Source

GL Profile Suite / boost_1_51_0 / boost / container / slist.hpp

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2004-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_CONTAINER_SLIST_HPP
#define BOOST_CONTAINER_SLIST_HPP

#if (defined _MSC_VER) && (_MSC_VER >= 1200)
#  pragma once
#endif

#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>

#include <boost/container/container_fwd.hpp>
#include <boost/move/move.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/container/detail/node_alloc_holder.hpp>
#include <boost/intrusive/slist.hpp>


#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//Preprocessor library to emulate perfect forwarding
#else
#include <boost/container/detail/preprocessor.hpp>
#endif

#include <stdexcept>
#include <iterator>
#include <utility>
#include <memory>
#include <functional>
#include <algorithm>

#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
#else
namespace boost {
namespace container {
#endif

/// @cond

namespace container_detail {

template<class VoidPointer>
struct slist_hook
{
   typedef typename container_detail::bi::make_slist_base_hook
      <container_detail::bi::void_pointer<VoidPointer>, container_detail::bi::link_mode<container_detail::bi::normal_link> >::type type;
};

template <class T, class VoidPointer>
struct slist_node
   :  public slist_hook<VoidPointer>::type
{
   private:
   slist_node();

   public:
   typedef typename slist_hook<VoidPointer>::type hook_type;
   T m_data;
};

template<class A>
struct intrusive_slist_type
{
   typedef boost::container::allocator_traits<A>      allocator_traits_type;
   typedef typename allocator_traits_type::value_type value_type;
   typedef typename boost::intrusive::pointer_traits
      <typename allocator_traits_type::pointer>::template
         rebind_pointer<void>::type
            void_pointer;
   typedef typename container_detail::slist_node
         <value_type, void_pointer>             node_type;

   typedef typename container_detail::bi::make_slist
      <node_type
      ,container_detail::bi::base_hook<typename slist_hook<void_pointer>::type>
      ,container_detail::bi::constant_time_size<true>
      , container_detail::bi::size_type
         <typename allocator_traits_type::size_type>
      >::type                                   container_type;
   typedef container_type                       type ;
};

}  //namespace container_detail {

/// @endcond

//! An slist is a singly linked list: a list where each element is linked to the next
//! element, but not to the previous element. That is, it is a Sequence that
//! supports forward but not backward traversal, and (amortized) constant time
//! insertion and removal of elements. Slists, like lists, have the important
//! property that insertion and splicing do not invalidate iterators to list elements,
//! and that even removal invalidates only the iterators that point to the elements
//! that are removed. The ordering of iterators may be changed (that is,
//! slist<T>::iterator might have a different predecessor or successor after a list
//! operation than it did before), but the iterators themselves will not be invalidated
//! or made to point to different elements unless that invalidation or mutation is explicit.
//!
//! The main difference between slist and list is that list's iterators are bidirectional
//! iterators, while slist's iterators are forward iterators. This means that slist is
//! less versatile than list; frequently, however, bidirectional iterators are
//! unnecessary. You should usually use slist unless you actually need the extra
//! functionality of list, because singly linked lists are smaller and faster than double
//! linked lists.
//!
//! Important performance note: like every other Sequence, slist defines the member
//! functions insert and erase. Using these member functions carelessly, however, can
//! result in disastrously slow programs. The problem is that insert's first argument is
//! an iterator p, and that it inserts the new element(s) before p. This means that
//! insert must find the iterator just before p; this is a constant-time operation
//! for list, since list has bidirectional iterators, but for slist it must find that
//! iterator by traversing the list from the beginning up to p. In other words:
//! insert and erase are slow operations anywhere but near the beginning of the slist.
//!
//! Slist provides the member functions insert_after and erase_after, which are constant
//! time operations: you should always use insert_after and erase_after whenever
//! possible. If you find that insert_after and erase_after aren't adequate for your
//! needs, and that you often need to use insert and erase in the middle of the list,
//! then you should probably use list instead of slist.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class A = std::allocator<T> >
#else
template <class T, class A>
#endif
class slist
   : protected container_detail::node_alloc_holder
      <A, typename container_detail::intrusive_slist_type<A>::type>
{
   /// @cond
   typedef typename container_detail::
      move_const_ref_type<T>::type                    insert_const_ref_type;
   typedef typename
      container_detail::intrusive_slist_type<A>::type           Icont;
   typedef container_detail::node_alloc_holder<A, Icont>        AllocHolder;
   typedef typename AllocHolder::NodePtr              NodePtr;
   typedef slist <T, A>                               ThisType;
   typedef typename AllocHolder::NodeAlloc            NodeAlloc;
   typedef typename AllocHolder::ValAlloc             ValAlloc;
   typedef typename AllocHolder::Node                 Node;
   typedef container_detail::allocator_destroyer<NodeAlloc>     Destroyer;
   typedef typename AllocHolder::allocator_v1         allocator_v1;
   typedef typename AllocHolder::allocator_v2         allocator_v2;
   typedef typename AllocHolder::alloc_version        alloc_version;
   typedef boost::container::allocator_traits<A>      allocator_traits_type;

