeendpos = self.mc.get_relative_pos()
        self.write_pending_failure_recoveries()
        fullsize = self.mc.get_relative_pos()
        #
        rawstart = self.materialize_loop(original_loop_token)
        debug_start("jit-backend-addr")
        debug_print("bridge out of Guard %d has address %x to %x" %
                    (descr_number, rawstart, rawstart + codeendpos))
        debug_stop("jit-backend-addr")
        self._patch_stackadjust(rawstart + stackadjustpos, frame_depth)
        self.patch_pending_failure_recoveries(rawstart)
        if not we_are_translated():
            # for the benefit of tests
            faildescr._x86_bridge_frame_depth = frame_depth
        # patch the jump from original guard
        self.patch_jump_for_descr(faildescr, rawstart)
        ops_offset = self.mc.ops_offset
        self.fixup_target_tokens(rawstart)
        self.current_clt.frame_depth = max(self.current_clt.frame_depth, frame_depth)
        self.teardown()
        # oprofile support
        if self.cpu.profile_agent is not None:
            name = "Bridge # %s" % (descr_number,)
            self.cpu.profile_agent.native_code_written(name,
                                                       rawstart, fullsize)
        return AsmInfo(ops_offset, startpos + rawstart, codeendpos - startpos)

    def write_pending_failure_recoveries(self):
        # for each pending guard, generate the code of the recovery stub
        # at the end of self.mc.
        for tok in self.pending_guard_tokens:
            tok.pos_recovery_stub = self.generate_quick_failure(tok)
        if WORD == 8 and len(self.pending_memoryerror_trampoline_from) > 0:
            self.error_trampoline_64 = self.generate_propagate_error_64()

    def patch_pending_failure_recoveries(self, rawstart):
        # after we wrote the assembler to raw memory, set up
        # tok.faildescr._x86_adr_jump_offset to contain the raw address of
        # the 4-byte target field in the JMP/Jcond instruction, and patch
        # the field in question to point (initially) to the recovery stub
        clt = self.current_clt
        for tok in self.pending_guard_tokens:
            addr = rawstart + tok.pos_jump_offset
            tok.faildescr._x86_adr_jump_offset = addr
            relative_target = tok.pos_recovery_stub - (tok.pos_jump_offset + 4)
            assert rx86.fits_in_32bits(relative_target)
            #
            if not tok.is_guard_not_invalidated:
                mc = codebuf.MachineCodeBlockWrapper()
                mc.writeimm32(relative_target)
                mc.copy_to_raw_memory(addr)
            else:
                # GUARD_NOT_INVALIDATED, record an entry in
                # clt.invalidate_positions of the form:
                #     (addr-in-the-code-of-the-not-yet-written-jump-target,
                #      relative-target-to-use)
                relpos = tok.pos_jump_offset
                clt.invalidate_positions.append((rawstart + relpos,
                                                 relative_target))
                # General idea: Although no code was generated by this
                # guard, the code might be patched with a "JMP rel32" to
                # the guard recovery code.  This recovery code is
                # already generated, and looks like the recovery code
                # for any guard, even if at first it has no jump to it.
                # So we may later write 5 bytes overriding the existing
                # instructions; this works because a CALL instruction
                # would also take at least 5 bytes.  If it could take
                # less, we would run into the issue that overwriting the
                # 5 bytes here might get a few nonsense bytes at the
                # return address of the following CALL.
        if WORD == 8:
            for pos_after_jz in self.pending_memoryerror_trampoline_from:
                assert self.error_trampoline_64 != 0     # only if non-empty
                mc = codebuf.MachineCodeBlockWrapper()
                mc.writeimm32(self.error_trampoline_64 - pos_after_jz)
                mc.copy_to_raw_memory(rawstart + pos_after_jz - 4)

    def get_asmmemmgr_blocks(self, looptoken):
        clt = looptoken.compiled_loop_token
        if clt.asmmemmgr_blocks is None:
            clt.asmmemmgr_blocks = []
        return clt.asmmemmgr_blocks

    def materialize_loop(self, looptoken):
        self.datablockwrapper.done()      # finish using cpu.asmmemmgr
        self.datablockwrapper = None
        allblocks = self.get_asmmemmgr_blocks(looptoken)
        return self.mc.materialize(self.cpu.asmmemmgr, allblocks,
                                   self.cpu.gc_ll_descr.gcrootmap)

    def _register_counter(self, tp, number, token):
        # YYY very minor leak -- we need the counters to stay alive
        # forever, just because we want to report them at the end
        # of the process
        struct = lltype.malloc(DEBUG_COUNTER, flavor='raw',
                               track_allocation=False)
        struct.i = 0
        struct.type = tp
        if tp == 'b' or tp == 'e':
            struct.number = number
        else:
            assert token
            struct.number = compute_unique_id(token)
        self.loop_run_counters.append(struct)
        return struct

    def _find_failure_recovery_bytecode(self, faildescr):
        adr_jump_offset = faildescr._x86_adr_jump_offset
        if adr_jump_offset == 0:
            # This case should be prevented by the logic in compile.py:
            # look for CNT_BUSY_FLAG, which disables tracing from a guard
            # when another tracing from the same guard is already in progress.
            raise BridgeAlreadyCompiled
        # follow the JMP/Jcond
        p = rffi.cast(rffi.INTP, adr_jump_offset)
        adr_target = adr_jump_offset + 4 + rffi.cast(lltype.Signed, p[0])
        # skip the CALL
        if WORD == 4:
            adr_target += 5     # CALL imm
        else:
            adr_target += 13    # MOV r11, imm-as-8-bytes; CALL *r11 xxxxxxxxxx
        return adr_target

    def patch_jump_for_descr(self, faildescr, adr_new_target):
        adr_jump_offset = faildescr._x86_adr_jump_offset
        assert adr_jump_offset != 0
        offset = adr_new_target - (adr_jump_offset + 4)
        # If the new target fits within a rel32 of the jump, just patch
        # that. Otherwise, leave the original rel32 to the recovery stub in
        # place, but clobber the recovery stub with a jump to the real
        # target.
        mc = codebuf.MachineCodeBlockWrapper()
        if rx86.fits_in_32bits(offset):
            mc.writeimm32(offset)
            mc.copy_to_raw_memory(adr_jump_offset)
        else:
            # "mov r11, addr; jmp r11" is up to 13 bytes, which fits in there
            # because we always write "mov r11, imm-as-8-bytes; call *r11" in
            # the first place.
            mc.MOV_ri(X86_64_SCRATCH_REG.value, adr_new_target)
            mc.JMP_r(X86_64_SCRATCH_REG.value)
            p = rffi.cast(rffi.INTP, adr_jump_offset)
            adr_target = adr_jump_offset + 4 + rffi.cast(lltype.Signed, p[0])
            mc.copy_to_raw_memory(adr_target)
        faildescr._x86_adr_jump_offset = 0    # means "patched"

    def fixup_target_tokens(self, rawstart):
        for targettoken in self.target_tokens_currently_compiling:
            targettoken._x86_loop_code += rawstart
        self.target_tokens_currently_compiling = None

    def _append_debugging_code(self, operations, tp, number, token):
        counter = self._register_counter(tp, number, token)
        c_adr = ConstInt(rffi.cast(lltype.Signed, counter))
        box = BoxInt()
        box2 = BoxInt()
        ops = [ResOperation(rop.GETFIELD_RAW, [c_adr],
                            box, descr=self.debug_counter_descr),
               ResOperation(rop.INT_ADD, [box, ConstInt(1)], box2),
               ResOperation(rop.SETFIELD_RAW, [c_adr, box2],
                            None, descr=self.debug_counter_descr)]
        operations.extend(ops)

    @specialize.argtype(1)
    def _inject_debugging_code(self, looptoken, operations, tp, number):
        if self._debug:
            s = 0
            for op in operations:
                s += op.getopnum()
            looptoken._x86_debug_checksum = s

            newoperations = []
            self._append_debugging_code(newoperations, tp, number,
                                        None)
            for op in operations:
                newoperations.append(op)
                if op.getopnum() == rop.LABEL:
                    self._append_debugging_code(newoperations, 'l', number,
                                                op.getdescr())
            operations = newoperations
        return operations

    def _assemble(self, regalloc, operations):
        self._regalloc = regalloc
        regalloc.compute_hint_frame_locations(operations)
        regalloc.walk_operations(operations)
        if we_are_translated() or self.cpu.dont_keepalive_stuff:
            self._regalloc = None   # else keep it around for debugging
        frame_depth = regalloc.get_final_frame_depth()
        jump_target_descr = regalloc.jump_target_descr
        if jump_target_descr is not None:
            target_frame_depth = jump_target_descr._x86_clt.frame_depth
            frame_depth = max(frame_depth, target_frame_depth)
        return frame_depth

    def _patchable_stackadjust(self):
        # stack adjustment LEA
        self.mc.LEA32_rb(esp.value, 0)
        return self.mc.get_relative_pos() - 4

    def _patch_stackadjust(self, adr_lea, allocated_depth):
        # patch stack adjustment LEA
        mc = codebuf.MachineCodeBlockWrapper()
        # Compute the correct offset for the instruction LEA ESP, [EBP-4*words]
        mc.writeimm32(self._get_offset_of_ebp_from_esp(allocated_depth))
        mc.copy_to_raw_memory(adr_lea)

    def _get_offset_of_ebp_from_esp(self, allocated_depth):
        # Given that [EBP] is where we saved EBP, i.e. in the last word
        # of our fixed frame, then the 'words' value is:
        words = (FRAME_FIXED_SIZE - 1) + allocated_depth
        # align, e.g. for Mac OS X
        aligned_words = align_stack_words(words+2)-2 # 2 = EIP+EBP
        return -WORD * aligned_words

    def _call_header(self):
        # NB. the shape of the frame is hard-coded in get_basic_shape() too.
        # Also, make sure this is consistent with FRAME_FIXED_SIZE.
        self.mc.PUSH_r(ebp.value)
        self.mc.MOV_rr(ebp.value, esp.value)
        for loc in self.cpu.CALLEE_SAVE_REGISTERS:
            self.mc.PUSH_r(loc.value)

        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        if gcrootmap and gcrootmap.is_shadow_stack:
            self._call_header_shadowstack(gcrootmap)

    def _call_header_with_stack_check(self):
        if self.stack_check_slowpath == 0:
            pass                # no stack check (e.g. not translated)
        else:
            endaddr, lengthaddr, _ = self.cpu.insert_stack_check()
            self.mc.MOV(eax, heap(endaddr))             # MOV eax, [start]
            self.mc.SUB(eax, esp)                       # SUB eax, current
            self.mc.CMP(eax, heap(lengthaddr))          # CMP eax, [length]
            self.mc.J_il8(rx86.Conditions['BE'], 0)     # JBE .skip
            jb_location = self.mc.get_relative_pos()
            self.mc.CALL(imm(self.stack_check_slowpath))# CALL slowpath
            # patch the JB above                        # .skip:
            offset = self.mc.get_relative_pos() - jb_location
            assert 0 < offset <= 127
            self.mc.overwrite(jb_location-1, chr(offset))
            #
        self._call_header()

    def _call_footer(self):
        self.mc.LEA_rb(esp.value, -len(self.cpu.CALLEE_SAVE_REGISTERS) * WORD)

