1. Jason McKesson
  2. GL Profile Suite

Source

GL Profile Suite / boost_1_51_0 / boost / container / flat_set.hpp

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_CONTAINER_FLAT_SET_HPP
#define BOOST_CONTAINER_FLAT_SET_HPP

#if (defined _MSC_VER) && (_MSC_VER >= 1200)
#  pragma once
#endif

#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>

#include <boost/container/container_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <boost/container/detail/flat_tree.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/move/move.hpp>

#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
#else
namespace boost {
namespace container {
#endif

/// @cond
// Forward declarations of operators < and ==, needed for friend declaration.

#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
class flat_set;

template <class T, class Pred, class A>
inline bool operator==(const flat_set<T,Pred,A>& x,
                       const flat_set<T,Pred,A>& y);

template <class T, class Pred, class A>
inline bool operator<(const flat_set<T,Pred,A>& x,
                      const flat_set<T,Pred,A>& y);
/// @endcond

//! flat_set is a Sorted Associative Container that stores objects of type Key.
//! flat_set is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key. It is also a Unique Associative Container,
//! meaning that no two elements are the same.
//!
//! flat_set is similar to std::set but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_set invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_set invalidates iterators and references
//! pointing to elements that come after (their keys are bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
class flat_set
{
   /// @cond
   private:
   BOOST_COPYABLE_AND_MOVABLE(flat_set)
   typedef container_detail::flat_tree<T, T, container_detail::identity<T>, Pred, A> tree_t;
   tree_t m_flat_tree;  // flat tree representing flat_set
   typedef typename container_detail::
      move_const_ref_type<T>::type insert_const_ref_type;
   /// @endcond

   public:

   // typedefs:
   typedef typename tree_t::key_type               key_type;
   typedef typename tree_t::value_type             value_type;
   typedef typename tree_t::pointer                pointer;
   typedef typename tree_t::const_pointer          const_pointer;
   typedef typename tree_t::reference              reference;
   typedef typename tree_t::const_reference        const_reference;
   typedef typename tree_t::key_compare            key_compare;
   typedef typename tree_t::value_compare          value_compare;
   typedef typename tree_t::iterator               iterator;
   typedef typename tree_t::const_iterator         const_iterator;
   typedef typename tree_t::reverse_iterator       reverse_iterator;
   typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
   typedef typename tree_t::size_type              size_type;
   typedef typename tree_t::difference_type        difference_type;
   typedef typename tree_t::allocator_type         allocator_type;
   typedef typename tree_t::stored_allocator_type  stored_allocator_type;

   //! <b>Effects</b>: Default constructs an empty flat_set.
   //!
   //! <b>Complexity</b>: Constant.
   explicit flat_set()
      : m_flat_tree()
   {}

   //! <b>Effects</b>: Constructs an empty flat_set using the specified
   //! comparison object and allocator.
   //!
   //! <b>Complexity</b>: Constant.
   explicit flat_set(const Pred& comp,
                     const allocator_type& a = allocator_type())
      : m_flat_tree(comp, a)
   {}

   //! <b>Effects</b>: Constructs an empty set using the specified comparison object and
   //! allocator, and inserts elements from the range [first ,last ).
   //!
   //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
   //! comp and otherwise N logN, where N is last - first.
   template <class InputIterator>
   flat_set(InputIterator first, InputIterator last,
            const Pred& comp = Pred(),
            const allocator_type& a = allocator_type())
      : m_flat_tree(comp, a)
      { m_flat_tree.insert_unique(first, last); }

   //! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and
   //! allocator, and inserts elements from the ordered unique range [first ,last). This function
   //! is more efficient than the normal range creation for ordered ranges.
   //!
   //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
   //! unique values.
   //!
   //! <b>Complexity</b>: Linear in N.
   //!
   //! <b>Note</b>: Non-standard extension.
   template <class InputIterator>
   flat_set(ordered_unique_range_t, InputIterator first, InputIterator last,
            const Pred& comp = Pred(),
            const allocator_type& a = allocator_type())
      : m_flat_tree(ordered_range, first, last, comp, a)
   {}

   //! <b>Effects</b>: Copy constructs a set.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_set(const flat_set& x)
      : m_flat_tree(x.m_flat_tree)
   {}