   class equal_to_value
   {
      typedef typename AllocHolder::value_type value_type;
      const value_type &t_;

      public:
      equal_to_value(const value_type &t)
         :  t_(t)
      {}

      bool operator()(const value_type &t)const
      {  return t_ == t;   }
   };

   template<class Pred>
   struct ValueCompareToNodeCompare
      :  Pred
   {
      ValueCompareToNodeCompare(Pred pred)
         :  Pred(pred)
      {}

      bool operator()(const Node &a, const Node &b) const
      {  return static_cast<const Pred&>(*this)(a.m_data, b.m_data);  }

      bool operator()(const Node &a) const
      {  return static_cast<const Pred&>(*this)(a.m_data);  }
   };
   /// @endcond
   public:
   //! The type of object, T, stored in the list
   typedef T                                                value_type;
   //! Pointer to T
   typedef typename allocator_traits_type::pointer          pointer;
   //! Const pointer to T
   typedef typename allocator_traits_type::const_pointer    const_pointer;
   //! Reference to T
   typedef typename allocator_traits_type::reference        reference;
   //! Const reference to T
   typedef typename allocator_traits_type::const_reference  const_reference;
   //! An unsigned integral type
   typedef typename allocator_traits_type::size_type        size_type;
   //! A signed integral type
   typedef typename allocator_traits_type::difference_type  difference_type;
   //! The allocator type
   typedef A                                                allocator_type;
   //! Non-standard extension: the stored allocator type
   typedef NodeAlloc                                        stored_allocator_type;

   /// @cond
   private:
   BOOST_COPYABLE_AND_MOVABLE(slist)
   typedef difference_type                         list_difference_type;
   typedef pointer                                 list_pointer;
   typedef const_pointer                           list_const_pointer;
   typedef reference                               list_reference;
   typedef const_reference                         list_const_reference;
   /// @endcond

   public:

   //! Const iterator used to iterate through a list.
   class const_iterator
      /// @cond
      : public std::iterator<std::forward_iterator_tag,
                                 value_type,         list_difference_type,
                                 list_const_pointer, list_const_reference>
   {

      protected:
      typename Icont::iterator m_it;
      explicit const_iterator(typename Icont::iterator it)  : m_it(it){}
      void prot_incr(){ ++m_it; }

      private:
      typename Icont::iterator get()
      {  return this->m_it;   }

      public:
      friend class slist<T, A>;
      typedef list_difference_type        difference_type;

      //Constructors
      const_iterator()
         :  m_it()
      {}

      //Pointer like operators
      const_reference operator*() const
      { return m_it->m_data;  }

      const_pointer   operator->() const
      { return  const_pointer(&m_it->m_data); }

      //Increment / Decrement
      const_iterator& operator++()      
      { prot_incr();  return *this; }

      const_iterator operator++(int)     
      { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp);  }

      //Comparison operators
      bool operator==   (const const_iterator& r)  const
      {  return m_it == r.m_it;  }

      bool operator!=   (const const_iterator& r)  const
      {  return m_it != r.m_it;  }
   }
      /// @endcond
   ;

   //! Iterator used to iterate through a list
   class iterator
      /// @cond
   : public const_iterator
   {

      private:
      explicit iterator(typename Icont::iterator it)
         :  const_iterator(it)
      {}
  
      typename Icont::iterator get()
      {  return this->m_it;   }

      public:
      friend class slist<T, A>;
      typedef list_pointer       pointer;
      typedef list_reference     reference;

      //Constructors
      iterator(){}

      //Pointer like operators
      reference operator*()  const {  return  this->m_it->m_data;  }
      pointer   operator->() const {  return  pointer(&this->m_it->m_data);  }

      //Increment / Decrement
      iterator& operator++() 
         { this->prot_incr(); return *this;  }

      iterator operator++(int)
         { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); }
   }
      /// @endcond
   ;

   public:
   //! <b>Effects</b>: Constructs a list taking the allocator as parameter.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   slist()
      :  AllocHolder()
   {}

