Source

GL Profile Suite / boost_1_51_0 / boost / container / detail / tree.hpp

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_CONTAINER_TREE_HPP
#define BOOST_CONTAINER_TREE_HPP

#include "config_begin.hpp"
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>

#include <boost/move/move.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/intrusive/rbtree.hpp>

#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/detail/node_alloc_holder.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/detail/pair.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/allocator_traits.hpp>
#ifndef BOOST_CONTAINER_PERFECT_FORWARDING
#include <boost/container/detail/preprocessor.hpp>
#endif

#include <utility>   //std::pair
#include <iterator>
#include <algorithm>

namespace boost {
namespace container {
namespace container_detail {

template<class Key, class Value, class KeyCompare, class KeyOfValue>
struct value_compare_impl
   :  public KeyCompare
{
   typedef Value        value_type;
   typedef KeyCompare   key_compare;
   typedef KeyOfValue   key_of_value;
   typedef Key          key_type;

   value_compare_impl(const key_compare &kcomp)
      :  key_compare(kcomp)
   {}

   const key_compare &key_comp() const
   {  return static_cast<const key_compare &>(*this);  }

   key_compare &key_comp()
   {  return static_cast<key_compare &>(*this);  }

   template<class T>
   struct is_key
   {
      static const bool value = is_same<const T, const key_type>::value;
   };

   template<class T>
   typename enable_if_c<is_key<T>::value, const key_type &>::type
      key_forward(const T &key) const
   {  return key; }

   template<class T>
   typename enable_if_c<!is_key<T>::value, const key_type &>::type
      key_forward(const T &key) const
   {  return KeyOfValue()(key);  }

   template<class KeyType, class KeyType2>
   bool operator()(const KeyType &key1, const KeyType2 &key2) const
   {  return key_compare::operator()(this->key_forward(key1), this->key_forward(key2));  }
};

template<class VoidPointer>
struct rbtree_hook
{
   typedef typename container_detail::bi::make_set_base_hook
      < container_detail::bi::void_pointer<VoidPointer>
      , container_detail::bi::link_mode<container_detail::bi::normal_link>
      , container_detail::bi::optimize_size<true>
      >::type  type;
};

//This trait is used to type-pun std::pair because in C++03
//compilers std::pair is useless for C++11 features
template<class T>
struct rbtree_internal_data_type
{
   typedef T type;
};

template<class T1, class T2>
struct rbtree_internal_data_type< std::pair<T1, T2> >
{
   typedef pair<T1, T2> type;
};


//The node to be store in the tree
template <class T, class VoidPointer>
struct rbtree_node
   :  public rbtree_hook<VoidPointer>::type
{
   private:
   //BOOST_COPYABLE_AND_MOVABLE(rbtree_node)
   rbtree_node();

   public:
   typedef typename rbtree_hook<VoidPointer>::type hook_type;

   typedef T value_type;
   typedef typename rbtree_internal_data_type<T>::type internal_type;

   typedef rbtree_node<T, VoidPointer> node_type;

   T &get_data()
   {
      T* ptr = reinterpret_cast<T*>(&this->m_data);
      return *ptr;
   }

   const T &get_data() const
   {
      const T* ptr = reinterpret_cast<const T*>(&this->m_data);
      return *ptr;
   }

   internal_type m_data;

   template<class A, class B>
   void do_assign(const std::pair<const A, B> &p)
   {
      const_cast<A&>(m_data.first) = p.first;
      m_data.second  = p.second;
   }

   template<class A, class B>
   void do_assign(const pair<const A, B> &p)
   {
      const_cast<A&>(m_data.first) = p.first;
      m_data.second  = p.second;
   }

   template<class V>
   void do_assign(const V &v)
   {  m_data = v; }

   template<class A, class B>
   void do_move_assign(std::pair<const A, B> &p)
   {
      const_cast<A&>(m_data.first) = ::boost::move(p.first);
      m_data.second = ::boost::move(p.second);
   }

   template<class A, class B>
   void do_move_assign(pair<const A, B> &p)
   {
      const_cast<A&>(m_data.first) = ::boost::move(p.first);
      m_data.second  = ::boost::move(p.second);
   }

   template<class V>
   void do_move_assign(V &v)
   {  m_data = ::boost::move(v); }
};