   //! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Postcondition</b>: x is emptied.
   flat_set(BOOST_RV_REF(flat_set) mx)
      : m_flat_tree(boost::move(mx.m_flat_tree))
   {}

   //! <b>Effects</b>: Copy constructs a set using the specified allocator.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_set(const flat_set& x, const allocator_type &a)
      : m_flat_tree(x.m_flat_tree, a)
   {}

   //! <b>Effects</b>: Move constructs a set using the specified allocator.
   //!                 Constructs *this using x's resources.
   //!
   //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise
   flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type &a)
      : m_flat_tree(boost::move(mx.m_flat_tree), a)
   {}

   //! <b>Effects</b>: Makes *this a copy of x.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x)
      {  m_flat_tree = x.m_flat_tree;   return *this;  }

   //! <b>Effects</b>: Makes *this a copy of the previous value of xx.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_set& operator=(BOOST_RV_REF(flat_set) mx)
   {  m_flat_tree = boost::move(mx.m_flat_tree);   return *this;  }

   //! <b>Effects</b>: Returns the comparison object out
   //!   of which a was constructed.
   //!
   //! <b>Complexity</b>: Constant.
   key_compare key_comp() const
      { return m_flat_tree.key_comp(); }

   //! <b>Effects</b>: Returns an object of value_compare constructed out
   //!   of the comparison object.
   //!
   //! <b>Complexity</b>: Constant.
   value_compare value_comp() const
      { return m_flat_tree.key_comp(); }

   //! <b>Effects</b>: Returns a copy of the Allocator that
   //!   was passed to the object's constructor.
   //!
   //! <b>Complexity</b>: Constant.
   allocator_type get_allocator() const
      { return m_flat_tree.get_allocator(); }

   const stored_allocator_type &get_stored_allocator() const
   {  return m_flat_tree.get_stored_allocator(); }

   stored_allocator_type &get_stored_allocator()
   {  return m_flat_tree.get_stored_allocator(); }

   //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator begin()
      { return m_flat_tree.begin(); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator begin() const
      { return m_flat_tree.begin(); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cbegin() const
      { return m_flat_tree.cbegin(); }

   //! <b>Effects</b>: Returns an iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator end()
      { return m_flat_tree.end(); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator end() const
      { return m_flat_tree.end(); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cend() const
      { return m_flat_tree.cend(); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator rbegin()
      { return m_flat_tree.rbegin(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rbegin() const
      { return m_flat_tree.rbegin(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crbegin() const
      { return m_flat_tree.crbegin(); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator rend()
      { return m_flat_tree.rend(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rend() const
      { return m_flat_tree.rend(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crend() const
      { return m_flat_tree.crend(); }

   //! <b>Effects</b>: Returns true if the container contains no elements.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   bool empty() const
      { return m_flat_tree.empty(); }

   //! <b>Effects</b>: Returns the number of the elements contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type size() const
      { return m_flat_tree.size(); }

   //! <b>Effects</b>: Returns the largest possible size of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type max_size() const
      { return m_flat_tree.max_size(); }

   //! <b>Effects</b>: Swaps the contents of *this and x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   void swap(flat_set& x)
   { m_flat_tree.swap(x.m_flat_tree); }

   //! <b>Effects</b>: Inserts x if and only if there is no element in the container
   //!   with key equivalent to the key of x.
   //!
   //! <b>Returns</b>: The bool component of the returned pair is true if and only
   //!   if the insertion takes place, and the iterator component of the pair
   //!   points to the element with key equivalent to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus linear insertion
   //!   to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   std::pair<iterator, bool> insert(insert_const_ref_type x)
   {  return priv_insert(x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   std::pair<iterator, bool> insert(T &x)
   { return this->insert(const_cast<const T &>(x)); }

   template<class U>
   std::pair<iterator, bool> insert(const U &u, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return priv_insert(u); }
   #endif

   //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
   //! only if there is no element in the container with key equivalent to the key of x.
   //!
   //! <b>Returns</b>: The bool component of the returned pair is true if and only
   //!   if the insertion takes place, and the iterator component of the pair
   //!   points to the element with key equivalent to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus linear insertion
   //!   to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
   {  return m_flat_tree.insert_unique(boost::move(x));  }