   //! <b>Effects</b>: Constructs a list taking the allocator as parameter.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   explicit slist(const allocator_type& a)
      :  AllocHolder(a)
   {}

   explicit slist(size_type n)
      :  AllocHolder(allocator_type())
   { this->resize(n); }

   //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
   //!   and inserts n copies of value.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
   //!   throws or T's default or copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   explicit slist(size_type n, const value_type& x, const allocator_type& a = allocator_type())
      :  AllocHolder(a)
   { this->priv_create_and_insert_nodes(this->before_begin(), n, x); }

   //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
   //!   and inserts a copy of the range [first, last) in the list.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
   //!   throws or T's constructor taking an dereferenced InIt throws.
   //!
   //! <b>Complexity</b>: Linear to the range [first, last).
   template <class InpIt>
   slist(InpIt first, InpIt last,
         const allocator_type& a =  allocator_type())
      : AllocHolder(a)
   { this->insert_after(this->before_begin(), first, last); }

   //! <b>Effects</b>: Copy constructs a list.
   //!
   //! <b>Postcondition</b>: x == *this.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the elements x contains.
   slist(const slist& x)
      : AllocHolder(x)
   { this->insert_after(this->before_begin(), x.begin(), x.end()); }

   //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   slist(BOOST_RV_REF(slist) x)
      : AllocHolder(boost::move(static_cast<AllocHolder&>(x)))
   {}

   //! <b>Effects</b>: Copy constructs a list using the specified allocator.
   //!
   //! <b>Postcondition</b>: x == *this.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the elements x contains.
   slist(const slist& x, const allocator_type &a)
      : AllocHolder(a)
   { this->insert_after(this->before_begin(), x.begin(), x.end()); }

   //! <b>Effects</b>: Move constructor using the specified allocator.
   //!                 Moves x's resources to *this.
   //!
   //! <b>Throws</b>: If allocation or value_type's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
   slist(BOOST_RV_REF(slist) x, const allocator_type &a)
      : AllocHolder(a)
   {
      if(this->node_alloc() == x.node_alloc()){
         this->icont().swap(x.icont());
      }
      else{
         this->insert(this->cbegin(), x.begin(), x.end());
      }
   }

   //! <b>Effects</b>: Makes *this contain the same elements as x.
   //!
   //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
   //! of each of x's elements.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in x.
   slist& operator= (BOOST_COPY_ASSIGN_REF(slist) x)
   {
      if (&x != this){
         NodeAlloc &this_alloc     = this->node_alloc();
         const NodeAlloc &x_alloc  = x.node_alloc();
         container_detail::bool_<allocator_traits_type::
            propagate_on_container_copy_assignment::value> flag;
         if(flag && this_alloc != x_alloc){
            this->clear();
         }
         this->AllocHolder::copy_assign_alloc(x);
         this->assign(x.begin(), x.end());
      }
      return *this;
   }

   //! <b>Effects</b>: Makes *this contain the same elements as x.
   //!
   //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
   //! of each of x's elements.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in x.
   slist& operator= (BOOST_RV_REF(slist) x)
   {
      if (&x != this){
         NodeAlloc &this_alloc = this->node_alloc();
         NodeAlloc &x_alloc    = x.node_alloc();
         //If allocators a re equal we can just swap pointers
         if(this_alloc == x_alloc){
            //Destroy and swap pointers
            this->clear();
            this->icont() = boost::move(x.icont());
            //Move allocator if needed
            this->AllocHolder::move_assign_alloc(x);
         }
         //If unequal allocators, then do a one by one move
         else{
            typedef typename std::iterator_traits<iterator>::iterator_category ItCat;
            this->assign( boost::make_move_iterator(x.begin())
                        , boost::make_move_iterator(x.end()));
         }
      }
      return *this;
   }

   //! <b>Effects</b>: Destroys the list. All stored values are destroyed
   //!   and used memory is deallocated.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements.
   ~slist()
   {} //AllocHolder clears the slist

   //! <b>Effects</b>: Returns a copy of the internal allocator.
   //!
   //! <b>Throws</b>: If allocator's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   allocator_type get_allocator() const
   {  return allocator_type(this->node_alloc()); }

   const stored_allocator_type &get_stored_allocator() const
   {  return this->node_alloc(); }

   stored_allocator_type &get_stored_allocator()
   {  return this->node_alloc(); }

   public:

   //! <b>Effects</b>: Assigns the n copies of val to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   void assign(size_type n, const T& val)
   { this->priv_fill_assign(n, val); }