}//namespace container_detail {

namespace container_detail {

template<class A, class ValueCompare>
struct intrusive_rbtree_type
{
   typedef typename boost::container::
      allocator_traits<A>::value_type              value_type;
   typedef typename boost::container::
      allocator_traits<A>::void_pointer            void_pointer;
   typedef typename boost::container::
      allocator_traits<A>::size_type               size_type;
   typedef typename container_detail::rbtree_node
         <value_type, void_pointer>                node_type;
   typedef node_compare<ValueCompare, node_type>   node_compare_type;
   typedef typename container_detail::bi::make_rbtree
      <node_type
      ,container_detail::bi::compare<node_compare_type>
      ,container_detail::bi::base_hook<typename rbtree_hook<void_pointer>::type>
      ,container_detail::bi::constant_time_size<true>
      ,container_detail::bi::size_type<size_type>
      >::type                                      container_type;
   typedef container_type                          type ;
};

}  //namespace container_detail {

namespace container_detail {

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
class rbtree
   : protected container_detail::node_alloc_holder
      < A
      , typename container_detail::intrusive_rbtree_type
         <A, value_compare_impl<Key, Value, KeyCompare, KeyOfValue> 
         >::type
      , KeyCompare
      >
{
   typedef typename container_detail::intrusive_rbtree_type
         < A, value_compare_impl
            <Key, Value, KeyCompare, KeyOfValue>
         >::type                                            Icont;
   typedef container_detail::node_alloc_holder 
      <A, Icont, KeyCompare>                                AllocHolder;
   typedef typename AllocHolder::NodePtr                    NodePtr;
   typedef rbtree < Key, Value, KeyOfValue
                  , KeyCompare, A>                          ThisType;
   typedef typename AllocHolder::NodeAlloc                  NodeAlloc;
   typedef typename AllocHolder::ValAlloc                   ValAlloc;
   typedef typename AllocHolder::Node                       Node;
   typedef typename Icont::iterator                         iiterator;
   typedef typename Icont::const_iterator                   iconst_iterator;
   typedef container_detail::allocator_destroyer<NodeAlloc> Destroyer;
   typedef typename AllocHolder::allocator_v1               allocator_v1;
   typedef typename AllocHolder::allocator_v2               allocator_v2;
   typedef typename AllocHolder::alloc_version              alloc_version;

   class RecyclingCloner;
   friend class RecyclingCloner;

   class RecyclingCloner
   {
      public:
      RecyclingCloner(AllocHolder &holder, Icont &irbtree)
         :  m_holder(holder), m_icont(irbtree)
      {}

      NodePtr operator()(const Node &other) const
      {
         if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){
            //First recycle a node (this can't throw)
            try{
               //This can throw
               p->do_assign(other.m_data);
               return p;
            }
            catch(...){
               //If there is an exception destroy the whole source
               m_holder.destroy_node(p);
               while((p = m_icont.unlink_leftmost_without_rebalance())){
                  m_holder.destroy_node(p);
               }
               throw;
            }
         }
         else{
            return m_holder.create_node(other.m_data);
         }
      }

      AllocHolder &m_holder;
      Icont &m_icont;
   };

   class RecyclingMoveCloner;
   friend class RecyclingMoveCloner;

   class RecyclingMoveCloner
   {
      public:
      RecyclingMoveCloner(AllocHolder &holder, Icont &irbtree)
         :  m_holder(holder), m_icont(irbtree)
      {}

      NodePtr operator()(const Node &other) const
      {
         if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){
            //First recycle a node (this can't throw)
            try{
               //This can throw
               p->do_move_assign(const_cast<Node &>(other).m_data);
               return p;
            }
            catch(...){
               //If there is an exception destroy the whole source
               m_holder.destroy_node(p);
               while((p = m_icont.unlink_leftmost_without_rebalance())){
                  m_holder.destroy_node(p);
               }
               throw;
            }
         }
         else{
            return m_holder.create_node(other.m_data);
         }
      }