   //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
   //!   no element in the container with key equivalent to the key of x.
   //!   p is a hint pointing to where the insert should start to search.
   //!
   //! <b>Returns</b>: An iterator pointing to the element with key equivalent
   //!   to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
   //!   right before p) plus insertion linear to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   iterator insert(const_iterator p, insert_const_ref_type x)
   {  return priv_insert(p, x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   iterator insert(const_iterator position, T &x)
   { return this->insert(position, const_cast<const T &>(x)); }

   template<class U>
   iterator insert(const_iterator position, const U &u, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return priv_insert(position, u); }
   #endif

   //! <b>Effects</b>: Inserts an element move constructed from x in the container.
   //!   p is a hint pointing to where the insert should start to search.
   //!
   //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
   //!   right before p) plus insertion linear to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
   {  return m_flat_tree.insert_unique(position, boost::move(x)); }

   //! <b>Requires</b>: first, last are not iterators into *this.
   //!
   //! <b>Effects</b>: inserts each element from the range [first,last) if and only
   //!   if there is no element with key equivalent to the key of that element.
   //!
   //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
   //!   search time plus N*size() insertion time.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   template <class InputIterator>
   void insert(InputIterator first, InputIterator last)
      {  m_flat_tree.insert_unique(first, last);  }

   //! <b>Requires</b>: first, last are not iterators into *this and
   //! must be ordered according to the predicate and must be
   //! unique values.
   //!
   //! <b>Effects</b>: inserts each element from the range [first,last) .This function
   //! is more efficient than the normal range creation for ordered ranges.
   //!
   //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
   //!   search time plus N*size() insertion time.
   //!
   //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements.
   template <class InputIterator>
   void insert(ordered_unique_range_t, InputIterator first, InputIterator last)
      {  m_flat_tree.insert_unique(ordered_unique_range, first, last);  }

   #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Inserts an object x of type T constructed with
   //!   std::forward<Args>(args)... if and only if there is no element in the container
   //!   with key equivalent to the key of x.
   //!
   //! <b>Returns</b>: The bool component of the returned pair is true if and only
   //!   if the insertion takes place, and the iterator component of the pair
   //!   points to the element with key equivalent to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus linear insertion
   //!   to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   template <class... Args>
   std::pair<iterator,bool> emplace(Args&&... args)
   {  return m_flat_tree.emplace_unique(boost::forward<Args>(args)...); }

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... in the container if and only if there is
   //!   no element in the container with key equivalent to the key of x.
   //!   p is a hint pointing to where the insert should start to search.
   //!
   //! <b>Returns</b>: An iterator pointing to the element with key equivalent
   //!   to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
   //!   right before p) plus insertion linear to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   template <class... Args>
   iterator emplace_hint(const_iterator hint, Args&&... args)
   {  return m_flat_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); }

   #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   #define BOOST_PP_LOCAL_MACRO(n)                                                                 \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)          \
   std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))            \
   {  return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); }  \
                                                                                                   \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)          \
   iterator emplace_hint(const_iterator hint                                                       \
                         BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))              \
   {  return m_flat_tree.emplace_hint_unique                                                       \
            (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); }               \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   //! <b>Effects</b>: Erases the element pointed to by position.
   //!
   //! <b>Returns</b>: Returns an iterator pointing to the element immediately
   //!   following q prior to the element being erased. If no such element exists,
   //!   returns end().
   //!
   //! <b>Complexity</b>: Linear to the elements with keys bigger than position
   //!
   //! <b>Note</b>: Invalidates elements with keys
   //!   not less than the erased element.
   iterator erase(const_iterator position)
      {  return m_flat_tree.erase(position); }

   //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
   //!
   //! <b>Returns</b>: Returns the number of erased elements.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus erasure time
   //!   linear to the elements with bigger keys.
   size_type erase(const key_type& x)
      {  return m_flat_tree.erase(x); }

   //! <b>Effects</b>: Erases all the elements in the range [first, last).
   //!
   //! <b>Returns</b>: Returns last.
   //!
   //! <b>Complexity</b>: size()*N where N is the distance from first to last.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus erasure time
   //!   linear to the elements with bigger keys.
   iterator erase(const_iterator first, const_iterator last)
      {  return m_flat_tree.erase(first, last);  }