   //! <b>Effects</b>: Assigns the range [first, last) to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's constructor from dereferencing InpIt throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   template <class InpIt>
   void assign(InpIt first, InpIt last)
   {
      const bool aux_boolean = container_detail::is_convertible<InpIt, size_type>::value;
      typedef container_detail::bool_<aux_boolean> Result;
      this->priv_assign_dispatch(first, last, Result());
   }

   //! <b>Effects</b>: Returns an iterator to the first element contained in the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator begin()
   { return iterator(this->icont().begin()); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator begin() const
   {  return this->cbegin();   }

   //! <b>Effects</b>: Returns an iterator to the end of the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator end()
   { return iterator(this->icont().end()); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator end() const
   {  return this->cend();   }

   //! <b>Effects</b>: Returns a non-dereferenceable iterator that,
   //! when incremented, yields begin().  This iterator may be used
   //! as the argument toinsert_after, erase_after, etc.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator before_begin()
   {  return iterator(end());  }

   //! <b>Effects</b>: Returns a non-dereferenceable const_iterator
   //! that, when incremented, yields begin().  This iterator may be used
   //! as the argument toinsert_after, erase_after, etc.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator before_begin() const
   {  return this->cbefore_begin();  }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cbegin() const
   {  return const_iterator(this->non_const_icont().begin());   }

   //! <b>Effects</b>: Returns a const_iterator to the end of the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cend() const
   {  return const_iterator(this->non_const_icont().end());   }

   //! <b>Effects</b>: Returns a non-dereferenceable const_iterator
   //! that, when incremented, yields begin().  This iterator may be used
   //! as the argument toinsert_after, erase_after, etc.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cbefore_begin() const
   {  return const_iterator(end());  }

   //! <b>Effects</b>: Returns the number of the elements contained in the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type size() const
   {  return this->icont().size(); }

   //! <b>Effects</b>: Returns the largest possible size of the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type max_size() const
   {  return AllocHolder::max_size();  }

   //! <b>Effects</b>: Returns true if the list contains no elements.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   bool empty() const
   {  return !this->size();   }

   //! <b>Effects</b>: Swaps the contents of *this and x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements on *this and x.
   void swap(slist& x)
   {  AllocHolder::swap(x);   }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a reference to the first element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference front()
   {  return *this->begin();  }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a const reference to the first element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference front() const
   {  return *this->begin();  }

   //! <b>Effects</b>: Inserts a copy of t in the beginning of the list.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void push_front(insert_const_ref_type x)
   {  return priv_push_front(x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   void push_front(T &x) { push_front(const_cast<const T &>(x)); }

   template<class U>
   void push_front(const U &u
      , typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return priv_push_front(u); }
   #endif

   //! <b>Effects</b>: Constructs a new element in the beginning of the list
   //!   and moves the resources of t to this new element.
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void push_front(BOOST_RV_REF(T) x)
   {  this->icont().push_front(*this->create_node(boost::move(x)));  }

   //! <b>Effects</b>: Removes the first element from the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void pop_front()
   {  this->icont().pop_front_and_dispose(Destroyer(this->node_alloc()));      }

   //! <b>Returns</b>: The iterator to the element before i in the sequence.
   //!   Returns the end-iterator, if either i is the begin-iterator or the
   //!   sequence is empty.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements before i.
   iterator previous(iterator p)
   {  return iterator(this->icont().previous(p.get())); }

   //! <b>Returns</b>: The const_iterator to the element before i in the sequence.
   //!   Returns the end-const_iterator, if either i is the begin-const_iterator or
   //!   the sequence is empty.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements before i.
   const_iterator previous(const_iterator p)
   {  return const_iterator(this->icont().previous(p.get())); }

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts a copy of the value after the p pointed
   //!    by prev_p.
   //!
   //! <b>Returns</b>: An iterator to the inserted element.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   //!
   //! <b>Note</b>: Does not affect the validity of iterators and references of
   //!   previous values.
   iterator insert_after(const_iterator prev_pos, insert_const_ref_type x)
   {  return this->priv_insert_after(prev_pos, x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   iterator insert_after(const_iterator position, T &x)
   { return this->insert_after(position, const_cast<const T &>(x)); }

   template<class U>
   iterator insert_after( const_iterator position, const U &u
                        , typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return this->priv_insert_after(position, u); }
   #endif