        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        if gcrootmap and gcrootmap.is_shadow_stack:
            self._call_footer_shadowstack(gcrootmap)

        for i in range(len(self.cpu.CALLEE_SAVE_REGISTERS)-1, -1, -1):
            self.mc.POP_r(self.cpu.CALLEE_SAVE_REGISTERS[i].value)

        self.mc.POP_r(ebp.value)
        self.mc.RET()

    def _call_header_shadowstack(self, gcrootmap):
        # we need to put two words into the shadowstack: the MARKER_FRAME
        # and the address of the frame (ebp, actually)
        rst = gcrootmap.get_root_stack_top_addr()
        if rx86.fits_in_32bits(rst):
            self.mc.MOV_rj(eax.value, rst)            # MOV eax, [rootstacktop]
        else:
            self.mc.MOV_ri(r13.value, rst)            # MOV r13, rootstacktop
            self.mc.MOV_rm(eax.value, (r13.value, 0)) # MOV eax, [r13]
        #
        MARKER = gcrootmap.MARKER_FRAME
        self.mc.LEA_rm(ebx.value, (eax.value, 2*WORD)) # LEA ebx, [eax+2*WORD]
        self.mc.MOV_mi((eax.value, WORD), MARKER)      # MOV [eax+WORD], MARKER
        self.mc.MOV_mr((eax.value, 0), ebp.value)      # MOV [eax], ebp
        #
        if rx86.fits_in_32bits(rst):
            self.mc.MOV_jr(rst, ebx.value)            # MOV [rootstacktop], ebx
        else:
            self.mc.MOV_mr((r13.value, 0), ebx.value) # MOV [r13], ebx

    def _call_footer_shadowstack(self, gcrootmap):
        rst = gcrootmap.get_root_stack_top_addr()
        if rx86.fits_in_32bits(rst):
            self.mc.SUB_ji8(rst, 2*WORD)       # SUB [rootstacktop], 2*WORD
        else:
            self.mc.MOV_ri(ebx.value, rst)           # MOV ebx, rootstacktop
            self.mc.SUB_mi8((ebx.value, 0), 2*WORD)  # SUB [ebx], 2*WORD

    def redirect_call_assembler(self, oldlooptoken, newlooptoken):
        # some minimal sanity checking
        old_nbargs = oldlooptoken.compiled_loop_token._debug_nbargs
        new_nbargs = newlooptoken.compiled_loop_token._debug_nbargs
        assert old_nbargs == new_nbargs
        # we overwrite the instructions at the old _x86_direct_bootstrap_code
        # to start with a JMP to the new _x86_direct_bootstrap_code.
        # Ideally we should rather patch all existing CALLs, but well.
        oldadr = oldlooptoken._x86_function_addr
        target = newlooptoken._x86_function_addr
        mc = codebuf.MachineCodeBlockWrapper()
        mc.JMP(imm(target))
        if WORD == 4:         # keep in sync with prepare_loop()
            assert mc.get_relative_pos() == 5
        else:
            assert mc.get_relative_pos() <= 13
        mc.copy_to_raw_memory(oldadr)

    def dump(self, text):
        if not self.verbose:
            return
        _prev = Box._extended_display
        try:
            Box._extended_display = False
            pos = self.mc.get_relative_pos()
            print >> sys.stderr, ' 0x%x  %s' % (pos, text)
        finally:
            Box._extended_display = _prev

    # ------------------------------------------------------------

    def mov(self, from_loc, to_loc):
        if (isinstance(from_loc, RegLoc) and from_loc.is_xmm) or (isinstance(to_loc, RegLoc) and to_loc.is_xmm):
            self.mc.MOVSD(to_loc, from_loc)
        else:
            assert to_loc is not ebp
            self.mc.MOV(to_loc, from_loc)

    regalloc_mov = mov # legacy interface

    def regalloc_push(self, loc):
        if isinstance(loc, RegLoc) and loc.is_xmm:
            self.mc.SUB_ri(esp.value, 8)   # = size of doubles
            self.mc.MOVSD_sx(0, loc.value)
        elif WORD == 4 and isinstance(loc, StackLoc) and loc.get_width() == 8:
            # XXX evil trick
            self.mc.PUSH_b(loc.value + 4)
            self.mc.PUSH_b(loc.value)
        else:
            self.mc.PUSH(loc)

    def regalloc_pop(self, loc):
        if isinstance(loc, RegLoc) and loc.is_xmm:
            self.mc.MOVSD_xs(loc.value, 0)
            self.mc.ADD_ri(esp.value, 8)   # = size of doubles
        elif WORD == 4 and isinstance(loc, StackLoc) and loc.get_width() == 8:
            # XXX evil trick
            self.mc.POP_b(loc.value)
            self.mc.POP_b(loc.value + 4)
        else:
            self.mc.POP(loc)

    def regalloc_immedmem2mem(self, from_loc, to_loc):
        # move a ConstFloatLoc directly to a StackLoc, as two MOVs
        # (even on x86-64, because the immediates are encoded as 32 bits)
        assert isinstance(from_loc, ConstFloatLoc)
        assert isinstance(to_loc,   StackLoc)
        low_part  = rffi.cast(rffi.CArrayPtr(rffi.INT), from_loc.value)[0]
        high_part = rffi.cast(rffi.CArrayPtr(rffi.INT), from_loc.value)[1]
        low_part  = intmask(low_part)
        high_part = intmask(high_part)
        self.mc.MOV32_bi(to_loc.value,     low_part)
        self.mc.MOV32_bi(to_loc.value + 4, high_part)

    def regalloc_perform(self, op, arglocs, resloc):
        genop_list[op.getopnum()](self, op, arglocs, resloc)

    def regalloc_perform_discard(self, op, arglocs):
        genop_discard_list[op.getopnum()](self, op, arglocs)

    def regalloc_perform_llong(self, op, arglocs, resloc):
        effectinfo = op.getdescr().get_extra_info()
        oopspecindex = effectinfo.oopspecindex
        genop_llong_list[oopspecindex](self, op, arglocs, resloc)

    def regalloc_perform_math(self, op, arglocs, resloc):
        effectinfo = op.getdescr().get_extra_info()
        oopspecindex = effectinfo.oopspecindex
        genop_math_list[oopspecindex](self, op, arglocs, resloc)

    def regalloc_perform_with_guard(self, op, guard_op, faillocs,
                                    arglocs, resloc):
        faildescr = guard_op.getdescr()
        assert isinstance(faildescr, AbstractFailDescr)
        failargs = guard_op.getfailargs()
        guard_opnum = guard_op.getopnum()
        guard_token = self.implement_guard_recovery(guard_opnum,
                                                    faildescr, failargs,
                                                    faillocs)
        if op is None:
            dispatch_opnum = guard_opnum
        else:
            dispatch_opnum = op.getopnum()
        genop_guard_list[dispatch_opnum](self, op, guard_op, guard_token,
                                         arglocs, resloc)
        if not we_are_translated():
            # must be added by the genop_guard_list[]()
            assert guard_token is self.pending_guard_tokens[-1]

    def regalloc_perform_guard(self, guard_op, faillocs, arglocs, resloc):
        self.regalloc_perform_with_guard(None, guard_op, faillocs, arglocs,
                                         resloc)

    def load_effective_addr(self, sizereg, baseofs, scale, result, frm=imm0):
        self.mc.LEA(result, addr_add(frm, sizereg, baseofs, scale))

    def _unaryop(asmop):
        def genop_unary(self, op, arglocs, resloc):
            getattr(self.mc, asmop)(arglocs[0])
        return genop_unary

    def _binaryop(asmop, can_swap=False):
        def genop_binary(self, op, arglocs, result_loc):
            getattr(self.mc, asmop)(arglocs[0], arglocs[1])
        return genop_binary

    def _binaryop_or_lea(asmop, is_add):
        def genop_binary_or_lea(self, op, arglocs, result_loc):
            # use a regular ADD or SUB if result_loc is arglocs[0],
            # and a LEA only if different.
            if result_loc is arglocs[0]:
                getattr(self.mc, asmop)(arglocs[0], arglocs[1])
            else:
                loc = arglocs[0]
                argloc = arglocs[1]
                assert isinstance(loc, RegLoc)
                assert isinstance(argloc, ImmedLoc)
                assert isinstance(result_loc, RegLoc)
                delta = argloc.value
                if not is_add:    # subtraction
                    delta = -delta
                self.mc.LEA_rm(result_loc.value, (loc.value, delta))
        return genop_binary_or_lea

    def _cmpop(cond, rev_cond):
        def genop_cmp(self, op, arglocs, result_loc):
            rl = result_loc.lowest8bits()
            if isinstance(op.getarg(0), Const):
                self.mc.CMP(arglocs[1], arglocs[0])
                self.mc.SET_ir(rx86.Conditions[rev_cond], rl.value)
            else:
                self.mc.CMP(arglocs[0], arglocs[1])
                self.mc.SET_ir(rx86.Conditions[cond], rl.value)
            self.mc.MOVZX8_rr(result_loc.value, rl.value)
        return genop_cmp

    def _cmpop_float(cond, rev_cond, is_ne=False):
        def genop_cmp(self, op, arglocs, result_loc):
            if isinstance(arglocs[0], RegLoc):
                self.mc.UCOMISD(arglocs[0], arglocs[1])
                checkcond = cond
            else:
                self.mc.UCOMISD(arglocs[1], arglocs[0])
                checkcond = rev_cond

            tmp1 = result_loc.lowest8bits()
            if IS_X86_32:
                tmp2 = result_loc.higher8bits()
            elif IS_X86_64:
                tmp2 = X86_64_SCRATCH_REG.lowest8bits()

            self.mc.SET_ir(rx86.Conditions[checkcond], tmp1.value)
            if is_ne:
                self.mc.SET_ir(rx86.Conditions['P'], tmp2.value)
                self.mc.OR8_rr(tmp1.value, tmp2.value)
            else:
                self.mc.SET_ir(rx86.Conditions['NP'], tmp2.value)
                self.mc.AND8_rr(tmp1.value, tmp2.value)
            self.mc.MOVZX8_rr(result_loc.value, tmp1.value)
        return genop_cmp

    def _cmpop_guard(cond, rev_cond, false_cond, false_rev_cond):
        def genop_cmp_guard(self, op, guard_op, guard_token, arglocs, result_loc):
            guard_opnum = guard_op.getopnum()
            if isinstance(op.getarg(0), Const):
                self.mc.CMP(arglocs[1], arglocs[0])
                if guard_opnum == rop.GUARD_FALSE:
                    self.implement_guard(guard_token, rev_cond)
                else:
                    self.implement_guard(guard_token, false_rev_cond)
            else:
                self.mc.CMP(arglocs[0], arglocs[1])
                if guard_opnum == rop.GUARD_FALSE:
                    self.implement_guard(guard_token, cond)
                else:
                    self.implement_guard(guard_token, false_cond)
        return genop_cmp_guard

    def _cmpop_guard_float(cond, rev_cond, false_cond, false_rev_cond):
        need_direct_jp = 'A' not in cond
        need_rev_jp = 'A' not in rev_cond
        def genop_cmp_guard_float(self, op, guard_op, guard_token, arglocs,
                                  result_loc):
            guard_opnum = guard_op.getopnum()
            if isinstance(arglocs[0], RegLoc):
                self.mc.UCOMISD(arglocs[0], arglocs[1])
                checkcond = cond
                checkfalsecond = false_cond
                need_jp = need_direct_jp
            else:
                self.mc.UCOMISD(arglocs[1], arglocs[0])
                checkcond = rev_cond
                checkfalsecond = false_rev_cond
                need_jp = need_rev_jp
            if guard_opnum == rop.GUARD_FALSE:
                if need_jp:
                    self.mc.J_il8(rx86.Conditions['P'], 6)
                self.implement_guard(guard_token, checkcond)
            else:
                if need_jp:
                    self.mc.J_il8(rx86.Conditions['P'], 2)
                    self.mc.J_il8(rx86.Conditions[checkcond], 5)
                    self.implement_guard(guard_token)
                else:
                    self.implement_guard(guard_token, checkfalsecond)
        return genop_cmp_guard_float