   //! <b>Effects</b>: erase(a.begin(),a.end()).
   //!
   //! <b>Postcondition</b>: size() == 0.
   //!
   //! <b>Complexity</b>: linear in size().
   void clear()
      { m_flat_tree.clear(); }

   //! <b>Effects</b>: Tries to deallocate the excess of memory created
   //    with previous allocations. The size of the vector is unchanged
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to size().
   void shrink_to_fit()
      { m_flat_tree.shrink_to_fit(); }

   //! <b>Returns</b>: An iterator pointing to an element with the key
   //!   equivalent to x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic.
   iterator find(const key_type& x)
      { return m_flat_tree.find(x); }

   //! <b>Returns</b>: A const_iterator pointing to an element with the key
   //!   equivalent to x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic.s
   const_iterator find(const key_type& x) const
      { return m_flat_tree.find(x); }

   //! <b>Returns</b>: The number of elements with key equivalent to x.
   //!
   //! <b>Complexity</b>: log(size())+count(k)
   size_type count(const key_type& x) const
      {  return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1;  }

   //! <b>Returns</b>: An iterator pointing to the first element with key not less
   //!   than k, or a.end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   iterator lower_bound(const key_type& x)
      {  return m_flat_tree.lower_bound(x); }

   //! <b>Returns</b>: A const iterator pointing to the first element with key not
   //!   less than k, or a.end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   const_iterator lower_bound(const key_type& x) const
      {  return m_flat_tree.lower_bound(x); }

   //! <b>Returns</b>: An iterator pointing to the first element with key not less
   //!   than x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   iterator upper_bound(const key_type& x)
      {  return m_flat_tree.upper_bound(x);    }

   //! <b>Returns</b>: A const iterator pointing to the first element with key not
   //!   less than x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   const_iterator upper_bound(const key_type& x) const
      {  return m_flat_tree.upper_bound(x);    }

   //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
   //!
   //! <b>Complexity</b>: Logarithmic
   std::pair<const_iterator, const_iterator>
      equal_range(const key_type& x) const
      {  return m_flat_tree.equal_range(x); }

   //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
   //!
   //! <b>Complexity</b>: Logarithmic
   std::pair<iterator,iterator>
      equal_range(const key_type& x)
      {  return m_flat_tree.equal_range(x); }

   //! <b>Effects</b>: Number of elements for which memory has been allocated.
   //!   capacity() is always greater than or equal to size().
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type capacity() const          
      { return m_flat_tree.capacity(); }

   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
   //!   effect. Otherwise, it is a request for allocation of additional memory.
   //!   If the request is successful, then capacity() is greater than or equal to
   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
   //!
   //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
   //!
   //! <b>Note</b>: If capacity() is less than "count", iterators and references to
   //!   to values might be invalidated.
   void reserve(size_type count)      
      { m_flat_tree.reserve(count);   }

   /// @cond
   template <class K1, class C1, class A1>
   friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);

   template <class K1, class C1, class A1>
   friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);

   private:
   std::pair<iterator, bool> priv_insert(const T &x)
   {  return m_flat_tree.insert_unique(x);  }

   iterator priv_insert(const_iterator p, const T &x)
   {  return m_flat_tree.insert_unique(p, x); }
   /// @endcond
};

template <class T, class Pred, class A>
inline bool operator==(const flat_set<T,Pred,A>& x,
                       const flat_set<T,Pred,A>& y)
   {  return x.m_flat_tree == y.m_flat_tree;  }

template <class T, class Pred, class A>
inline bool operator<(const flat_set<T,Pred,A>& x,
                      const flat_set<T,Pred,A>& y)
   {  return x.m_flat_tree < y.m_flat_tree;   }

template <class T, class Pred, class A>
inline bool operator!=(const flat_set<T,Pred,A>& x,
                       const flat_set<T,Pred,A>& y)
   {  return !(x == y);   }

template <class T, class Pred, class A>
inline bool operator>(const flat_set<T,Pred,A>& x,
                      const flat_set<T,Pred,A>& y)
   {  return y < x; }

template <class T, class Pred, class A>
inline bool operator<=(const flat_set<T,Pred,A>& x,
                       const flat_set<T,Pred,A>& y)
   {  return !(y < x); }

template <class T, class Pred, class A>
inline bool operator>=(const flat_set<T,Pred,A>& x,
                       const flat_set<T,Pred,A>& y)
   {  return !(x < y);  }

template <class T, class Pred, class A>
inline void swap(flat_set<T,Pred,A>& x, flat_set<T,Pred,A>& y)
   {  x.swap(y);  }

/// @cond

}  //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class C, class A>
struct has_trivial_destructor_after_move<boost::container::flat_set<T, C, A> >
{
   static const bool value = has_trivial_destructor<A>::value &&has_trivial_destructor<C>::value;
};
*/
namespace container {

// Forward declaration of operators < and ==, needed for friend declaration.