   //! <b>Requires</b>: prev_pos must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts a move constructed copy object from the value after the
   //!    p pointed by prev_pos.
   //!
   //! <b>Returns</b>: An iterator to the inserted element.
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   //!
   //! <b>Note</b>: Does not affect the validity of iterators and references of
   //!   previous values.
   iterator insert_after(const_iterator prev_pos, BOOST_RV_REF(value_type) x)
   {  return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(boost::move(x)))); }

   //! <b>Requires</b>: prev_pos must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts n copies of x after prev_pos.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   //!
   //! <b>Note</b>: Does not affect the validity of iterators and references of
   //!   previous values.
   void insert_after(const_iterator prev_pos, size_type n, const value_type& x)
   {  this->priv_create_and_insert_nodes(prev_pos, n, x); }

   //! <b>Requires</b>: prev_pos must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts the range pointed by [first, last)
   //!   after the p prev_pos.
   //!
   //! <b>Throws</b>: If memory allocation throws, T's constructor from a
   //!   dereferenced InpIt throws.
   //!
   //! <b>Complexity</b>: Linear to the number of elements inserted.
   //!
   //! <b>Note</b>: Does not affect the validity of iterators and references of
   //!   previous values.
   template <class InIter>
   void insert_after(const_iterator prev_pos, InIter first, InIter last)
   {
      const bool aux_boolean = container_detail::is_convertible<InIter, size_type>::value;
      typedef container_detail::bool_<aux_boolean> Result;
      this->priv_insert_after_range_dispatch(prev_pos, first, last, Result());
   }

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of x before p.
   //!
   //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the elements before p.
   iterator insert(const_iterator position, insert_const_ref_type x)
   {  return this->priv_insert(position, x); }

   #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   iterator insert(const_iterator position, T &x)
   { return this->insert(position, const_cast<const T &>(x)); }

   template<class U>
   iterator insert( const_iterator position, const U &u
                  , typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
   {  return this->priv_insert(position, u); }
   #endif

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a new element before p with mx's resources.
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: Linear to the elements before p.
   iterator insert(const_iterator p, BOOST_RV_REF(value_type) x)
   {  return this->insert_after(previous(p), boost::move(x)); }

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts n copies of x before p.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n plus linear to the elements before p.
   void insert(const_iterator p, size_type n, const value_type& x)
   {  return this->insert_after(previous(p), n, x); }
     
   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of the [first, last) range before p.
   //!
   //! <b>Throws</b>: If memory allocation throws, T's constructor from a
   //!   dereferenced InpIt throws.
   //!
   //! <b>Complexity</b>: Linear to std::distance [first, last) plus
   //!    linear to the elements before p.
   template <class InIter>
   void insert(const_iterator p, InIter first, InIter last)
   {  return this->insert_after(previous(p), first, last); }

   #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... in the front of the list
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   template <class... Args>
   void emplace_front(Args&&... args)
   {  this->emplace_after(this->cbefore_begin(), boost::forward<Args>(args)...); }

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... before p
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's in-place constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the elements before p
   template <class... Args>
   iterator emplace(const_iterator p, Args&&... args)
   {  return this->emplace_after(this->previous(p), boost::forward<Args>(args)...);  }

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... after prev
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's in-place constructor throws.
   //!
   //! <b>Complexity</b>: Constant
   template <class... Args>
   iterator emplace_after(const_iterator prev, Args&&... args)
   {
      NodePtr pnode(AllocHolder::create_node(boost::forward<Args>(args)...));
      return iterator(this->icont().insert_after(prev.get(), *pnode));
   }

   #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   #define BOOST_PP_LOCAL_MACRO(n)                                                           \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)    \
   void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                    \
   {                                                                                         \
      this->emplace(this->cbegin()                                                           \
          BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));                   \
   }                                                                                         \
                                                                                             \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)    \
   iterator emplace (const_iterator p                                                        \
                 BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                \
   {                                                                                         \
      return this->emplace_after                                                             \
         (this->previous(p)                                                                  \
          BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));                   \
   }                                                                                         \
                                                                                             \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)    \
   iterator emplace_after(const_iterator prev                                                \
                 BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                \
   {                                                                                         \
      NodePtr pnode (AllocHolder::create_node                                                \
         (BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)));                           \
      return iterator(this->icont().insert_after(prev.get(), *pnode));                       \
   }                                                                                         \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   //! <b>Effects</b>: Erases the element after the element pointed by prev_pos
   //!    of the list.
   //!
   //! <b>Returns</b>: the first element remaining beyond the removed elements,
   //!   or end() if no such element exists.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Does not invalidate iterators or references to non erased elements.
   iterator erase_after(const_iterator prev_pos)
   {
      return iterator(this->icont().erase_after_and_dispose(prev_pos.get(), Destroyer(this->node_alloc())));
   }