      AllocHolder &m_holder;
      Icont &m_icont;
   };

   BOOST_COPYABLE_AND_MOVABLE(rbtree)

   public:

   typedef Key                                        key_type;
   typedef Value                                      value_type;
   typedef A                                          allocator_type;
   typedef KeyCompare                                 key_compare;
   typedef value_compare_impl< Key, Value
                        , KeyCompare, KeyOfValue>     value_compare;
   typedef typename boost::container::
      allocator_traits<A>::pointer                    pointer;
   typedef typename boost::container::
      allocator_traits<A>::const_pointer              const_pointer;
   typedef typename boost::container::
      allocator_traits<A>::reference                  reference;
   typedef typename boost::container::
      allocator_traits<A>::const_reference            const_reference;
   typedef typename boost::container::
      allocator_traits<A>::size_type                  size_type;
   typedef typename boost::container::
      allocator_traits<A>::difference_type            difference_type;
   typedef difference_type                            rbtree_difference_type;
   typedef pointer                                    rbtree_pointer;
   typedef const_pointer                              rbtree_const_pointer;
   typedef reference                                  rbtree_reference;
   typedef const_reference                            rbtree_const_reference;
   typedef NodeAlloc                                  stored_allocator_type;

   private:

   template<class KeyValueCompare>
   struct key_node_compare
      :  private KeyValueCompare
   {
      key_node_compare(const KeyValueCompare &comp)
         :  KeyValueCompare(comp)
      {}

      template<class T>
      struct is_node
      {
         static const bool value = is_same<T, Node>::value;
      };

      template<class T>
      typename enable_if_c<is_node<T>::value, const value_type &>::type
         key_forward(const T &node) const
      {  return node.get_data();  }

      template<class T>
      typename enable_if_c<!is_node<T>::value, const T &>::type
         key_forward(const T &key) const
      {  return key; }

      template<class KeyType, class KeyType2>
      bool operator()(const KeyType &key1, const KeyType2 &key2) const
      {  return KeyValueCompare::operator()(this->key_forward(key1), this->key_forward(key2));  }
   };

   typedef key_node_compare<value_compare>  KeyNodeCompare;

   public:
   //rbtree const_iterator
   class const_iterator
      : public std::iterator
         < std::bidirectional_iterator_tag
         , value_type            , rbtree_difference_type
         , rbtree_const_pointer  , rbtree_const_reference>
   {
      protected:
      typedef typename Icont::iterator  iiterator;
      iiterator m_it;
      explicit const_iterator(iiterator it)  : m_it(it){}
      void prot_incr() { ++m_it; }
      void prot_decr() { --m_it; }

      private:
      iiterator get()
      {  return this->m_it;   }

      public:
      friend class rbtree <Key, Value, KeyOfValue, KeyCompare, A>;
      typedef rbtree_difference_type        difference_type;

      //Constructors
      const_iterator()
         :  m_it()
      {}

      //Pointer like operators
      const_reference operator*()  const
      { return  m_it->get_data();  }

      const_pointer   operator->() const
      { return  const_pointer(&m_it->get_data()); }

      //Increment / Decrement
      const_iterator& operator++()      
      { prot_incr();  return *this; }

      const_iterator operator++(int)     
      { iiterator tmp = m_it; ++*this; return const_iterator(tmp);  }

      const_iterator& operator--()
      {   prot_decr(); return *this;   }

      const_iterator operator--(int)
      {  iiterator tmp = m_it; --*this; return const_iterator(tmp); }

      //Comparison operators
      bool operator==   (const const_iterator& r)  const
      {  return m_it == r.m_it;  }

      bool operator!=   (const const_iterator& r)  const
      {  return m_it != r.m_it;  }
   };