#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
class flat_multiset;

template <class T, class Pred, class A>
inline bool operator==(const flat_multiset<T,Pred,A>& x,
                       const flat_multiset<T,Pred,A>& y);

template <class T, class Pred, class A>
inline bool operator<(const flat_multiset<T,Pred,A>& x,
                      const flat_multiset<T,Pred,A>& y);
/// @endcond

//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
//! flat_multiset is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key.
//! flat_Multiset can store multiple copies of the same key value.
//!
//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_multiset invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_multiset invalidates iterators and references
//! pointing to elements that come after (their keys are equal or bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
class flat_multiset
{
   /// @cond
   private:
   BOOST_COPYABLE_AND_MOVABLE(flat_multiset)
   typedef container_detail::flat_tree<T, T, container_detail::identity<T>, Pred, A> tree_t;
   tree_t m_flat_tree;  // flat tree representing flat_multiset
   typedef typename container_detail::
      move_const_ref_type<T>::type insert_const_ref_type;
   /// @endcond

   public:
   // typedefs:
   typedef typename tree_t::key_type               key_type;
   typedef typename tree_t::value_type             value_type;
   typedef typename tree_t::pointer                pointer;
   typedef typename tree_t::const_pointer          const_pointer;
   typedef typename tree_t::reference              reference;
   typedef typename tree_t::const_reference        const_reference;
   typedef typename tree_t::key_compare            key_compare;
   typedef typename tree_t::value_compare          value_compare;
   typedef typename tree_t::iterator               iterator;
   typedef typename tree_t::const_iterator         const_iterator;
   typedef typename tree_t::reverse_iterator       reverse_iterator;
   typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
   typedef typename tree_t::size_type              size_type;
   typedef typename tree_t::difference_type        difference_type;
   typedef typename tree_t::allocator_type         allocator_type;
   typedef typename tree_t::stored_allocator_type  stored_allocator_type;

   //! <b>Effects</b>: Default constructs an empty flat_multiset.
   //!
   //! <b>Complexity</b>: Constant.
   explicit flat_multiset()
      : m_flat_tree()
   {}

   explicit flat_multiset(const Pred& comp,
                          const allocator_type& a = allocator_type())
      : m_flat_tree(comp, a) {}

   template <class InputIterator>
   flat_multiset(InputIterator first, InputIterator last,
                 const Pred& comp        = Pred(),
                 const allocator_type& a = allocator_type())
      : m_flat_tree(comp, a)
      { m_flat_tree.insert_equal(first, last); }

   //! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and
   //! allocator, and inserts elements from the ordered range [first ,last ). This function
   //! is more efficient than the normal range creation for ordered ranges.
   //!
   //! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
   //!
   //! <b>Complexity</b>: Linear in N.
   //!
   //! <b>Note</b>: Non-standard extension.
   template <class InputIterator>
   flat_multiset(ordered_range_t, InputIterator first, InputIterator last,
                 const Pred& comp        = Pred(),
                 const allocator_type& a = allocator_type())
      : m_flat_tree(ordered_range, first, last, comp, a)
   {}

   //! <b>Effects</b>: Copy constructs a flat_multiset.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_multiset(const flat_multiset& x)
      : m_flat_tree(x.m_flat_tree)
   {}

   //! <b>Effects</b>: Move constructs a flat_multiset. Constructs *this using x's resources.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Postcondition</b>: x is emptied.
   flat_multiset(BOOST_RV_REF(flat_multiset) mx)
      : m_flat_tree(boost::move(mx.m_flat_tree))
   {}

   //! <b>Effects</b>: Copy constructs a flat_multiset using the specified allocator.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_multiset(const flat_multiset& x, const allocator_type &a)
      : m_flat_tree(x.m_flat_tree, a)
   {}