   //! <b>Effects</b>: Erases the range (before_first, last) from
   //!   the list.
   //!
   //! <b>Returns</b>: the first element remaining beyond the removed elements,
   //!   or end() if no such element exists.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of erased elements.
   //!
   //! <b>Note</b>: Does not invalidate iterators or references to non erased elements.
   iterator erase_after(const_iterator before_first, const_iterator last)
   {
      return iterator(this->icont().erase_after_and_dispose(before_first.get(), last.get(), Destroyer(this->node_alloc())));
   }

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Erases the element at p p.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements before p.
   iterator erase(const_iterator p)
   {  return iterator(this->erase_after(previous(p))); }

   //! <b>Requires</b>: first and last must be valid iterator to elements in *this.
   //!
   //! <b>Effects</b>: Erases the elements pointed by [first, last).
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the distance between first and last plus
   //!   linear to the elements before first.
   iterator erase(const_iterator first, const_iterator last)
   {  return iterator(this->erase_after(previous(first), last)); }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are copy constructed from x.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type new_size, const T& x)
   {
      typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next;
      while (++(cur_next = cur) != end_n && new_size > 0){
         --new_size;
         cur = cur_next;
      }
      if (cur_next != end_n)
         this->erase_after(const_iterator(cur), const_iterator(end_n));
      else
         this->insert_after(const_iterator(cur), new_size, x);
   }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are default constructed.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type new_size)
   {
      typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next;
      size_type len = this->size();
      size_type left = new_size;
     
      while (++(cur_next = cur) != end_n && left > 0){
         --left;
         cur = cur_next;
      }
      if (cur_next != end_n){
         this->erase_after(const_iterator(cur), const_iterator(end_n));
      }
      else{
         this->priv_create_and_insert_nodes(const_iterator(cur), new_size - len);
      }
   }

   //! <b>Effects</b>: Erases all the elements of the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the list.
   void clear()
   {  this->icont().clear_and_dispose(Destroyer(this->node_alloc()));  }

   //! <b>Requires</b>: p must point to an element contained
   //!   by the list. x != *this
   //!
   //! <b>Effects</b>: Transfers all the elements of list x to this list, after the
   //!   the element pointed by p. No destructors or copy constructors are called.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Linear to the elements in x.
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of
   //!    this list. Iterators of this list and all the references are not invalidated.
   void splice_after(const_iterator prev_pos, slist& x)
   {
      if((NodeAlloc&)*this == (NodeAlloc&)x){
         this->icont().splice_after(prev_pos.get(), x.icont());
      }
      else{
         throw std::runtime_error("slist::splice called with unequal allocators");
      }
   }

   //! <b>Requires</b>: prev_pos must be a valid iterator of this.
   //!   i must point to an element contained in list x.
   //!
   //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
   //!   after the element pointed by prev_pos.
   //!   If prev_pos == prev or prev_pos == ++prev, this function is a null operation.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
   //!   list. Iterators of this list and all the references are not invalidated.
   void splice_after(const_iterator prev_pos, slist& x, const_iterator prev)
   {
      if((NodeAlloc&)*this == (NodeAlloc&)x){
         this->icont().splice_after(prev_pos.get(), x.icont(), prev.get());
      }
      else{
         throw std::runtime_error("slist::splice called with unequal allocators");
      }
   }

   //! <b>Requires</b>: prev_pos must be a valid iterator of this.
   //!   before_first and before_last must be valid iterators of x.
   //!   prev_pos must not be contained in [before_first, before_last) range.
   //!
   //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1)
   //!   from list x to this list, after the element pointed by prev_pos.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Linear to the number of transferred elements.
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
   //!   list. Iterators of this list and all the references are not invalidated.
   void splice_after(const_iterator prev_pos,      slist& x,
      const_iterator before_first,  const_iterator before_last)
   {
      if((NodeAlloc&)*this == (NodeAlloc&)x){
         this->icont().splice_after
            (prev_pos.get(), x.icont(), before_first.get(), before_last.get());
      }
      else{
         throw std::runtime_error("slist::splice called with unequal allocators");
      }
   }