    def _emit_call(self, force_index, x, arglocs, start=0, tmp=eax,
                   argtypes=None, callconv=FFI_DEFAULT_ABI):
        if IS_X86_64:
            return self._emit_call_64(force_index, x, arglocs, start, argtypes)

        p = 0
        n = len(arglocs)
        for i in range(start, n):
            loc = arglocs[i]
            if isinstance(loc, RegLoc):
                if loc.is_xmm:
                    self.mc.MOVSD_sx(p, loc.value)
                else:
                    self.mc.MOV_sr(p, loc.value)
            p += loc.get_width()
        p = 0
        for i in range(start, n):
            loc = arglocs[i]
            if not isinstance(loc, RegLoc):
                if loc.get_width() == 8:
                    self.mc.MOVSD(xmm0, loc)
                    self.mc.MOVSD_sx(p, xmm0.value)
                else:
                    self.mc.MOV(tmp, loc)
                    self.mc.MOV_sr(p, tmp.value)
            p += loc.get_width()
        # x is a location
        self.mc.CALL(x)
        self.mark_gc_roots(force_index)
        #
        if callconv != FFI_DEFAULT_ABI:
            self._fix_stdcall(callconv, p)
        #
        self._regalloc.needed_extra_stack_locations(p//WORD)

    def _fix_stdcall(self, callconv, p):
        from pypy.rlib.clibffi import FFI_STDCALL
        assert callconv == FFI_STDCALL
        # it's a bit stupid, but we're just going to cancel the fact that
        # the called function just added 'p' to ESP, by subtracting it again.
        self.mc.SUB_ri(esp.value, p)

    def _emit_call_64(self, force_index, x, arglocs, start, argtypes):
        src_locs = []
        dst_locs = []
        xmm_src_locs = []
        xmm_dst_locs = []
        pass_on_stack = []
        singlefloats = None

        # In reverse order for use with pop()
        unused_gpr = [r9, r8, ecx, edx, esi, edi]
        unused_xmm = [xmm7, xmm6, xmm5, xmm4, xmm3, xmm2, xmm1, xmm0]

        for i in range(start, len(arglocs)):
            loc = arglocs[i]
            # XXX: Should be much simplier to tell whether a location is a
            # float! It's so ugly because we have to "guard" the access to
            # .type with isinstance, since not all AssemblerLocation classes
            # are "typed"
            if ((isinstance(loc, RegLoc) and loc.is_xmm) or
                (isinstance(loc, StackLoc) and loc.type == FLOAT) or
                (isinstance(loc, ConstFloatLoc))):
                if len(unused_xmm) > 0:
                    xmm_src_locs.append(loc)
                    xmm_dst_locs.append(unused_xmm.pop())
                else:
                    pass_on_stack.append(loc)
            elif argtypes is not None and argtypes[i-start] == 'S':
                # Singlefloat argument
                if len(unused_xmm) > 0:
                    if singlefloats is None: singlefloats = []
                    singlefloats.append((loc, unused_xmm.pop()))
                else:
                    pass_on_stack.append(loc)
            else:
                if len(unused_gpr) > 0:
                    src_locs.append(loc)
                    dst_locs.append(unused_gpr.pop())
                else:
                    pass_on_stack.append(loc)

        # Emit instructions to pass the stack arguments
        # XXX: Would be nice to let remap_frame_layout take care of this, but
        # we'd need to create something like StackLoc, but relative to esp,
        # and I don't know if it's worth it.
        for i in range(len(pass_on_stack)):
            loc = pass_on_stack[i]
            if not isinstance(loc, RegLoc):
                if isinstance(loc, StackLoc) and loc.type == FLOAT:
                    self.mc.MOVSD(X86_64_XMM_SCRATCH_REG, loc)
                    self.mc.MOVSD_sx(i*WORD, X86_64_XMM_SCRATCH_REG.value)
                else:
                    self.mc.MOV(X86_64_SCRATCH_REG, loc)
                    self.mc.MOV_sr(i*WORD, X86_64_SCRATCH_REG.value)
            else:
                # It's a register
                if loc.is_xmm:
                    self.mc.MOVSD_sx(i*WORD, loc.value)
                else:
                    self.mc.MOV_sr(i*WORD, loc.value)

        # Handle register arguments: first remap the xmm arguments
        remap_frame_layout(self, xmm_src_locs, xmm_dst_locs,
                           X86_64_XMM_SCRATCH_REG)
        # Load the singlefloat arguments from main regs or stack to xmm regs
        if singlefloats is not None:
            for src, dst in singlefloats:
                if isinstance(src, ImmedLoc):
                    self.mc.MOV(X86_64_SCRATCH_REG, src)
                    src = X86_64_SCRATCH_REG
                self.mc.MOVD(dst, src)
        # Finally remap the arguments in the main regs
        # If x is a register and is in dst_locs, then oups, it needs to
        # be moved away:
        if x in dst_locs:
            src_locs.append(x)
            dst_locs.append(r10)
            x = r10
        remap_frame_layout(self, src_locs, dst_locs, X86_64_SCRATCH_REG)

        self.mc.CALL(x)
        self.mark_gc_roots(force_index)
        self._regalloc.needed_extra_stack_locations(len(pass_on_stack))

    def call(self, addr, args, res):
        force_index = self.write_new_force_index()
        self._emit_call(force_index, imm(addr), args)
        assert res is eax

    def write_new_force_index(self):
        # for shadowstack only: get a new, unused force_index number and
        # write it to FORCE_INDEX_OFS.  Used to record the call shape
        # (i.e. where the GC pointers are in the stack) around a CALL
        # instruction that doesn't already have a force_index.
        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        if gcrootmap and gcrootmap.is_shadow_stack:
            clt = self.current_clt
            force_index = clt.reserve_and_record_some_faildescr_index()
            self.mc.MOV_bi(FORCE_INDEX_OFS, force_index)
            return force_index
        else:
            # the return value is ignored, apart from the fact that it
            # is not negative.
            return 0

    genop_int_neg = _unaryop("NEG")
    genop_int_invert = _unaryop("NOT")
    genop_int_add = _binaryop_or_lea("ADD", True)
    genop_int_sub = _binaryop_or_lea("SUB", False)
    genop_int_mul = _binaryop("IMUL", True)
    genop_int_and = _binaryop("AND", True)
    genop_int_or  = _binaryop("OR", True)
    genop_int_xor = _binaryop("XOR", True)
    genop_int_lshift = _binaryop("SHL")
    genop_int_rshift = _binaryop("SAR")
    genop_uint_rshift = _binaryop("SHR")
    genop_float_add = _binaryop("ADDSD", True)
    genop_float_sub = _binaryop('SUBSD')
    genop_float_mul = _binaryop('MULSD', True)
    genop_float_truediv = _binaryop('DIVSD')

    genop_int_lt = _cmpop("L", "G")
    genop_int_le = _cmpop("LE", "GE")
    genop_int_eq = _cmpop("E", "E")
    genop_int_ne = _cmpop("NE", "NE")
    genop_int_gt = _cmpop("G", "L")
    genop_int_ge = _cmpop("GE", "LE")
    genop_ptr_eq = genop_instance_ptr_eq = genop_int_eq
    genop_ptr_ne = genop_instance_ptr_ne = genop_int_ne

    genop_float_lt = _cmpop_float('B', 'A')
    genop_float_le = _cmpop_float('BE', 'AE')
    genop_float_ne = _cmpop_float('NE', 'NE', is_ne=True)
    genop_float_eq = _cmpop_float('E', 'E')
    genop_float_gt = _cmpop_float('A', 'B')
    genop_float_ge = _cmpop_float('AE', 'BE')

    genop_uint_gt = _cmpop("A", "B")
    genop_uint_lt = _cmpop("B", "A")
    genop_uint_le = _cmpop("BE", "AE")
    genop_uint_ge = _cmpop("AE", "BE")

    genop_guard_int_lt = _cmpop_guard("L", "G", "GE", "LE")
    genop_guard_int_le = _cmpop_guard("LE", "GE", "G", "L")
    genop_guard_int_eq = _cmpop_guard("E", "E", "NE", "NE")
    genop_guard_int_ne = _cmpop_guard("NE", "NE", "E", "E")
    genop_guard_int_gt = _cmpop_guard("G", "L", "LE", "GE")
    genop_guard_int_ge = _cmpop_guard("GE", "LE", "L", "G")
    genop_guard_ptr_eq = genop_guard_instance_ptr_eq = genop_guard_int_eq
    genop_guard_ptr_ne = genop_guard_instance_ptr_ne = genop_guard_int_ne

    genop_guard_uint_gt = _cmpop_guard("A", "B", "BE", "AE")
    genop_guard_uint_lt = _cmpop_guard("B", "A", "AE", "BE")
    genop_guard_uint_le = _cmpop_guard("BE", "AE", "A", "B")
    genop_guard_uint_ge = _cmpop_guard("AE", "BE", "B", "A")

    genop_guard_float_lt = _cmpop_guard_float("B", "A", "AE","BE")
    genop_guard_float_le = _cmpop_guard_float("BE","AE", "A", "B")
    genop_guard_float_eq = _cmpop_guard_float("E", "E", "NE","NE")
    genop_guard_float_gt = _cmpop_guard_float("A", "B", "BE","AE")
    genop_guard_float_ge = _cmpop_guard_float("AE","BE", "B", "A")

    def genop_math_sqrt(self, op, arglocs, resloc):
        self.mc.SQRTSD(arglocs[0], resloc)

    def genop_guard_float_ne(self, op, guard_op, guard_token, arglocs, result_loc):
        guard_opnum = guard_op.getopnum()
        if isinstance(arglocs[0], RegLoc):
            self.mc.UCOMISD(arglocs[0], arglocs[1])
        else:
            self.mc.UCOMISD(arglocs[1], arglocs[0])
        if guard_opnum == rop.GUARD_TRUE:
            self.mc.J_il8(rx86.Conditions['P'], 6)
            self.implement_guard(guard_token, 'E')
        else:
            self.mc.J_il8(rx86.Conditions['P'], 2)
            self.mc.J_il8(rx86.Conditions['E'], 5)
            self.implement_guard(guard_token)

    def genop_float_neg(self, op, arglocs, resloc):
        # Following what gcc does: res = x ^ 0x8000000000000000
        self.mc.XORPD(arglocs[0], heap(self.float_const_neg_addr))

    def genop_float_abs(self, op, arglocs, resloc):
        # Following what gcc does: res = x & 0x7FFFFFFFFFFFFFFF
        self.mc.ANDPD(arglocs[0], heap(self.float_const_abs_addr))

    def genop_cast_float_to_int(self, op, arglocs, resloc):
        self.mc.CVTTSD2SI(resloc, arglocs[0])

    def genop_cast_int_to_float(self, op, arglocs, resloc):
        self.mc.CVTSI2SD(resloc, arglocs[0])

    def genop_cast_float_to_singlefloat(self, op, arglocs, resloc):
        loc0, loctmp = arglocs
        self.mc.CVTSD2SS(loctmp, loc0)
        assert isinstance(resloc, RegLoc)
        assert isinstance(loctmp, RegLoc)
        self.mc.MOVD_rx(resloc.value, loctmp.value)

    def genop_cast_singlefloat_to_float(self, op, arglocs, resloc):
        loc0, = arglocs
        assert isinstance(resloc, RegLoc)
        assert isinstance(loc0, RegLoc)
        self.mc.MOVD_xr(resloc.value, loc0.value)
        self.mc.CVTSS2SD_xx(resloc.value, resloc.value)

    def genop_convert_float_bytes_to_longlong(self, op, arglocs, resloc):
        loc0, = arglocs
        if longlong.is_64_bit:
            assert isinstance(resloc, RegLoc)
            assert isinstance(loc0, RegLoc)
            self.mc.MOVD(resloc, loc0)
        else:
            self.mov(loc0, resloc)