   //! <b>Effects</b>: Move constructs a flat_multiset using the specified allocator.
   //!                 Constructs *this using x's resources.
   //!
   //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise
   flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type &a)
      : m_flat_tree(boost::move(mx.m_flat_tree), a)
   {}

   //! <b>Effects</b>: Makes *this a copy of x.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x)
      {  m_flat_tree = x.m_flat_tree;   return *this;  }

   //! <b>Effects</b>: Makes *this a copy of x.
   //!
   //! <b>Complexity</b>: Linear in x.size().
   flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx)
   {  m_flat_tree = boost::move(mx.m_flat_tree);   return *this;  }

   //! <b>Effects</b>: Returns the comparison object out
   //!   of which a was constructed.
   //!
   //! <b>Complexity</b>: Constant.
   key_compare key_comp() const
      { return m_flat_tree.key_comp(); }

   //! <b>Effects</b>: Returns an object of value_compare constructed out
   //!   of the comparison object.
   //!
   //! <b>Complexity</b>: Constant.
   value_compare value_comp() const
      { return m_flat_tree.key_comp(); }

   //! <b>Effects</b>: Returns a copy of the Allocator that
   //!   was passed to the object's constructor.
   //!
   //! <b>Complexity</b>: Constant.
   allocator_type get_allocator() const
   { return m_flat_tree.get_allocator(); }

   const stored_allocator_type &get_stored_allocator() const
   { return m_flat_tree.get_stored_allocator(); }

   stored_allocator_type &get_stored_allocator()
   { return m_flat_tree.get_stored_allocator(); }

   //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator begin()
      { return m_flat_tree.begin(); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator begin() const
      { return m_flat_tree.begin(); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cbegin() const
      { return m_flat_tree.cbegin(); }

   //! <b>Effects</b>: Returns an iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator end()
      { return m_flat_tree.end(); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator end() const
      { return m_flat_tree.end(); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cend() const
      { return m_flat_tree.cend(); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator rbegin()
      { return m_flat_tree.rbegin(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rbegin() const
      { return m_flat_tree.rbegin(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crbegin() const
      { return m_flat_tree.crbegin(); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator rend()
      { return m_flat_tree.rend(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rend() const
      { return m_flat_tree.rend(); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crend() const
      { return m_flat_tree.crend(); }

   //! <b>Effects</b>: Returns true if the container contains no elements.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   bool empty() const
      { return m_flat_tree.empty(); }

   //! <b>Effects</b>: Returns the number of the elements contained in the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type size() const
      { return m_flat_tree.size(); }

   //! <b>Effects</b>: Returns the largest possible size of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type max_size() const
      { return m_flat_tree.max_size(); }

   //! <b>Effects</b>: Swaps the contents of *this and x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   void swap(flat_multiset& x)
   { m_flat_tree.swap(x.m_flat_tree); }

   //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
   //!   newly inserted element.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus linear insertion
   //!   to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   iterator insert(insert_const_ref_type x)
   {  return priv_insert(x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   iterator insert(T &x)
   { return this->insert(const_cast<const T &>(x)); }

   template<class U>
   iterator insert(const U &u, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return priv_insert(u); }
   #endif

   //! <b>Effects</b>: Inserts a new value_type move constructed from x
   //!   and returns the iterator pointing to the newly inserted element.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus linear insertion
   //!   to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   iterator insert(BOOST_RV_REF(value_type) x)
   {  return m_flat_tree.insert_equal(boost::move(x));   }

   //! <b>Effects</b>: Inserts a copy of x in the container.
   //!   p is a hint pointing to where the insert should start to search.
   //!
   //! <b>Returns</b>: An iterator pointing to the element with key equivalent
   //!   to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
   //!   right before p) plus insertion linear to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   iterator insert(const_iterator p, insert_const_ref_type x)
   {  return priv_insert(p, x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   iterator insert(const_iterator position, T &x)
   { return this->insert(position, const_cast<const T &>(x)); }

   template<class U>
   iterator insert( const_iterator position, const U &u
                  , typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return priv_insert(position, u); }
   #endif

   //! <b>Effects</b>: Inserts a new value move constructed  from x in the container.
   //!   p is a hint pointing to where the insert should start to search.
   //!
   //! <b>Returns</b>: An iterator pointing to the element with key equivalent
   //!   to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
   //!   right before p) plus insertion linear to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
   {  return m_flat_tree.insert_equal(position, boost::move(x));  }