   //rbtree iterator
   class iterator : public const_iterator
   {
      private:
      explicit iterator(iiterator it)
         :  const_iterator(it)
      {}
  
      iiterator get()
      {  return this->m_it;   }

      public:
      friend class rbtree <Key, Value, KeyOfValue, KeyCompare, A>;
      typedef rbtree_pointer       pointer;
      typedef rbtree_reference     reference;

      //Constructors
      iterator(){}

      //Pointer like operators
      reference operator*()  const
         {  return this->m_it->get_data();  }
      pointer   operator->() const
         {  return boost::intrusive::pointer_traits<pointer>::pointer_to(this->m_it->get_data());  }

      //Increment / Decrement
      iterator& operator++() 
         { this->prot_incr(); return *this;  }

      iterator operator++(int)
         { iiterator tmp = this->m_it; ++*this; return iterator(tmp); }
     
      iterator& operator--()
         {  this->prot_decr(); return *this;  }

      iterator operator--(int)
         {  iterator tmp = *this; --*this; return tmp; }
   };

   typedef std::reverse_iterator<iterator>        reverse_iterator;
   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;

   rbtree()
      : AllocHolder(key_compare())
   {}

   rbtree(const key_compare& comp, const allocator_type& a = allocator_type())
      : AllocHolder(a, comp)
   {}

   template <class InputIterator>
   rbtree(InputIterator first, InputIterator last, const key_compare& comp,
          const allocator_type& a, bool unique_insertion)
      : AllocHolder(a, comp)
   {
      typedef typename std::iterator_traits<InputIterator>::iterator_category ItCat;
      priv_create_and_insert_nodes(first, last, unique_insertion, alloc_version(), ItCat());
   }

   template <class InputIterator>
   rbtree( ordered_range_t, InputIterator first, InputIterator last
         , const key_compare& comp = key_compare(), const allocator_type& a = allocator_type())
      : AllocHolder(a, comp)
   {
      typedef typename std::iterator_traits<InputIterator>::iterator_category ItCat;
      priv_create_and_insert_ordered_nodes(first, last, alloc_version(), ItCat());
   }

   rbtree(const rbtree& x)
      :  AllocHolder(x, x.key_comp())
   {
      this->icont().clone_from
         (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
   }

   rbtree(BOOST_RV_REF(rbtree) x)
      :  AllocHolder(::boost::move(static_cast<AllocHolder&>(x)), x.key_comp())
   {}

   rbtree(const rbtree& x, const allocator_type &a)
      :  AllocHolder(a, x.key_comp())
   {
      this->icont().clone_from
         (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
   }

   rbtree(BOOST_RV_REF(rbtree) x, const allocator_type &a)
      :  AllocHolder(a, x.key_comp())
   {
      if(this->node_alloc() == x.node_alloc()){
         this->icont().swap(x.icont());
      }
      else{
         this->icont().clone_from
            (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
      }
   }

   ~rbtree()
   {} //AllocHolder clears the tree

   rbtree& operator=(BOOST_COPY_ASSIGN_REF(rbtree) x)
   {
      if (&x != this){
         NodeAlloc &this_alloc     = this->get_stored_allocator();
         const NodeAlloc &x_alloc  = x.get_stored_allocator();
         container_detail::bool_<allocator_traits<NodeAlloc>::
            propagate_on_container_copy_assignment::value> flag;
         if(flag && this_alloc != x_alloc){
            this->clear();
         }
         this->AllocHolder::copy_assign_alloc(x);
         //Transfer all the nodes to a temporary tree
         //If anything goes wrong, all the nodes will be destroyed
         //automatically
         Icont other_tree(::boost::move(this->icont()));

         //Now recreate the source tree reusing nodes stored by other_tree
         this->icont().clone_from
            (x.icont()
            , RecyclingCloner(*this, other_tree)
            , Destroyer(this->node_alloc()));