    def genop_convert_longlong_bytes_to_float(self, op, arglocs, resloc):
        loc0, = arglocs
        if longlong.is_64_bit:
            assert isinstance(resloc, RegLoc)
            assert isinstance(loc0, RegLoc)
            self.mc.MOVD(resloc, loc0)
        else:
            self.mov(loc0, resloc)

    def genop_guard_int_is_true(self, op, guard_op, guard_token, arglocs, resloc):
        guard_opnum = guard_op.getopnum()
        self.mc.CMP(arglocs[0], imm0)
        if guard_opnum == rop.GUARD_TRUE:
            self.implement_guard(guard_token, 'Z')
        else:
            self.implement_guard(guard_token, 'NZ')

    def genop_int_is_true(self, op, arglocs, resloc):
        self.mc.CMP(arglocs[0], imm0)
        rl = resloc.lowest8bits()
        self.mc.SET_ir(rx86.Conditions['NE'], rl.value)
        self.mc.MOVZX8(resloc, rl)

    def genop_guard_int_is_zero(self, op, guard_op, guard_token, arglocs, resloc):
        guard_opnum = guard_op.getopnum()
        self.mc.CMP(arglocs[0], imm0)
        if guard_opnum == rop.GUARD_TRUE:
            self.implement_guard(guard_token, 'NZ')
        else:
            self.implement_guard(guard_token, 'Z')

    def genop_int_is_zero(self, op, arglocs, resloc):
        self.mc.CMP(arglocs[0], imm0)
        rl = resloc.lowest8bits()
        self.mc.SET_ir(rx86.Conditions['E'], rl.value)
        self.mc.MOVZX8(resloc, rl)

    def genop_same_as(self, op, arglocs, resloc):
        self.mov(arglocs[0], resloc)
    genop_cast_ptr_to_int = genop_same_as
    genop_cast_int_to_ptr = genop_same_as

    def genop_int_force_ge_zero(self, op, arglocs, resloc):
        self.mc.TEST(arglocs[0], arglocs[0])
        self.mov(imm0, resloc)
        self.mc.CMOVNS(resloc, arglocs[0])

    def genop_int_mod(self, op, arglocs, resloc):
        if IS_X86_32:
            self.mc.CDQ()
        elif IS_X86_64:
            self.mc.CQO()

        self.mc.IDIV_r(ecx.value)

    genop_int_floordiv = genop_int_mod

    def genop_uint_floordiv(self, op, arglocs, resloc):
        self.mc.XOR_rr(edx.value, edx.value)
        self.mc.DIV_r(ecx.value)

    genop_llong_add = _binaryop("PADDQ", True)
    genop_llong_sub = _binaryop("PSUBQ")
    genop_llong_and = _binaryop("PAND",  True)
    genop_llong_or  = _binaryop("POR",   True)
    genop_llong_xor = _binaryop("PXOR",  True)

    def genop_llong_to_int(self, op, arglocs, resloc):
        loc = arglocs[0]
        assert isinstance(resloc, RegLoc)
        if isinstance(loc, RegLoc):
            self.mc.MOVD_rx(resloc.value, loc.value)
        elif isinstance(loc, StackLoc):
            self.mc.MOV_rb(resloc.value, loc.value)
        else:
            not_implemented("llong_to_int: %s" % (loc,))

    def genop_llong_from_int(self, op, arglocs, resloc):
        loc1, loc2 = arglocs
        if isinstance(loc1, ConstFloatLoc):
            assert loc2 is None
            self.mc.MOVSD(resloc, loc1)
        else:
            assert isinstance(loc1, RegLoc)
            assert isinstance(loc2, RegLoc)
            assert isinstance(resloc, RegLoc)
            self.mc.MOVD_xr(loc2.value, loc1.value)
            self.mc.PSRAD_xi(loc2.value, 31)    # -> 0 or -1
            self.mc.MOVD_xr(resloc.value, loc1.value)
            self.mc.PUNPCKLDQ_xx(resloc.value, loc2.value)

    def genop_llong_from_uint(self, op, arglocs, resloc):
        loc1, = arglocs
        assert isinstance(resloc, RegLoc)
        assert isinstance(loc1, RegLoc)
        self.mc.MOVD_xr(resloc.value, loc1.value)

    def genop_llong_eq(self, op, arglocs, resloc):
        loc1, loc2, locxtmp = arglocs
        self.mc.MOVSD(locxtmp, loc1)
        self.mc.PCMPEQD(locxtmp, loc2)
        self.mc.PMOVMSKB_rx(resloc.value, locxtmp.value)
        # Now the lower 8 bits of resloc contain 0x00, 0x0F, 0xF0 or 0xFF
        # depending on the result of the comparison of each of the two
        # double-words of loc1 and loc2.  The higher 8 bits contain random
        # results.  We want to map 0xFF to 1, and 0x00, 0x0F and 0xF0 to 0.
        self.mc.CMP8_ri(resloc.value | rx86.BYTE_REG_FLAG, -1)
        self.mc.SBB_rr(resloc.value, resloc.value)
        self.mc.ADD_ri(resloc.value, 1)

    def genop_llong_ne(self, op, arglocs, resloc):
        loc1, loc2, locxtmp = arglocs
        self.mc.MOVSD(locxtmp, loc1)
        self.mc.PCMPEQD(locxtmp, loc2)
        self.mc.PMOVMSKB_rx(resloc.value, locxtmp.value)
        # Now the lower 8 bits of resloc contain 0x00, 0x0F, 0xF0 or 0xFF
        # depending on the result of the comparison of each of the two
        # double-words of loc1 and loc2.  The higher 8 bits contain random
        # results.  We want to map 0xFF to 0, and 0x00, 0x0F and 0xF0 to 1.
        self.mc.CMP8_ri(resloc.value | rx86.BYTE_REG_FLAG, -1)
        self.mc.SBB_rr(resloc.value, resloc.value)
        self.mc.NEG_r(resloc.value)

    def genop_llong_lt(self, op, arglocs, resloc):
        # XXX just a special case for now: "x < 0"
        loc1, = arglocs
        self.mc.PMOVMSKB_rx(resloc.value, loc1.value)
        self.mc.SHR_ri(resloc.value, 7)
        self.mc.AND_ri(resloc.value, 1)

    # ----------

    def genop_call_malloc_gc(self, op, arglocs, result_loc):
        self.genop_call(op, arglocs, result_loc)
        self.propagate_memoryerror_if_eax_is_null()

    def propagate_memoryerror_if_eax_is_null(self):
        # if self.propagate_exception_path == 0 (tests), this may jump to 0
        # and segfaults.  too bad.  the alternative is to continue anyway
        # with eax==0, but that will segfault too.
        self.mc.TEST_rr(eax.value, eax.value)
        if WORD == 4:
            self.mc.J_il(rx86.Conditions['Z'], self.propagate_exception_path)
            self.mc.add_pending_relocation()
        elif WORD == 8:
            self.mc.J_il(rx86.Conditions['Z'], 0)
            pos = self.mc.get_relative_pos()
            self.pending_memoryerror_trampoline_from.append(pos)

    # ----------

    def load_from_mem(self, resloc, source_addr, size_loc, sign_loc):
        assert isinstance(resloc, RegLoc)
        size = size_loc.value
        sign = sign_loc.value
        if resloc.is_xmm:
            self.mc.MOVSD(resloc, source_addr)
        elif size == WORD:
            self.mc.MOV(resloc, source_addr)
        elif size == 1:
            if sign:
                self.mc.MOVSX8(resloc, source_addr)
            else:
                self.mc.MOVZX8(resloc, source_addr)
        elif size == 2:
            if sign:
                self.mc.MOVSX16(resloc, source_addr)
            else:
                self.mc.MOVZX16(resloc, source_addr)
        elif IS_X86_64 and size == 4:
            if sign:
                self.mc.MOVSX32(resloc, source_addr)
            else:
                self.mc.MOV32(resloc, source_addr)    # zero-extending
        else:
            not_implemented("load_from_mem size = %d" % size)

    def save_into_mem(self, dest_addr, value_loc, size_loc):
        size = size_loc.value
        if isinstance(value_loc, RegLoc) and value_loc.is_xmm:
            self.mc.MOVSD(dest_addr, value_loc)
        elif size == 1:
            self.mc.MOV8(dest_addr, value_loc.lowest8bits())
        elif size == 2:
            self.mc.MOV16(dest_addr, value_loc)
        elif size == 4:
            self.mc.MOV32(dest_addr, value_loc)
        elif size == 8:
            if IS_X86_64:
                self.mc.MOV(dest_addr, value_loc)
            else:
                assert isinstance(value_loc, FloatImmedLoc)
                self.mc.MOV(dest_addr, value_loc.low_part_loc())
                self.mc.MOV(dest_addr.add_offset(4), value_loc.high_part_loc())
        else:
            not_implemented("save_into_mem size = %d" % size)

    def genop_getfield_gc(self, op, arglocs, resloc):
        base_loc, ofs_loc, size_loc, sign_loc = arglocs
        assert isinstance(size_loc, ImmedLoc)
        source_addr = AddressLoc(base_loc, ofs_loc)
        self.load_from_mem(resloc, source_addr, size_loc, sign_loc)

    genop_getfield_raw = genop_getfield_gc
    genop_getfield_raw_pure = genop_getfield_gc
    genop_getfield_gc_pure = genop_getfield_gc

    def genop_getarrayitem_gc(self, op, arglocs, resloc):
        base_loc, ofs_loc, size_loc, ofs, sign_loc = arglocs
        assert isinstance(ofs, ImmedLoc)
        assert isinstance(size_loc, ImmedLoc)
        scale = _get_scale(size_loc.value)
        src_addr = addr_add(base_loc, ofs_loc, ofs.value, scale)
        self.load_from_mem(resloc, src_addr, size_loc, sign_loc)

    genop_getarrayitem_gc_pure = genop_getarrayitem_gc
    genop_getarrayitem_raw = genop_getarrayitem_gc
    genop_getarrayitem_raw_pure = genop_getarrayitem_gc

    def genop_raw_load(self, op, arglocs, resloc):
        base_loc, ofs_loc, size_loc, ofs, sign_loc = arglocs
        assert isinstance(ofs, ImmedLoc)
        src_addr = addr_add(base_loc, ofs_loc, ofs.value, 0)
        self.load_from_mem(resloc, src_addr, size_loc, sign_loc)

    def _get_interiorfield_addr(self, temp_loc, index_loc, itemsize_loc,
                                base_loc, ofs_loc):
        assert isinstance(itemsize_loc, ImmedLoc)
        if isinstance(index_loc, ImmedLoc):
            temp_loc = imm(index_loc.value * itemsize_loc.value)
        elif _valid_addressing_size(itemsize_loc.value):
            return AddressLoc(base_loc, index_loc, _get_scale(itemsize_loc.value), ofs_loc.value)
        else:
            # XXX should not use IMUL in more cases, it can use a clever LEA
            assert isinstance(temp_loc, RegLoc)
            assert isinstance(index_loc, RegLoc)
            assert not temp_loc.is_xmm
            self.mc.IMUL_rri(temp_loc.value, index_loc.value,
                             itemsize_loc.value)
        assert isinstance(ofs_loc, ImmedLoc)
        return AddressLoc(base_loc, temp_loc, 0, ofs_loc.value)

    def genop_getinteriorfield_gc(self, op, arglocs, resloc):
        (base_loc, ofs_loc, itemsize_loc, fieldsize_loc,
            index_loc, temp_loc, sign_loc) = arglocs
        src_addr = self._get_interiorfield_addr(temp_loc, index_loc,
                                                itemsize_loc, base_loc,
                                                ofs_loc)
        self.load_from_mem(resloc, src_addr, fieldsize_loc, sign_loc)