   //! <b>Requires</b>: first, last are not iterators into *this.
   //!
   //! <b>Effects</b>: inserts each element from the range [first,last) .
   //!
   //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
   //!   search time plus N*size() insertion time.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   template <class InputIterator>
   void insert(InputIterator first, InputIterator last)
      {  m_flat_tree.insert_equal(first, last);  }

   //! <b>Requires</b>: first, last are not iterators into *this and
   //! must be ordered according to the predicate.
   //!
   //! <b>Effects</b>: inserts each element from the range [first,last) .This function
   //! is more efficient than the normal range creation for ordered ranges.
   //!
   //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
   //!   search time plus N*size() insertion time.
   //!
   //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements.
   template <class InputIterator>
   void insert(ordered_range_t, InputIterator first, InputIterator last)
      {  m_flat_tree.insert_equal(ordered_range, first, last);  }

   #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... and returns the iterator pointing to the
   //!   newly inserted element.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus linear insertion
   //!   to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   template <class... Args>
   iterator emplace(Args&&... args)
   {  return m_flat_tree.emplace_equal(boost::forward<Args>(args)...); }

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... in the container.
   //!   p is a hint pointing to where the insert should start to search.
   //!
   //! <b>Returns</b>: An iterator pointing to the element with key equivalent
   //!   to the key of x.
   //!
   //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
   //!   right before p) plus insertion linear to the elements with bigger keys than x.
   //!
   //! <b>Note</b>: If an element is inserted it might invalidate elements.
   template <class... Args>
   iterator emplace_hint(const_iterator hint, Args&&... args)
   {  return m_flat_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); }

   #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   #define BOOST_PP_LOCAL_MACRO(n)                                                                 \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)          \
   iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                            \
   {  return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); }   \
                                                                                                   \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)          \
   iterator emplace_hint(const_iterator hint                                                       \
                         BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))              \
   {  return m_flat_tree.emplace_hint_equal                                                        \
            (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); }               \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   //! <b>Effects</b>: Erases the element pointed to by position.
   //!
   //! <b>Returns</b>: Returns an iterator pointing to the element immediately
   //!   following q prior to the element being erased. If no such element exists,
   //!   returns end().
   //!
   //! <b>Complexity</b>: Linear to the elements with keys bigger than position
   //!
   //! <b>Note</b>: Invalidates elements with keys
   //!   not less than the erased element.
   iterator erase(const_iterator position)
      {  return m_flat_tree.erase(position); }

   //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
   //!
   //! <b>Returns</b>: Returns the number of erased elements.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus erasure time
   //!   linear to the elements with bigger keys.
   size_type erase(const key_type& x)
      {  return m_flat_tree.erase(x); }

   //! <b>Effects</b>: Erases all the elements in the range [first, last).
   //!
   //! <b>Returns</b>: Returns last.
   //!
   //! <b>Complexity</b>: size()*N where N is the distance from first to last.
   //!
   //! <b>Complexity</b>: Logarithmic search time plus erasure time
   //!   linear to the elements with bigger keys.
   iterator erase(const_iterator first, const_iterator last)
      {  return m_flat_tree.erase(first, last);  }

   //! <b>Effects</b>: erase(a.begin(),a.end()).
   //!
   //! <b>Postcondition</b>: size() == 0.
   //!
   //! <b>Complexity</b>: linear in size().
   void clear()
      { m_flat_tree.clear(); }

   //! <b>Effects</b>: Tries to deallocate the excess of memory created
   //    with previous allocations. The size of the vector is unchanged
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to size().
   void shrink_to_fit()
      { m_flat_tree.shrink_to_fit(); }

   //! <b>Returns</b>: An iterator pointing to an element with the key
   //!   equivalent to x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic.
   iterator find(const key_type& x)
      { return m_flat_tree.find(x); }

   //! <b>Returns</b>: A const_iterator pointing to an element with the key
   //!   equivalent to x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic.s
   const_iterator find(const key_type& x) const
      { return m_flat_tree.find(x); }

   //! <b>Returns</b>: The number of elements with key equivalent to x.
   //!
   //! <b>Complexity</b>: log(size())+count(k)
   size_type count(const key_type& x) const
      { return m_flat_tree.count(x); }