         //If there are remaining nodes, destroy them
         NodePtr p;
         while((p = other_tree.unlink_leftmost_without_rebalance())){
            AllocHolder::destroy_node(p);
         }
      }
      return *this;
   }

   rbtree& operator=(BOOST_RV_REF(rbtree) x)
   {
      if (&x != this){
         NodeAlloc &this_alloc = this->node_alloc();
         NodeAlloc &x_alloc    = x.node_alloc();
         //If allocators are equal we can just swap pointers
         if(this_alloc == x_alloc){
            //Destroy and swap pointers
            this->clear();
            this->icont() = ::boost::move(x.icont());
            //Move allocator if needed
            this->AllocHolder::move_assign_alloc(x);
         }
         //If unequal allocators, then do a one by one move
         else{
            //Transfer all the nodes to a temporary tree
            //If anything goes wrong, all the nodes will be destroyed
            //automatically
            Icont other_tree(::boost::move(this->icont()));

            //Now recreate the source tree reusing nodes stored by other_tree
            this->icont().clone_from
               (x.icont()
               , RecyclingMoveCloner(*this, other_tree)
               , Destroyer(this->node_alloc()));

            //If there are remaining nodes, destroy them
            NodePtr p;
            while((p = other_tree.unlink_leftmost_without_rebalance())){
               AllocHolder::destroy_node(p);
            }
         }
      }
      return *this;
   }

   public:   
   // accessors:
   value_compare value_comp() const
   {  return this->icont().value_comp().value_comp(); }

   key_compare key_comp() const
   {  return this->icont().value_comp().value_comp().key_comp(); }

   allocator_type get_allocator() const
   {  return allocator_type(this->node_alloc()); }

   const stored_allocator_type &get_stored_allocator() const
   {  return this->node_alloc(); }

   stored_allocator_type &get_stored_allocator()
   {  return this->node_alloc(); }

   iterator begin()
   { return iterator(this->icont().begin()); }

   const_iterator begin() const
   {  return this->cbegin();  }

   iterator end()
   {  return iterator(this->icont().end());  }

   const_iterator end() const
   {  return this->cend();  }

   reverse_iterator rbegin()
   {  return reverse_iterator(end());  }

   const_reverse_iterator rbegin() const
   {  return this->crbegin();  }

   reverse_iterator rend()
   {  return reverse_iterator(begin());   }

   const_reverse_iterator rend() const
   {  return this->crend();   }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cbegin() const
   { return const_iterator(this->non_const_icont().begin()); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cend() const
   { return const_iterator(this->non_const_icont().end()); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crbegin() const
   { return const_reverse_iterator(cend()); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crend() const
   { return const_reverse_iterator(cbegin()); }

   bool empty() const
   {  return !this->size();  }

   size_type size() const
   {  return this->icont().size();   }

   size_type max_size() const
   {  return AllocHolder::max_size();  }

   void swap(ThisType& x)
   {  AllocHolder::swap(x);   }

   public:

   typedef typename Icont::insert_commit_data insert_commit_data;

   // insert/erase
   std::pair<iterator,bool> insert_unique_check
      (const key_type& key, insert_commit_data &data)
   {
      std::pair<iiterator, bool> ret =
         this->icont().insert_unique_check(key, KeyNodeCompare(value_comp()), data);
      return std::pair<iterator, bool>(iterator(ret.first), ret.second);
   }

   std::pair<iterator,bool> insert_unique_check
      (const_iterator hint, const key_type& key, insert_commit_data &data)
   {
      std::pair<iiterator, bool> ret =
         this->icont().insert_unique_check(hint.get(), key, KeyNodeCompare(value_comp()), data);
      return std::pair<iterator, bool>(iterator(ret.first), ret.second);
   }

   iterator insert_unique_commit(const value_type& v, insert_commit_data &data)
   {
      NodePtr tmp = AllocHolder::create_node(v);
      iiterator it(this->icont().insert_unique_commit(*tmp, data));
      return iterator(it);
   }