   //! <b>Requires</b>: prev_pos must be a valid iterator of this.
   //!   before_first and before_last must be valid iterators of x.
   //!   prev_pos must not be contained in [before_first, before_last) range.
   //!   n == std::distance(before_first, before_last)
   //!
   //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1)
   //!   from list x to this list, after the element pointed by prev_pos.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
   //!   list. Iterators of this list and all the references are not invalidated.
   void splice_after(const_iterator prev_pos,      slist& x,
                     const_iterator before_first,  const_iterator before_last,
                     size_type n)
   {
      if((NodeAlloc&)*this == (NodeAlloc&)x){
         this->icont().splice_after
            (prev_pos.get(), x.icont(), before_first.get(), before_last.get(), n);
      }
      else{
         throw std::runtime_error("slist::splice called with unequal allocators");
      }
   }

   //! <b>Requires</b>: p must point to an element contained
   //!   by the list. x != *this
   //!
   //! <b>Effects</b>: Transfers all the elements of list x to this list, before the
   //!   the element pointed by p. No destructors or copy constructors are called.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Linear in distance(begin(), p), and linear in x.size().
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of
   //!    this list. Iterators of this list and all the references are not invalidated.
   void splice(const_iterator p, ThisType& x)
   {  this->splice_after(this->previous(p), x);  }

   //! <b>Requires</b>: p must point to an element contained
   //!   by this list. i must point to an element contained in list x.
   //!
   //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
   //!   before the the element pointed by p. No destructors or copy constructors are called.
   //!   If p == i or p == ++i, this function is a null operation.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Linear in distance(begin(), p), and in distance(x.begin(), i).
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
   //!   list. Iterators of this list and all the references are not invalidated.
   void splice(const_iterator p, slist& x, const_iterator i)
   {  this->splice_after(previous(p), x, i);  }

   //! <b>Requires</b>: p must point to an element contained
   //!   by this list. first and last must point to elements contained in list x.
   //!
   //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
   //!   before the the element pointed by p. No destructors or copy constructors are called.
   //!
   //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
   //!   are not equal.
   //!
   //! <b>Complexity</b>: Linear in distance(begin(), p), in distance(x.begin(), first),
   //!   and in distance(first, last).
   //!
   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
   //!   list. Iterators of this list and all the references are not invalidated.
   void splice(const_iterator p, slist& x, const_iterator first, const_iterator last)
   {  this->splice_after(previous(p), x, previous(first), previous(last));  }

   //! <b>Effects</b>: Reverses the order of elements in the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: This function is linear time.
   //!
   //! <b>Note</b>: Iterators and references are not invalidated
   void reverse()
   {  this->icont().reverse();  }

   //! <b>Effects</b>: Removes all the elements that compare equal to value.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
   //!
   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
   //!   and iterators to elements that are not removed remain valid.
   void remove(const T& value)
   {  remove_if(equal_to_value(value));  }

   //! <b>Effects</b>: Removes all the elements for which a specified
   //!   predicate is satisfied.
   //!
   //! <b>Throws</b>: If pred throws.
   //!
   //! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
   //!
   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
   //!   and iterators to elements that are not removed remain valid.
   template <class Pred>
   void remove_if(Pred pred)
   {
      typedef ValueCompareToNodeCompare<Pred> Predicate;
      this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc()));
   }

   //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
   //!   elements that are equal from the list.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
   //!
   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
   //!   and iterators to elements that are not removed remain valid.
   void unique()
   {  this->unique(value_equal());  }

   //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
   //!   elements that satisfy some binary predicate from the list.
   //!
   //! <b>Throws</b>: If pred throws.
   //!
   //! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
   //!
   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
   //!   and iterators to elements that are not removed remain valid.
   template <class Pred>
   void unique(Pred pred)
   {
      typedef ValueCompareToNodeCompare<Pred> Predicate;
      this->icont().unique_and_dispose(Predicate(pred), Destroyer(this->node_alloc()));
   }

   //! <b>Requires</b>: The lists x and *this must be distinct.
   //!
   //! <b>Effects</b>: This function removes all of x's elements and inserts them
   //!   in order into *this according to std::less<value_type>. The merge is stable;
   //!   that is, if an element from *this is equivalent to one from x, then the element
   //!   from *this will precede the one from x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: This function is linear time: it performs at most
   //!   size() + x.size() - 1 comparisons.
   void merge(slist & x)
   {  this->merge(x, value_less()); }