   //! <b>Returns</b>: An iterator pointing to the first element with key not less
   //!   than k, or a.end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   iterator lower_bound(const key_type& x)
      {  return m_flat_tree.lower_bound(x); }

   //! <b>Returns</b>: A const iterator pointing to the first element with key not
   //!   less than k, or a.end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   const_iterator lower_bound(const key_type& x) const
      {  return m_flat_tree.lower_bound(x); }

   //! <b>Returns</b>: An iterator pointing to the first element with key not less
   //!   than x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   iterator upper_bound(const key_type& x)
      {  return m_flat_tree.upper_bound(x);    }

   //! <b>Returns</b>: A const iterator pointing to the first element with key not
   //!   less than x, or end() if such an element is not found.
   //!
   //! <b>Complexity</b>: Logarithmic
   const_iterator upper_bound(const key_type& x) const
      {  return m_flat_tree.upper_bound(x);    }

   //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
   //!
   //! <b>Complexity</b>: Logarithmic
   std::pair<const_iterator, const_iterator>
      equal_range(const key_type& x) const
      {  return m_flat_tree.equal_range(x); }

   //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
   //!
   //! <b>Complexity</b>: Logarithmic
   std::pair<iterator,iterator>
      equal_range(const key_type& x)
      {  return m_flat_tree.equal_range(x); }

   //! <b>Effects</b>: Number of elements for which memory has been allocated.
   //!   capacity() is always greater than or equal to size().
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type capacity() const          
      { return m_flat_tree.capacity(); }

   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
   //!   effect. Otherwise, it is a request for allocation of additional memory.
   //!   If the request is successful, then capacity() is greater than or equal to
   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
   //!
   //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
   //!
   //! <b>Note</b>: If capacity() is less than "count", iterators and references to
   //!   to values might be invalidated.
   void reserve(size_type count)      
      { m_flat_tree.reserve(count);   }

   /// @cond
   template <class K1, class C1, class A1>
   friend bool operator== (const flat_multiset<K1,C1,A1>&,
                           const flat_multiset<K1,C1,A1>&);
   template <class K1, class C1, class A1>
   friend bool operator< (const flat_multiset<K1,C1,A1>&,
                          const flat_multiset<K1,C1,A1>&);
   private:
   iterator priv_insert(const T &x)
   {  return m_flat_tree.insert_equal(x);  }

   iterator priv_insert(const_iterator p, const T &x)
   {  return m_flat_tree.insert_equal(p, x); }
   /// @endcond
};

template <class T, class Pred, class A>
inline bool operator==(const flat_multiset<T,Pred,A>& x,
                       const flat_multiset<T,Pred,A>& y)
   {  return x.m_flat_tree == y.m_flat_tree;  }

template <class T, class Pred, class A>
inline bool operator<(const flat_multiset<T,Pred,A>& x,
                      const flat_multiset<T,Pred,A>& y)
   {  return x.m_flat_tree < y.m_flat_tree;   }

template <class T, class Pred, class A>
inline bool operator!=(const flat_multiset<T,Pred,A>& x,
                       const flat_multiset<T,Pred,A>& y)
   {  return !(x == y);  }

template <class T, class Pred, class A>
inline bool operator>(const flat_multiset<T,Pred,A>& x,
                      const flat_multiset<T,Pred,A>& y)
   {  return y < x;  }

template <class T, class Pred, class A>
inline bool operator<=(const flat_multiset<T,Pred,A>& x,
                       const flat_multiset<T,Pred,A>& y)
   {  return !(y < x);  }

template <class T, class Pred, class A>
inline bool operator>=(const flat_multiset<T,Pred,A>& x,
                       const flat_multiset<T,Pred,A>& y)
{  return !(x < y);  }

template <class T, class Pred, class A>
inline void swap(flat_multiset<T,Pred,A>& x, flat_multiset<T,Pred,A>& y)
   {  x.swap(y);  }

/// @cond

}  //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class C, class A>
struct has_trivial_destructor_after_move<boost::container::flat_multiset<T, C, A> >
{
   static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
*/
namespace container {

/// @endcond

}}

#include <boost/container/detail/config_end.hpp>

#endif /* BOOST_CONTAINER_FLAT_SET_HPP */