   template<class MovableConvertible>
   iterator insert_unique_commit
      (BOOST_FWD_REF(MovableConvertible) mv, insert_commit_data &data)
   {
      NodePtr tmp = AllocHolder::create_node(boost::forward<MovableConvertible>(mv));
      iiterator it(this->icont().insert_unique_commit(*tmp, data));
      return iterator(it);
   }

   std::pair<iterator,bool> insert_unique(const value_type& v)
   {
      insert_commit_data data;
      std::pair<iterator,bool> ret =
         this->insert_unique_check(KeyOfValue()(v), data);
      if(!ret.second)
         return ret;
      return std::pair<iterator,bool>
         (this->insert_unique_commit(v, data), true);
   }

   template<class MovableConvertible>
   std::pair<iterator,bool> insert_unique(BOOST_FWD_REF(MovableConvertible) mv)
   {
      insert_commit_data data;
      std::pair<iterator,bool> ret =
         this->insert_unique_check(KeyOfValue()(mv), data);
      if(!ret.second)
         return ret;
      return std::pair<iterator,bool>
         (this->insert_unique_commit(boost::forward<MovableConvertible>(mv), data), true);
   }

   private:
   std::pair<iterator, bool> emplace_unique_impl(NodePtr p)
   {
      value_type &v = p->get_data();
      insert_commit_data data;
      scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(p, this->node_alloc());
      std::pair<iterator,bool> ret =
         this->insert_unique_check(KeyOfValue()(v), data);
      if(!ret.second){
         return ret;
      }
      //No throw insertion part, release rollback
      destroy_deallocator.release();
      return std::pair<iterator,bool>
         ( iterator(iiterator(this->icont().insert_unique_commit(*p, data)))
         , true );
   }

   iterator emplace_unique_hint_impl(const_iterator hint, NodePtr p)
   {
      value_type &v = p->get_data();
      insert_commit_data data;
      std::pair<iterator,bool> ret =
         this->insert_unique_check(hint, KeyOfValue()(v), data);
      if(!ret.second){
         Destroyer(this->node_alloc())(p);
         return ret.first;
      }
      return iterator(iiterator(this->icont().insert_unique_commit(*p, data)));
   }

   public:

   #ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   template <class... Args>
   std::pair<iterator, bool> emplace_unique(Args&&... args)
   {  return this->emplace_unique_impl(AllocHolder::create_node(boost::forward<Args>(args)...));   }

   template <class... Args>
   iterator emplace_hint_unique(const_iterator hint, Args&&... args)
   {  return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(boost::forward<Args>(args)...));   }

   template <class... Args>
   iterator emplace_equal(Args&&... args)
   {
      NodePtr p(AllocHolder::create_node(boost::forward<Args>(args)...));
      return iterator(this->icont().insert_equal(this->icont().end(), *p));
   }

   template <class... Args>
   iterator emplace_hint_equal(const_iterator hint, Args&&... args)
   {
      NodePtr p(AllocHolder::create_node(boost::forward<Args>(args)...));
      return iterator(this->icont().insert_equal(hint.get(), *p));
   }

   #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   #define BOOST_PP_LOCAL_MACRO(n)                                                                          \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)                   \
   std::pair<iterator, bool> emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))             \
   {                                                                                                        \
      return this->emplace_unique_impl                                                                      \
         (AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)));                 \
   }                                                                                                        \
                                                                                                            \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)                   \
   iterator emplace_hint_unique(const_iterator hint                                                         \
                       BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                         \
   {                                                                                                        \
      return this->emplace_unique_hint_impl                                                                 \
         (hint, AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)));           \
   }                                                                                                        \
                                                                                                            \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)                   \
   iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                               \
   {                                                                                                        \
      NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)));           \
      return iterator(this->icont().insert_equal(this->icont().end(), *p));                                 \
   }                                                                                                        \
                                                                                                            \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)                   \
   iterator emplace_hint_equal(const_iterator hint                                                          \
                       BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                         \
   {                                                                                                        \
      NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)));           \
      return iterator(this->icont().insert_equal(hint.get(), *p));                                          \
   }                                                                                                        \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   iterator insert_unique(const_iterator hint, const value_type& v)
   {
      insert_commit_data data;
      std::pair<iterator,bool> ret =
         this->insert_unique_check(hint, KeyOfValue()(v), data);
      if(!ret.second)
         return ret.first;
      return this->insert_unique_commit(v, data);
   }