    def genop_discard_setfield_gc(self, op, arglocs):
        base_loc, ofs_loc, size_loc, value_loc = arglocs
        assert isinstance(size_loc, ImmedLoc)
        dest_addr = AddressLoc(base_loc, ofs_loc)
        self.save_into_mem(dest_addr, value_loc, size_loc)

    def genop_discard_setinteriorfield_gc(self, op, arglocs):
        (base_loc, ofs_loc, itemsize_loc, fieldsize_loc,
            index_loc, temp_loc, value_loc) = arglocs
        dest_addr = self._get_interiorfield_addr(temp_loc, index_loc,
                                                 itemsize_loc, base_loc,
                                                 ofs_loc)
        self.save_into_mem(dest_addr, value_loc, fieldsize_loc)

    genop_discard_setinteriorfield_raw = genop_discard_setinteriorfield_gc

    def genop_discard_setarrayitem_gc(self, op, arglocs):
        base_loc, ofs_loc, value_loc, size_loc, baseofs = arglocs
        assert isinstance(baseofs, ImmedLoc)
        assert isinstance(size_loc, ImmedLoc)
        scale = _get_scale(size_loc.value)
        dest_addr = AddressLoc(base_loc, ofs_loc, scale, baseofs.value)
        self.save_into_mem(dest_addr, value_loc, size_loc)

    def genop_discard_raw_store(self, op, arglocs):
        base_loc, ofs_loc, value_loc, size_loc, baseofs = arglocs
        assert isinstance(baseofs, ImmedLoc)
        dest_addr = AddressLoc(base_loc, ofs_loc, 0, baseofs.value)
        self.save_into_mem(dest_addr, value_loc, size_loc)

    def genop_discard_strsetitem(self, op, arglocs):
        base_loc, ofs_loc, val_loc = arglocs
        basesize, itemsize, ofs_length = symbolic.get_array_token(rstr.STR,
                                              self.cpu.translate_support_code)
        assert itemsize == 1
        dest_addr = AddressLoc(base_loc, ofs_loc, 0, basesize)
        self.mc.MOV8(dest_addr, val_loc.lowest8bits())

    def genop_discard_unicodesetitem(self, op, arglocs):
        base_loc, ofs_loc, val_loc = arglocs
        basesize, itemsize, ofs_length = symbolic.get_array_token(rstr.UNICODE,
                                              self.cpu.translate_support_code)
        if itemsize == 4:
            self.mc.MOV32(AddressLoc(base_loc, ofs_loc, 2, basesize), val_loc)
        elif itemsize == 2:
            self.mc.MOV16(AddressLoc(base_loc, ofs_loc, 1, basesize), val_loc)
        else:
            assert 0, itemsize

    genop_discard_setfield_raw = genop_discard_setfield_gc
    genop_discard_setarrayitem_raw = genop_discard_setarrayitem_gc

    def genop_strlen(self, op, arglocs, resloc):
        base_loc = arglocs[0]
        basesize, itemsize, ofs_length = symbolic.get_array_token(rstr.STR,
                                             self.cpu.translate_support_code)
        self.mc.MOV(resloc, addr_add_const(base_loc, ofs_length))

    def genop_unicodelen(self, op, arglocs, resloc):
        base_loc = arglocs[0]
        basesize, itemsize, ofs_length = symbolic.get_array_token(rstr.UNICODE,
                                             self.cpu.translate_support_code)
        self.mc.MOV(resloc, addr_add_const(base_loc, ofs_length))

    def genop_arraylen_gc(self, op, arglocs, resloc):
        base_loc, ofs_loc = arglocs
        assert isinstance(ofs_loc, ImmedLoc)
        self.mc.MOV(resloc, addr_add_const(base_loc, ofs_loc.value))

    def genop_strgetitem(self, op, arglocs, resloc):
        base_loc, ofs_loc = arglocs
        basesize, itemsize, ofs_length = symbolic.get_array_token(rstr.STR,
                                             self.cpu.translate_support_code)
        assert itemsize == 1
        self.mc.MOVZX8(resloc, AddressLoc(base_loc, ofs_loc, 0, basesize))

    def genop_unicodegetitem(self, op, arglocs, resloc):
        base_loc, ofs_loc = arglocs
        basesize, itemsize, ofs_length = symbolic.get_array_token(rstr.UNICODE,
                                             self.cpu.translate_support_code)
        if itemsize == 4:
            self.mc.MOV32(resloc, AddressLoc(base_loc, ofs_loc, 2, basesize))
        elif itemsize == 2:
            self.mc.MOVZX16(resloc, AddressLoc(base_loc, ofs_loc, 1, basesize))
        else:
            assert 0, itemsize

    def genop_read_timestamp(self, op, arglocs, resloc):
        self.mc.RDTSC()
        if longlong.is_64_bit:
            self.mc.SHL_ri(edx.value, 32)
            self.mc.OR_rr(edx.value, eax.value)
        else:
            loc1, = arglocs
            self.mc.MOVD_xr(loc1.value, edx.value)
            self.mc.MOVD_xr(resloc.value, eax.value)
            self.mc.PUNPCKLDQ_xx(resloc.value, loc1.value)

    def genop_guard_guard_true(self, ign_1, guard_op, guard_token, locs, ign_2):
        loc = locs[0]
        self.mc.TEST(loc, loc)
        self.implement_guard(guard_token, 'Z')
    genop_guard_guard_nonnull = genop_guard_guard_true

    def genop_guard_guard_no_exception(self, ign_1, guard_op, guard_token,
                                       locs, ign_2):
        self.mc.CMP(heap(self.cpu.pos_exception()), imm0)
        self.implement_guard(guard_token, 'NZ')

    def genop_guard_guard_not_invalidated(self, ign_1, guard_op, guard_token,
                                     locs, ign_2):
        pos = self.mc.get_relative_pos() + 1 # after potential jmp
        guard_token.pos_jump_offset = pos
        self.pending_guard_tokens.append(guard_token)

    def genop_guard_guard_exception(self, ign_1, guard_op, guard_token,
                                    locs, resloc):
        loc = locs[0]
        loc1 = locs[1]
        self.mc.MOV(loc1, heap(self.cpu.pos_exception()))
        self.mc.CMP(loc1, loc)
        self.implement_guard(guard_token, 'NE')
        if resloc is not None:
            self.mc.MOV(resloc, heap(self.cpu.pos_exc_value()))
        self.mc.MOV(heap(self.cpu.pos_exception()), imm0)
        self.mc.MOV(heap(self.cpu.pos_exc_value()), imm0)

    def _gen_guard_overflow(self, guard_op, guard_token):
        guard_opnum = guard_op.getopnum()
        if guard_opnum == rop.GUARD_NO_OVERFLOW:
            self.implement_guard(guard_token, 'O')
        elif guard_opnum == rop.GUARD_OVERFLOW:
            self.implement_guard(guard_token, 'NO')
        else:
            not_implemented("int_xxx_ovf followed by %s" %
                            guard_op.getopname())

    def genop_guard_int_add_ovf(self, op, guard_op, guard_token, arglocs, result_loc):
        self.mc.ADD(arglocs[0], arglocs[1])
        return self._gen_guard_overflow(guard_op, guard_token)

    def genop_guard_int_sub_ovf(self, op, guard_op, guard_token, arglocs, result_loc):
        self.mc.SUB(arglocs[0], arglocs[1])
        return self._gen_guard_overflow(guard_op, guard_token)

    def genop_guard_int_mul_ovf(self, op, guard_op, guard_token, arglocs, result_loc):
        self.mc.IMUL(arglocs[0], arglocs[1])
        return self._gen_guard_overflow(guard_op, guard_token)

    def genop_guard_guard_false(self, ign_1, guard_op, guard_token, locs, ign_2):
        loc = locs[0]
        self.mc.TEST(loc, loc)
        self.implement_guard(guard_token, 'NZ')
    genop_guard_guard_isnull = genop_guard_guard_false

    def genop_guard_guard_value(self, ign_1, guard_op, guard_token, locs, ign_2):
        if guard_op.getarg(0).type == FLOAT:
            assert guard_op.getarg(1).type == FLOAT
            self.mc.UCOMISD(locs[0], locs[1])
        else:
            self.mc.CMP(locs[0], locs[1])
        self.implement_guard(guard_token, 'NE')

    def _cmp_guard_class(self, locs):
        offset = self.cpu.vtable_offset
        if offset is not None:
            self.mc.CMP(mem(locs[0], offset), locs[1])
        else:
            # XXX hard-coded assumption: to go from an object to its class
            # we use the following algorithm:
            #   - read the typeid from mem(locs[0]), i.e. at offset 0;
            #     this is a complete word (N=4 bytes on 32-bit, N=8 on
            #     64-bits)
            #   - keep the lower half of what is read there (i.e.
            #     truncate to an unsigned 'N / 2' bytes value)
            #   - multiply by 4 (on 32-bits only) and use it as an
            #     offset in type_info_group
            #   - add 16/32 bytes, to go past the TYPE_INFO structure
            loc = locs[1]
            assert isinstance(loc, ImmedLoc)
            classptr = loc.value
            # here, we have to go back from 'classptr' to the value expected
            # from reading the half-word in the object header.  Note that
            # this half-word is at offset 0 on a little-endian machine;
            # it would be at offset 2 or 4 on a big-endian machine.
            from pypy.rpython.memory.gctypelayout import GCData
            sizeof_ti = rffi.sizeof(GCData.TYPE_INFO)
            type_info_group = llop.gc_get_type_info_group(llmemory.Address)
            type_info_group = rffi.cast(lltype.Signed, type_info_group)
            expected_typeid = classptr - sizeof_ti - type_info_group
            if IS_X86_32:
                expected_typeid >>= 2
                self.mc.CMP16(mem(locs[0], 0), ImmedLoc(expected_typeid))
            elif IS_X86_64:
                self.mc.CMP32_mi((locs[0].value, 0), expected_typeid)

    def genop_guard_guard_class(self, ign_1, guard_op, guard_token, locs, ign_2):
        self._cmp_guard_class(locs)
        self.implement_guard(guard_token, 'NE')

    def genop_guard_guard_nonnull_class(self, ign_1, guard_op,
                                        guard_token, locs, ign_2):
        self.mc.CMP(locs[0], imm1)
        # Patched below
        self.mc.J_il8(rx86.Conditions['B'], 0)
        jb_location = self.mc.get_relative_pos()
        self._cmp_guard_class(locs)
        # patch the JB above
        offset = self.mc.get_relative_pos() - jb_location
        assert 0 < offset <= 127
        self.mc.overwrite(jb_location-1, chr(offset))
        #
        self.implement_guard(guard_token, 'NE')

    def implement_guard_recovery(self, guard_opnum, faildescr, failargs,
                                                               fail_locs):
        exc = (guard_opnum == rop.GUARD_EXCEPTION or
               guard_opnum == rop.GUARD_NO_EXCEPTION or
               guard_opnum == rop.GUARD_NOT_FORCED)
        is_guard_not_invalidated = guard_opnum == rop.GUARD_NOT_INVALIDATED
        return GuardToken(faildescr, failargs, fail_locs, exc,
                          is_guard_not_invalidated)

    def generate_propagate_error_64(self):
        assert WORD == 8
        startpos = self.mc.get_relative_pos()
        self.mc.JMP(imm(self.propagate_exception_path))
        return startpos

    def generate_quick_failure(self, guardtok):
        """Generate the initial code for handling a failure.  We try to
        keep it as compact as possible.
        """
        fail_index = self.cpu.get_fail_descr_number(guardtok.faildescr)
        mc = self.mc
        startpos = mc.get_relative_pos()
        withfloats = False
        for box in guardtok.failargs:
            if box is not None and box.type == FLOAT:
                withfloats = True
                break
        exc = guardtok.exc
        target = self.failure_recovery_code[exc + 2 * withfloats]
        if WORD == 4:
            mc.CALL(imm(target))
        else:
            # Generate exactly 13 bytes:
            #        MOV r11, target-as-8-bytes
            #        CALL *r11
            # Keep the number 13 in sync with _find_failure_recovery_bytecode.
            start = mc.get_relative_pos()
            mc.MOV_ri64(X86_64_SCRATCH_REG.value, target)
            mc.CALL_r(X86_64_SCRATCH_REG.value)
            assert mc.get_relative_pos() == start + 13
        # write tight data that describes the failure recovery
        self.write_failure_recovery_description(mc, guardtok.failargs,
                                                guardtok.fail_locs)
        # write the fail_index too
        mc.writeimm32(fail_index)
        # for testing the decoding, write a final byte 0xCC
        if not we_are_translated():
            mc.writechar('\xCC')
            faillocs = [loc for loc in guardtok.fail_locs if loc is not None]
            guardtok.faildescr._x86_debug_faillocs = faillocs
        return startpos