   template<class MovableConvertible>
   iterator insert_unique(const_iterator hint, BOOST_FWD_REF(MovableConvertible) mv)
   {
      insert_commit_data data;
      std::pair<iterator,bool> ret =
         this->insert_unique_check(hint, KeyOfValue()(mv), data);
      if(!ret.second)
         return ret.first;
      return this->insert_unique_commit(boost::forward<MovableConvertible>(mv), data);
   }

   template <class InputIterator>
   void insert_unique(InputIterator first, InputIterator last)
   {
      if(this->empty()){
         //Insert with end hint, to achieve linear
         //complexity if [first, last) is ordered
         const_iterator hint(this->cend());
         for( ; first != last; ++first)
            hint = this->insert_unique(hint, *first);
      }
      else{
         for( ; first != last; ++first)
            this->insert_unique(*first);
      }
   }

   iterator insert_equal(const value_type& v)
   {
      NodePtr p(AllocHolder::create_node(v));
      return iterator(this->icont().insert_equal(this->icont().end(), *p));
   }

   template<class MovableConvertible>
   iterator insert_equal(BOOST_FWD_REF(MovableConvertible) mv)
   {
      NodePtr p(AllocHolder::create_node(boost::forward<MovableConvertible>(mv)));
      return iterator(this->icont().insert_equal(this->icont().end(), *p));
   }

   iterator insert_equal(const_iterator hint, const value_type& v)
   {
      NodePtr p(AllocHolder::create_node(v));
      return iterator(this->icont().insert_equal(hint.get(), *p));
   }

   template<class MovableConvertible>
   iterator insert_equal(const_iterator hint, BOOST_FWD_REF(MovableConvertible) mv)
   {
      NodePtr p(AllocHolder::create_node(boost::forward<MovableConvertible>(mv)));
      return iterator(this->icont().insert_equal(hint.get(), *p));
   }

   template <class InputIterator>
   void insert_equal(InputIterator first, InputIterator last)
   {
      //Insert with end hint, to achieve linear
      //complexity if [first, last) is ordered
      const_iterator hint(this->cend());
      for( ; first != last; ++first)
         hint = this->insert_equal(hint, *first);
   }

   iterator erase(const_iterator position)
   {  return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc()))); }

   size_type erase(const key_type& k)
   {  return AllocHolder::erase_key(k, KeyNodeCompare(value_comp()), alloc_version()); }

   iterator erase(const_iterator first, const_iterator last)
   {  return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); }

   void clear()
   {  AllocHolder::clear(alloc_version());  }

   // set operations:
   iterator find(const key_type& k)
   {  return iterator(this->icont().find(k, KeyNodeCompare(value_comp())));  }

   const_iterator find(const key_type& k) const
   {  return const_iterator(this->non_const_icont().find(k, KeyNodeCompare(value_comp())));  }

   size_type count(const key_type& k) const
   {  return size_type(this->icont().count(k, KeyNodeCompare(value_comp()))); }

   iterator lower_bound(const key_type& k)
   {  return iterator(this->icont().lower_bound(k, KeyNodeCompare(value_comp())));  }

   const_iterator lower_bound(const key_type& k) const
   {  return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare(value_comp())));  }

   iterator upper_bound(const key_type& k)
   {  return iterator(this->icont().upper_bound(k, KeyNodeCompare(value_comp())));   }

   const_iterator upper_bound(const key_type& k) const
   {  return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare(value_comp())));  }

   std::pair<iterator,iterator> equal_range(const key_type& k)
   { 
      std::pair<iiterator, iiterator> ret =
         this->icont().equal_range(k, KeyNodeCompare(value_comp()));
      return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
   }