    DESCR_REF       = 0x00
    DESCR_INT       = 0x01
    DESCR_FLOAT     = 0x02
    DESCR_SPECIAL   = 0x03
    CODE_FROMSTACK  = 4 * (8 + 8*IS_X86_64)
    CODE_STOP       = 0 | DESCR_SPECIAL
    CODE_HOLE       = 4 | DESCR_SPECIAL
    CODE_INPUTARG   = 8 | DESCR_SPECIAL

    def write_failure_recovery_description(self, mc, failargs, locs):
        for i in range(len(failargs)):
            arg = failargs[i]
            if arg is not None:
                if arg.type == REF:
                    kind = self.DESCR_REF
                elif arg.type == INT:
                    kind = self.DESCR_INT
                elif arg.type == FLOAT:
                    kind = self.DESCR_FLOAT
                else:
                    raise AssertionError("bogus kind")
                loc = locs[i]
                if isinstance(loc, StackLoc):
                    pos = loc.position
                    if pos < 0:
                        mc.writechar(chr(self.CODE_INPUTARG))
                        pos = ~pos
                    n = self.CODE_FROMSTACK//4 + pos
                else:
                    assert isinstance(loc, RegLoc)
                    n = loc.value
                n = kind + 4*n
                while n > 0x7F:
                    mc.writechar(chr((n & 0x7F) | 0x80))
                    n >>= 7
            else:
                n = self.CODE_HOLE
            mc.writechar(chr(n))
        mc.writechar(chr(self.CODE_STOP))
        # assert that the fail_boxes lists are big enough
        assert len(failargs) <= self.fail_boxes_int.SIZE

    def rebuild_faillocs_from_descr(self, bytecode):
        from pypy.jit.backend.x86.regalloc import X86FrameManager
        descr_to_box_type = [REF, INT, FLOAT]
        bytecode = rffi.cast(rffi.UCHARP, bytecode)
        arglocs = []
        code_inputarg = False
        while 1:
            # decode the next instruction from the bytecode
            code = rffi.cast(lltype.Signed, bytecode[0])
            bytecode = rffi.ptradd(bytecode, 1)
            if code >= self.CODE_FROMSTACK:
                # 'code' identifies a stack location
                if code > 0x7F:
                    shift = 7
                    code &= 0x7F
                    while True:
                        nextcode = rffi.cast(lltype.Signed, bytecode[0])
                        bytecode = rffi.ptradd(bytecode, 1)
                        code |= (nextcode & 0x7F) << shift
                        shift += 7
                        if nextcode <= 0x7F:
                            break
                kind = code & 3
                code = (code - self.CODE_FROMSTACK) >> 2
                if code_inputarg:
                    code = ~code
                    code_inputarg = False
                loc = X86FrameManager.frame_pos(code, descr_to_box_type[kind])
            elif code == self.CODE_STOP:
                break
            elif code == self.CODE_HOLE:
                continue
            elif code == self.CODE_INPUTARG:
                code_inputarg = True
                continue
            else:
                # 'code' identifies a register
                kind = code & 3
                code >>= 2
                if kind == self.DESCR_FLOAT:
                    loc = regloc.XMMREGLOCS[code]
                else:
                    loc = regloc.REGLOCS[code]
            arglocs.append(loc)
        return arglocs[:]

    @rgc.no_collect
    def grab_frame_values(self, bytecode, frame_addr, allregisters):
        # no malloc allowed here!!
        self.fail_ebp = allregisters[16 + ebp.value]
        code_inputarg = False
        num = 0
        value_hi = 0
        while 1:
            # decode the next instruction from the bytecode
            code = rffi.cast(lltype.Signed, bytecode[0])
            bytecode = rffi.ptradd(bytecode, 1)
            if code >= self.CODE_FROMSTACK:
                if code > 0x7F:
                    shift = 7
                    code &= 0x7F
                    while True:
                        nextcode = rffi.cast(lltype.Signed, bytecode[0])
                        bytecode = rffi.ptradd(bytecode, 1)
                        code |= (nextcode & 0x7F) << shift
                        shift += 7
                        if nextcode <= 0x7F:
                            break
                # load the value from the stack
                kind = code & 3
                code = (code - self.CODE_FROMSTACK) >> 2
                if code_inputarg:
                    code = ~code
                    code_inputarg = False
                stackloc = frame_addr + get_ebp_ofs(code)
                value = rffi.cast(rffi.LONGP, stackloc)[0]
                if kind == self.DESCR_FLOAT and WORD == 4:
                    value_hi = value
                    value = rffi.cast(rffi.LONGP, stackloc - 4)[0]
            else:
                # 'code' identifies a register: load its value
                kind = code & 3
                if kind == self.DESCR_SPECIAL:
                    if code == self.CODE_HOLE:
                        num += 1
                        continue
                    if code == self.CODE_INPUTARG:
                        code_inputarg = True
                        continue
                    assert code == self.CODE_STOP
                    break
                code >>= 2
                if kind == self.DESCR_FLOAT:
                    if WORD == 4:
                        value = allregisters[2*code]
                        value_hi = allregisters[2*code + 1]
                    else:
                        value = allregisters[code]
                else:
                    value = allregisters[16 + code]

            # store the loaded value into fail_boxes_<type>
            if kind == self.DESCR_INT:
                tgt = self.fail_boxes_int.get_addr_for_num(num)
            elif kind == self.DESCR_REF:
                tgt = self.fail_boxes_ptr.get_addr_for_num(num)
            elif kind == self.DESCR_FLOAT:
                tgt = self.fail_boxes_float.get_addr_for_num(num)
                if WORD == 4:
                    rffi.cast(rffi.LONGP, tgt)[1] = value_hi
            else:
                assert 0, "bogus kind"
            rffi.cast(rffi.LONGP, tgt)[0] = value
            num += 1
        #
        if not we_are_translated():
            assert bytecode[4] == 0xCC
        self.fail_boxes_count = num
        fail_index = rffi.cast(rffi.INTP, bytecode)[0]
        fail_index = rffi.cast(lltype.Signed, fail_index)
        return fail_index

    def setup_failure_recovery(self):

        @rgc.no_collect
        def failure_recovery_func(registers):
            # 'registers' is a pointer to a structure containing the
            # original value of the registers, optionally the original
            # value of XMM registers, and finally a reference to the
            # recovery bytecode.  See _build_failure_recovery() for details.
            stack_at_ebp = registers[ebp.value]
            bytecode = rffi.cast(rffi.UCHARP, registers[self.cpu.NUM_REGS])
            allregisters = rffi.ptradd(registers, -16)
            return self.grab_frame_values(bytecode, stack_at_ebp, allregisters)

        self.failure_recovery_func = failure_recovery_func
        self.failure_recovery_code = [0, 0, 0, 0]

    _FAILURE_RECOVERY_FUNC = lltype.Ptr(lltype.FuncType([rffi.LONGP],
                                                        lltype.Signed))

    def _build_failure_recovery(self, exc, withfloats=False):
        failure_recovery_func = llhelper(self._FAILURE_RECOVERY_FUNC,
                                         self.failure_recovery_func)
        failure_recovery_func = rffi.cast(lltype.Signed,
                                          failure_recovery_func)
        mc = codebuf.MachineCodeBlockWrapper()
        self.mc = mc

        # Push all general purpose registers
        for gpr in range(self.cpu.NUM_REGS-1, -1, -1):
            mc.PUSH_r(gpr)

        # ebx/rbx is callee-save in both i386 and x86-64
        mc.MOV_rr(ebx.value, esp.value)

        if withfloats:
            # Push all float registers
            mc.SUB_ri(esp.value, self.cpu.NUM_REGS*8)
            for i in range(self.cpu.NUM_REGS):
                mc.MOVSD_sx(8*i, i)

        # we call a provided function that will
        # - call our on_leave_jitted_hook which will mark
        #   the fail_boxes_ptr array as pointing to young objects to
        #   avoid unwarranted freeing
        # - optionally save exception depending on the flag
        addr = self.cpu.get_on_leave_jitted_int(save_exception=exc)
        mc.CALL(imm(addr))

        # the following call saves all values from the stack and from
        # registers to the right 'fail_boxes_<type>' location.
        # Note that the registers are saved so far in esi[0] to esi[7],
        # as pushed above, plus optionally in esi[-16] to esi[-1] for
        # the XMM registers.  Moreover, esi[8] is a pointer to the recovery
        # bytecode, pushed just before by the CALL instruction written by
        # generate_quick_failure().  XXX misaligned stack in the call, but
        # it's ok because failure_recovery_func is not calling anything more

        # XXX
        if IS_X86_32:
            mc.PUSH_r(ebx.value)
        elif IS_X86_64:
            mc.MOV_rr(edi.value, ebx.value)
        else:
            raise AssertionError("Shouldn't happen")

        mc.CALL(imm(failure_recovery_func))
        # returns in eax the fail_index

        # now we return from the complete frame, which starts from
        # _call_header_with_stack_check().  The LEA in _call_footer below
        # throws away most of the frame, including all the PUSHes that we
        # did just above.

        self._call_footer()
        rawstart = mc.materialize(self.cpu.asmmemmgr, [])
        self.failure_recovery_code[exc + 2 * withfloats] = rawstart
        self.mc = None

    def generate_failure(self, fail_index, locs, exc, locs_are_ref):
        self.mc.begin_reuse_scratch_register()
        for i in range(len(locs)):
            loc = locs[i]
            if isinstance(loc, RegLoc):
                if loc.is_xmm:
                    adr = self.fail_boxes_float.get_addr_for_num(i)
                    self.mc.MOVSD(heap(adr), loc)
                else:
                    if locs_are_ref[i]:
                        adr = self.fail_boxes_ptr.get_addr_for_num(i)
                    else:
                        adr = self.fail_boxes_int.get_addr_for_num(i)
                    self.mc.MOV(heap(adr), loc)
        for i in range(len(locs)):
            loc = locs[i]
            if not isinstance(loc, RegLoc):
                if ((isinstance(loc, StackLoc) and loc.type == FLOAT) or
                        isinstance(loc, ConstFloatLoc)):
                    self.mc.MOVSD(xmm0, loc)
                    adr = self.fail_boxes_float.get_addr_for_num(i)
                    self.mc.MOVSD(heap(adr), xmm0)
                else:
                    if locs_are_ref[i]:
                        adr = self.fail_boxes_ptr.get_addr_for_num(i)
                    else:
                        adr = self.fail_boxes_int.get_addr_for_num(i)
                    self.mc.MOV(eax, loc)
                    self.mc.MOV(heap(adr), eax)
        self.mc.end_reuse_scratch_register()

        # we call a provided function that will
        # - call our on_leave_jitted_hook which will mark
        #   the fail_boxes_ptr array as pointing to young objects to
        #   avoid unwarranted freeing
        # - optionally save exception depending on the flag
        addr = self.cpu.get_on_leave_jitted_int(save_exception=exc)
        self.mc.CALL(imm(addr))

        self.mc.MOV_ri(eax.value, fail_index)

        # exit function
        self._call_footer()

    def implement_guard(self, guard_token, condition=None):
        # These jumps are patched later.
        if condition:
            self.mc.J_il(rx86.Conditions[condition], 0)
        else:
            self.mc.JMP_l(0)
        guard_token.pos_jump_offset = self.mc.get_relative_pos() - 4
        self.pending_guard_tokens.append(guard_token)

    def genop_call(self, op, arglocs, resloc):
        force_index = self.write_new_force_index()
        self._genop_call(op, arglocs, resloc, force_index)

    def _genop_call(self, op, arglocs, resloc, force_index):
        from pypy.jit.backend.llsupport.descr import CallDescr

        sizeloc = arglocs[0]
        assert isinstance(sizeloc, ImmedLoc)
        size = sizeloc.value
        signloc = arglocs[1]

        x = arglocs[2]     # the function address
        if x is eax:
            tmp = ecx
        else:
            tmp = eax

        descr = op.getdescr()
        assert isinstance(descr, CallDescr)

        self._emit_call(force_index, x, arglocs, 3, tmp=tmp,
                        argtypes=descr.get_arg_types(),
                        callconv=descr.get_call_conv())

        if IS_X86_32 and isinstance(resloc, StackLoc) and resloc.type == FLOAT:
            # a float or a long long return
            if descr.get_result_type() == 'L':
                self.mc.MOV_br(resloc.value, eax.value)      # long long
                self.mc.MOV_br(resloc.value + 4, edx.value)
                # XXX should ideally not move the result on the stack,
                #     but it's a mess to load eax/edx into a xmm register
                #     and this way is simpler also because the result loc
                #     can just be always a stack location
            else:
                self.mc.FSTPL_b(resloc.value)   # float return
        elif descr.get_result_type() == 'S':
            # singlefloat return
            assert resloc is eax
            if IS_X86_32:
                # must convert ST(0) to a 32-bit singlefloat and load it into EAX
                # mess mess mess
                self.mc.SUB_ri(esp.value, 4)
                self.mc.FSTPS_s(0)
                self.mc.POP_r(eax.value)
            elif IS_X86_64:
                # must copy from the lower 32 bits of XMM0 into eax
                self.mc.MOVD_rx(eax.value, xmm0.value)
        elif size == WORD:
            assert resloc is eax or resloc is xmm0    # a full word
        elif size == 0:
            pass    # void return
        else:
            # use the code in load_from_mem to do the zero- or sign-extension
            assert resloc is eax
            if size == 1:
                srcloc = eax.lowest8bits()
            else:
                srcloc = eax
            self.load_from_mem(eax, srcloc, sizeloc, signloc)

    def genop_guard_call_may_force(self, op, guard_op, guard_token,
                                   arglocs, result_loc):
        faildescr = guard_op.getdescr()
        fail_index = self.cpu.get_fail_descr_number(faildescr)
        self.mc.MOV_bi(FORCE_INDEX_OFS, fail_index)
        self._genop_call(op, arglocs, result_loc, fail_index)
        self.mc.CMP_bi(FORCE_INDEX_OFS, 0)
        self.implement_guard(guard_token, 'L')

    def genop_guard_call_release_gil(self, op, guard_op, guard_token,
                                     arglocs, result_loc):
        # first, close the stack in the sense of the asmgcc GC root tracker
        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        if gcrootmap:
            self.call_release_gil(gcrootmap, arglocs)
        # do the call
        faildescr = guard_op.getdescr()
        fail_index = self.cpu.get_fail_descr_number(faildescr)
        self.mc.MOV_bi(FORCE_INDEX_OFS, fail_index)
        self._genop_call(op, arglocs, result_loc, fail_index)
        # then reopen the stack
        if gcrootmap:
            self.call_reacquire_gil(gcrootmap, result_loc)
        # finally, the guard_not_forced
        self.mc.CMP_bi(FORCE_INDEX_OFS, 0)
        self.implement_guard(guard_token, 'L')

    def call_release_gil(self, gcrootmap, save_registers):
        # First, we need to save away the registers listed in
        # 'save_registers' that are not callee-save.  XXX We assume that
        # the XMM registers won't be modified.  We store them in
        # [ESP+4], [ESP+8], etc.; on x86-32 we leave enough room in [ESP]
        # for the single argument to closestack_addr below.
        if IS_X86_32:
            p = WORD
        elif IS_X86_64:
            p = 0
        for reg in self._regalloc.rm.save_around_call_regs:
            if reg in save_registers:
                self.mc.MOV_sr(p, reg.value)
                p += WORD
        #
        if gcrootmap.is_shadow_stack:
            args = []
        else:
            # note that regalloc.py used save_all_regs=True to save all
            # registers, so we don't have to care about saving them (other
            # than ebp) in the close_stack_struct.  But if they are registers
            # like %eax that would be destroyed by this call, *and* they are
            # used by arglocs for the *next* call, then trouble; for now we
            # will just push/pop them.
            from pypy.rpython.memory.gctransform import asmgcroot
            css = self._regalloc.close_stack_struct
            if css == 0:
                use_words = (2 + max(asmgcroot.INDEX_OF_EBP,
                                     asmgcroot.FRAME_PTR) + 1)
                pos = self._regalloc.fm.reserve_location_in_frame(use_words)
                css = get_ebp_ofs(pos + use_words - 1)
                self._regalloc.close_stack_struct = css
            # The location where the future CALL will put its return address
            # will be [ESP-WORD].  But we can't use that as the next frame's
            # top address!  As the code after releasegil() runs without the
            # GIL, it might not be set yet by the time we need it (very
            # unlikely), or it might be overwritten by the following call
            # to reaquiregil() (much more likely).  So we hack even more
            # and use a dummy location containing a dummy value (a pointer
            # to itself) which we pretend is the return address :-/ :-/ :-/
            # It prevents us to store any %esp-based stack locations but we
            # don't so far.
            adr = self.datablockwrapper.malloc_aligned(WORD, WORD)
            rffi.cast(rffi.CArrayPtr(lltype.Signed), adr)[0] = adr
            self.gcrootmap_retaddr_forced = adr
            frame_ptr = css + WORD * (2+asmgcroot.FRAME_PTR)
            if rx86.fits_in_32bits(adr):
                self.mc.MOV_bi(frame_ptr, adr)          # MOV [css.frame], adr
            else:
                self.mc.MOV_ri(eax.value, adr)          # MOV EAX, adr
                self.mc.MOV_br(frame_ptr, eax.value)    # MOV [css.frame], EAX
            # Save ebp
            index_of_ebp = css + WORD * (2+asmgcroot.INDEX_OF_EBP)
            self.mc.MOV_br(index_of_ebp, ebp.value)     # MOV [css.ebp], EBP
            # Call the closestack() function (also releasing the GIL)
            if IS_X86_32:
                reg = eax
            elif IS_X86_64:
                reg = edi
            self.mc.LEA_rb(reg.value, css)
            args = [reg]
        #
        self._emit_call(-1, imm(self.releasegil_addr), args)
        # Finally, restore the registers saved above.
        if IS_X86_32:
            p = WORD
        elif IS_X86_64:
            p = 0
        for reg in self._regalloc.rm.save_around_call_regs:
            if reg in save_registers:
                self.mc.MOV_rs(reg.value, p)
                p += WORD
        self._regalloc.needed_extra_stack_locations(p//WORD)

    def call_reacquire_gil(self, gcrootmap, save_loc):
        # save the previous result (eax/xmm0) into the stack temporarily.
        # XXX like with call_release_gil(), we assume that we don't need
        # to save xmm0 in this case.
        if isinstance(save_loc, RegLoc) and not save_loc.is_xmm:
            self.mc.MOV_sr(WORD, save_loc.value)
        # call the reopenstack() function (also reacquiring the GIL)
        if gcrootmap.is_shadow_stack:
            args = []
        else:
            assert self.gcrootmap_retaddr_forced == -1, (
                      "missing mark_gc_roots() in CALL_RELEASE_GIL")
            self.gcrootmap_retaddr_forced = 0
            css = self._regalloc.close_stack_struct
            assert css != 0
            if IS_X86_32:
                reg = eax
            elif IS_X86_64:
                reg = edi
            self.mc.LEA_rb(reg.value, css)
            args = [reg]
        self._emit_call(-1, imm(self.reacqgil_addr), args)
        # restore the result from the stack
        if isinstance(save_loc, RegLoc) and not save_loc.is_xmm:
            self.mc.MOV_rs(save_loc.value, WORD)
            self._regalloc.needed_extra_stack_locations(2)

    def genop_guard_call_assembler(self, op, guard_op, guard_token,
                                   arglocs, result_loc):
        faildescr = guard_op.getdescr()
        fail_index = self.cpu.get_fail_descr_number(faildescr)
        self.mc.MOV_bi(FORCE_INDEX_OFS, fail_index)
        descr = op.getdescr()
        assert isinstance(descr, JitCellToken)
        assert len(arglocs) - 2 == descr.compiled_loop_token._debug_nbargs
        #
        # Write a call to the target assembler
        self._emit_call(fail_index, imm(descr._x86_function_addr),
                        arglocs, 2, tmp=eax)
        if op.result is None:
            assert result_loc is None
            value = self.cpu.done_with_this_frame_void_v
        else:
            kind = op.result.type
            if kind == INT:
                assert result_loc is eax
                value = self.cpu.done_with_this_frame_int_v
            elif kind == REF:
                assert result_loc is eax
                value = self.cpu.done_with_this_frame_ref_v
            elif kind == FLOAT:
                value = self.cpu.done_with_this_frame_float_v
            else:
                raise AssertionError(kind)
        self.mc.CMP_ri(eax.value, value)
        # patched later
        self.mc.J_il8(rx86.Conditions['E'], 0) # goto B if we get 'done_with_this_frame'
        je_location = self.mc.get_relative_pos()
        #
        # Path A: use assembler_helper_adr
        jd = descr.outermost_jitdriver_sd
        assert jd is not None
        asm_helper_adr = self.cpu.cast_adr_to_int(jd.assembler_helper_adr)
        self._emit_call(fail_index, imm(asm_helper_adr), [eax, arglocs[1]], 0,
                        tmp=ecx)
        if IS_X86_32 and isinstance(result_loc, StackLoc) and result_loc.type == FLOAT:
            self.mc.FSTPL_b(result_loc.value)
        #else: result_loc is already either eax or None, checked below
        self.mc.JMP_l8(0) # jump to done, patched later
        jmp_location = self.mc.get_relative_pos()
        #
        # Path B: fast path.  Must load the return value, and reset the token
        offset = jmp_location - je_location
        assert 0 < offset <= 127
        self.mc.overwrite(je_location - 1, chr(offset))
        #
        # Reset the vable token --- XXX really too much special logic here:-(
        if jd.index_of_virtualizable >= 0:
            from pypy.jit.backend.llsupport.descr import FieldDescr
            fielddescr = jd.vable_token_descr
            assert isinstance(fielddescr, FieldDescr)
            ofs = fielddescr.offset
            self.mc.MOV(eax, arglocs[1])
            self.mc.MOV_mi((eax.value, ofs), 0)
            # in the line above, TOKEN_NONE = 0
        #
        if op.result is not None:
            # load the return value from fail_boxes_xxx[0]
            kind = op.result.type
            if kind == FLOAT:
                xmmtmp = xmm0
                adr = self.fail_boxes_float.get_addr_for_num(0)
                self.mc.MOVSD(xmmtmp, heap(adr))
                self.mc.MOVSD(result_loc, xmmtmp)
            else:
                assert result_loc is eax
                if kind == INT:
                    adr = self.fail_boxes_int.get_addr_for_num(0)
                    self.mc.MOV(eax, heap(adr))
                elif kind == REF:
                    adr = self.fail_boxes_ptr.get_addr_for_num(0)
                    self.mc.MOV(eax, heap(adr))
                    self.mc.MOV(heap(adr), imm0)
                else:
                    raise AssertionError(kind)
        #
        # Here we join Path A and Path B again
        offset = self.mc.get_relative_pos() - jmp_location
        assert 0 <= offset <= 127
        self.mc.overwrite(jmp_location - 1, chr(offset))
        self.mc.CMP_bi(FORCE_INDEX_OFS, 0)
        self.implement_guard(guard_token, 'L')