   std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
   { 
      std::pair<iiterator, iiterator> ret =
         this->non_const_icont().equal_range(k, KeyNodeCompare(value_comp()));
      return std::pair<const_iterator,const_iterator>
         (const_iterator(ret.first), const_iterator(ret.second));
   }

   private:
   //Iterator range version
   template<class InpIterator>
   void priv_create_and_insert_nodes
      (InpIterator beg, InpIterator end, bool unique, allocator_v1, std::input_iterator_tag)
   {
      if(unique){
         for (; beg != end; ++beg){
            this->insert_unique(*beg);
         }
      }
      else{
         for (; beg != end; ++beg){
            this->insert_equal(*beg);
         }
      }
   }

   template<class InpIterator>
   void priv_create_and_insert_nodes
      (InpIterator beg, InpIterator end, bool unique, allocator_v2, std::input_iterator_tag)
   {  //Just forward to the default one
      priv_create_and_insert_nodes(beg, end, unique, allocator_v1(), std::input_iterator_tag());
   }

   class insertion_functor;
   friend class insertion_functor;

   class insertion_functor
   {
      Icont &icont_;

      public:
      insertion_functor(Icont &icont)
         :  icont_(icont)
      {}

      void operator()(Node &n)
      {  this->icont_.insert_equal(this->icont_.cend(), n); }
   };


   template<class FwdIterator>
   void priv_create_and_insert_nodes
      (FwdIterator beg, FwdIterator end, bool unique, allocator_v2, std::forward_iterator_tag)
   {
      if(beg != end){
         if(unique){
            priv_create_and_insert_nodes(beg, end, unique, allocator_v2(), std::input_iterator_tag());
         }
         else{
            //Optimized allocation and construction
            this->allocate_many_and_construct
               (beg, std::distance(beg, end), insertion_functor(this->icont()));
         }
      }
   }

   //Iterator range version
   template<class InpIterator>
   void priv_create_and_insert_ordered_nodes
      (InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag)
   {
      const_iterator cend_n(this->cend());
      for (; beg != end; ++beg){
         this->insert_before(cend_n, *beg);
      }
   }

   template<class InpIterator>
   void priv_create_and_insert_ordered_nodes
      (InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag)
   {  //Just forward to the default one
      priv_create_and_insert_ordered_nodes(beg, end, allocator_v1(), std::input_iterator_tag());
   }

   class back_insertion_functor;
   friend class back_insertion_functor;

   class back_insertion_functor
   {
      Icont &icont_;

      public:
      back_insertion_functor(Icont &icont)
         :  icont_(icont)
      {}

      void operator()(Node &n)
      {  this->icont_.push_back(n); }
   };


   template<class FwdIterator>
   void priv_create_and_insert_ordered_nodes
      (FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag)
   {
      if(beg != end){
         //Optimized allocation and construction
         this->allocate_many_and_construct
            (beg, std::distance(beg, end), back_insertion_functor(this->icont()));
      }
   }
};

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline bool
operator==(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
           const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
{
  return x.size() == y.size() &&
         std::equal(x.begin(), x.end(), y.begin());
}

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline bool
operator<(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
          const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
{
  return std::lexicographical_compare(x.begin(), x.end(),
                                      y.begin(), y.end());
}

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline bool
operator!=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
           const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
  return !(x == y);
}

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline bool
operator>(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
          const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
  return y < x;
}

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline bool
operator<=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
           const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
  return !(y < x);
}

template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline bool
operator>=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
           const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
  return !(x < y);
}


template <class Key, class Value, class KeyOfValue,
          class KeyCompare, class A>
inline void
swap(rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
     rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
{
  x.swap(y);
}

} //namespace container_detail {
} //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class V, class KOV,
class C, class A>
struct has_trivial_destructor_after_move
   <boost::container::container_detail::rbtree<K, V, KOV, C, A> >
{
   static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
*/
} //namespace boost  {

#include <boost/container/detail/config_end.hpp>

#endif //BOOST_CONTAINER_TREE_HPP