    def genop_discard_cond_call_gc_wb(self, op, arglocs):
        # Write code equivalent to write_barrier() in the GC: it checks
        # a flag in the object at arglocs[0], and if set, it calls a
        # helper piece of assembler.  The latter saves registers as needed
        # and call the function jit_remember_young_pointer() from the GC.
        descr = op.getdescr()
        if we_are_translated():
            cls = self.cpu.gc_ll_descr.has_write_barrier_class()
            assert cls is not None and isinstance(descr, cls)
        #
        opnum = op.getopnum()
        card_marking = False
        mask = descr.jit_wb_if_flag_singlebyte
        if opnum == rop.COND_CALL_GC_WB_ARRAY and descr.jit_wb_cards_set != 0:
            # assumptions the rest of the function depends on:
            assert (descr.jit_wb_cards_set_byteofs ==
                    descr.jit_wb_if_flag_byteofs)
            assert descr.jit_wb_cards_set_singlebyte == -0x80
            card_marking = True
            mask = descr.jit_wb_if_flag_singlebyte | -0x80
        #
        loc_base = arglocs[0]
        self.mc.TEST8(addr_add_const(loc_base, descr.jit_wb_if_flag_byteofs),
                      imm(mask))
        self.mc.J_il8(rx86.Conditions['Z'], 0) # patched later
        jz_location = self.mc.get_relative_pos()

        # for cond_call_gc_wb_array, also add another fast path:
        # if GCFLAG_CARDS_SET, then we can just set one bit and be done
        if card_marking:
            # GCFLAG_CARDS_SET is in this byte at 0x80, so this fact can
            # been checked by the status flags of the previous TEST8
            self.mc.J_il8(rx86.Conditions['S'], 0) # patched later
            js_location = self.mc.get_relative_pos()
        else:
            js_location = 0

        # Write only a CALL to the helper prepared in advance, passing it as
        # argument the address of the structure we are writing into
        # (the first argument to COND_CALL_GC_WB).
        helper_num = card_marking
        if self._regalloc.xrm.reg_bindings:
            helper_num += 2
        if self.wb_slowpath[helper_num] == 0:    # tests only
            assert not we_are_translated()
            self.cpu.gc_ll_descr.write_barrier_descr = descr
            self._build_wb_slowpath(card_marking,
                                    bool(self._regalloc.xrm.reg_bindings))
            assert self.wb_slowpath[helper_num] != 0
        #
        self.mc.PUSH(loc_base)
        self.mc.CALL(imm(self.wb_slowpath[helper_num]))

        if card_marking:
            # The helper ends again with a check of the flag in the object.
            # So here, we can simply write again a 'JNS', which will be
            # taken if GCFLAG_CARDS_SET is still not set.
            self.mc.J_il8(rx86.Conditions['NS'], 0) # patched later
            jns_location = self.mc.get_relative_pos()
            #
            # patch the JS above
            offset = self.mc.get_relative_pos() - js_location
            assert 0 < offset <= 127
            self.mc.overwrite(js_location-1, chr(offset))
            #
            # case GCFLAG_CARDS_SET: emit a few instructions to do
            # directly the card flag setting
            loc_index = arglocs[1]
            if isinstance(loc_index, RegLoc):
                if IS_X86_64 and isinstance(loc_base, RegLoc):
                    # copy loc_index into r11
                    tmp1 = X86_64_SCRATCH_REG
                    self.mc.MOV_rr(tmp1.value, loc_index.value)
                    final_pop = False
                else:
                    # must save the register loc_index before it is mutated
                    self.mc.PUSH_r(loc_index.value)
                    tmp1 = loc_index
                    final_pop = True
                # SHR tmp, card_page_shift
                self.mc.SHR_ri(tmp1.value, descr.jit_wb_card_page_shift)
                # XOR tmp, -8
                self.mc.XOR_ri(tmp1.value, -8)
                # BTS [loc_base], tmp
                self.mc.BTS(addr_add_const(loc_base, 0), tmp1)
                # done
                if final_pop:
                    self.mc.POP_r(loc_index.value)
                #
            elif isinstance(loc_index, ImmedLoc):
                byte_index = loc_index.value >> descr.jit_wb_card_page_shift
                byte_ofs = ~(byte_index >> 3)
                byte_val = 1 << (byte_index & 7)
                self.mc.OR8(addr_add_const(loc_base, byte_ofs), imm(byte_val))
            else:
                raise AssertionError("index is neither RegLoc nor ImmedLoc")
            #
            # patch the JNS above
            offset = self.mc.get_relative_pos() - jns_location
            assert 0 < offset <= 127
            self.mc.overwrite(jns_location-1, chr(offset))

        # patch the JZ above
        offset = self.mc.get_relative_pos() - jz_location
        assert 0 < offset <= 127
        self.mc.overwrite(jz_location-1, chr(offset))

    genop_discard_cond_call_gc_wb_array = genop_discard_cond_call_gc_wb

    def not_implemented_op_discard(self, op, arglocs):
        not_implemented("not implemented operation: %s" % op.getopname())

    def not_implemented_op(self, op, arglocs, resloc):
        not_implemented("not implemented operation with res: %s" %
                        op.getopname())

    def not_implemented_op_guard(self, op, guard_op,
                                 failaddr, arglocs, resloc):
        not_implemented("not implemented operation (guard): %s" %
                        op.getopname())

    def mark_gc_roots(self, force_index, use_copy_area=False):
        if force_index < 0:
            return     # not needed
        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        if gcrootmap:
            mark = self._regalloc.get_mark_gc_roots(gcrootmap, use_copy_area)
            if gcrootmap.is_shadow_stack:
                gcrootmap.write_callshape(mark, force_index)
            else:
                if self.gcrootmap_retaddr_forced == 0:
                    self.mc.insert_gcroot_marker(mark)   # common case
                else:
                    assert self.gcrootmap_retaddr_forced != -1, (
                              "two mark_gc_roots() in a CALL_RELEASE_GIL")
                    gcrootmap.put(self.gcrootmap_retaddr_forced, mark)
                    self.gcrootmap_retaddr_forced = -1

    def closing_jump(self, target_token):
        # The backend's logic assumes that the target code is in a piece of
        # assembler that was also called with the same number of arguments,
        # so that the locations [ebp+8..] of the input arguments are valid
        # stack locations both before and after the jump.
        my_nbargs = self.current_clt._debug_nbargs
        target_nbargs = target_token._x86_clt._debug_nbargs
        assert my_nbargs == target_nbargs
        #
        target = target_token._x86_loop_code
        if target_token in self.target_tokens_currently_compiling:
            curpos = self.mc.get_relative_pos() + 5
            self.mc.JMP_l(target - curpos)
        else:
            self.mc.JMP(imm(target))

    def malloc_cond(self, nursery_free_adr, nursery_top_adr, size):
        assert size & (WORD-1) == 0     # must be correctly aligned
        self.mc.MOV(eax, heap(nursery_free_adr))
        self.mc.LEA_rm(edx.value, (eax.value, size))
        self.mc.CMP(edx, heap(nursery_top_adr))
        self.mc.J_il8(rx86.Conditions['NA'], 0) # patched later
        jmp_adr = self.mc.get_relative_pos()

        # See comments in _build_malloc_slowpath for the
        # details of the two helper functions that we are calling below.
        # First, we need to call two of them and not just one because we
        # need to have a mark_gc_roots() in between.  Then the calling
        # convention of slowpath_addr{1,2} are tweaked a lot to allow
        # the code here to be just two CALLs: slowpath_addr1 gets the
        # size of the object to allocate from (EDX-EAX) and returns the
        # result in EAX; slowpath_addr2 additionally returns in EDX a
        # copy of heap(nursery_free_adr), so that the final MOV below is
        # a no-op.

        gcrootmap = self.cpu.gc_ll_descr.gcrootmap
        shadow_stack = (gcrootmap is not None and gcrootmap.is_shadow_stack)
        if not shadow_stack:
            # there are two helpers to call only with asmgcc
            slowpath_addr1 = self.malloc_slowpath1
            self.mc.CALL(imm(slowpath_addr1))
        self.mark_gc_roots(self.write_new_force_index(), use_copy_area=True)
        slowpath_addr2 = self.malloc_slowpath2
        self.mc.CALL(imm(slowpath_addr2))

        # reserve room for the argument to the real malloc and the
        # saved XMM regs (on 32 bit: 8 * 2 words; on 64 bit: 16 * 1
        # word)
        self._regalloc.needed_extra_stack_locations(1+16)

        offset = self.mc.get_relative_pos() - jmp_adr
        assert 0 < offset <= 127
        self.mc.overwrite(jmp_adr-1, chr(offset))
        self.mc.MOV(heap(nursery_free_adr), edx)

genop_discard_list = [Assembler386.not_implemented_op_discard] * rop._LAST
genop_list = [Assembler386.not_implemented_op] * rop._LAST
genop_llong_list = {}
genop_math_list = {}
genop_guard_list = [Assembler386.not_implemented_op_guard] * rop._LAST

for name, value in Assembler386.__dict__.iteritems():
    if name.startswith('genop_discard_'):
        opname = name[len('genop_discard_'):]
        num = getattr(rop, opname.upper())
        genop_discard_list[num] = value
    elif name.startswith('genop_guard_') and name != 'genop_guard_exception':
        opname = name[len('genop_guard_'):]
        num = getattr(rop, opname.upper())
        genop_guard_list[num] = value
    elif name.startswith('genop_llong_'):
        opname = name[len('genop_llong_'):]
        num = getattr(EffectInfo, 'OS_LLONG_' + opname.upper())
        genop_llong_list[num] = value
    elif name.startswith('genop_math_'):
        opname = name[len('genop_math_'):]
        num = getattr(EffectInfo, 'OS_MATH_' + opname.upper())
        genop_math_list[num] = value
    elif name.startswith('genop_'):
        opname = name[len('genop_'):]
        num = getattr(rop, opname.upper())
        genop_list[num] = value

# XXX: ri386 migration shims:
def addr_add(reg_or_imm1, reg_or_imm2, offset=0, scale=0):
    return AddressLoc(reg_or_imm1, reg_or_imm2, scale, offset)

def addr_add_const(reg_or_imm1, offset):
    return AddressLoc(reg_or_imm1, imm0, 0, offset)

def mem(loc, offset):
    return AddressLoc(loc, imm0, 0, offset)

def heap(addr):
    return AddressLoc(ImmedLoc(addr), imm0, 0, 0)

def not_implemented(msg):
    os.write(2, '[x86/asm] %s\n' % msg)
    raise NotImplementedError(msg)

class BridgeAlreadyCompiled(Exception):
    pass
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.