   //! <b>Requires</b>: p must be a comparison function that induces a strict weak
   //!   ordering and both *this and x must be sorted according to that ordering
   //!   The lists x and *this must be distinct.
   //!
   //! <b>Effects</b>: This function removes all of x's elements and inserts them
   //!   in order into *this. The merge is stable; that is, if an element from *this is
   //!   equivalent to one from x, then the element from *this will precede the one from x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: This function is linear time: it performs at most
   //!   size() + x.size() - 1 comparisons.
   //!
   //! <b>Note</b>: Iterators and references to *this are not invalidated.
   template <class StrictWeakOrdering>
   void merge(slist& x, StrictWeakOrdering comp)
   {
      if((NodeAlloc&)*this == (NodeAlloc&)x){
         this->icont().merge(x.icont(),
            ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
      }
      else{
         throw std::runtime_error("list::merge called with unequal allocators");
      }
   }

   //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
   //!   The sort is stable, that is, the relative order of equivalent elements is preserved.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Notes</b>: Iterators and references are not invalidated.
   //!
   //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
   //!   is the list's size.
   void sort()
   {  this->sort(value_less());  }

   //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
   //!   The sort is stable, that is, the relative order of equivalent elements is preserved.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Notes</b>: Iterators and references are not invalidated.
   //!
   //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
   //!   is the list's size.
   template <class StrictWeakOrdering>
   void sort(StrictWeakOrdering comp)
   {
      // nothing if the slist has length 0 or 1.
      if (this->size() < 2)
         return;
      this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
   }

   /// @cond
   private:
   iterator priv_insert(const_iterator p, const value_type& x)
   {  return this->insert_after(previous(p), x); }

   iterator priv_insert_after(const_iterator prev_pos, const value_type& x)
   {  return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(x))); }

   void priv_push_front(const value_type &x)
   {  this->icont().push_front(*this->create_node(x));  }

   //Iterator range version
   template<class InpIterator>
   void priv_create_and_insert_nodes
      (const_iterator prev, InpIterator beg, InpIterator end)
   {
      typedef typename std::iterator_traits<InpIterator>::iterator_category ItCat;
      priv_create_and_insert_nodes(prev, beg, end, alloc_version(), ItCat());
   }

   template<class InpIterator>
   void priv_create_and_insert_nodes
      (const_iterator prev, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag)
   {
      for (; beg != end; ++beg){
         this->icont().insert_after(prev.get(), *this->create_node_from_it(beg));
         ++prev;
      }
   }

   template<class InpIterator>
   void priv_create_and_insert_nodes
      (const_iterator prev, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag)
   {  //Just forward to the default one
      priv_create_and_insert_nodes(prev, beg, end, allocator_v1(), std::input_iterator_tag());
   }

   class insertion_functor;
   friend class insertion_functor;

   class insertion_functor
   {
      Icont &icont_;
      typename Icont::const_iterator prev_;

      public:
      insertion_functor(Icont &icont, typename Icont::const_iterator prev)
         :  icont_(icont), prev_(prev)
      {}

      void operator()(Node &n)
      {  prev_ = this->icont_.insert_after(prev_, n); }
   };

   template<class FwdIterator>
   void priv_create_and_insert_nodes
      (const_iterator prev, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag)
   {
      //Optimized allocation and construction
      this->allocate_many_and_construct
         (beg, std::distance(beg, end), insertion_functor(this->icont(), prev.get()));
   }

   //Default constructed version
   void priv_create_and_insert_nodes(const_iterator prev, size_type n)
   {
      typedef default_construct_iterator<value_type, difference_type> default_iterator;
      this->priv_create_and_insert_nodes(prev, default_iterator(n), default_iterator());
   }

   //Copy constructed version
   void priv_create_and_insert_nodes(const_iterator prev, size_type n, const T& x)
   {
      typedef constant_iterator<value_type, difference_type> cvalue_iterator;
      this->priv_create_and_insert_nodes(prev, cvalue_iterator(x, n), cvalue_iterator());
   }

   //Dispatch to detect iterator range or integer overloads
   template <class InputIter>
   void priv_insert_dispatch(const_iterator prev,
                             InputIter first, InputIter last,
                             container_detail::false_)
   {  this->priv_create_and_insert_nodes(prev, first, last);   }

   template<class Integer>
   void priv_insert_dispatch(const_iterator prev, Integer n, Integer x, container_detail::true_)
   {  this->priv_create_and_insert_nodes(prev, (size_type)n, x);  }

   void priv_fill_assign(size_type n, const T& val)
   {
      iterator end_n(this->end());
      iterator prev(this->before_begin());
      iterator node(this->begin());
      for ( ; node != end_n && n > 0 ; --n){
         *node = val;
         prev = node;
         ++node;
      }
      if (n > 0)
         this->priv_create_and_insert_nodes(prev, n, val);
      else
         this->erase_after(prev, end_n);
   }

   template <class Int>
   void priv_assign_dispatch(Int n, Int val, container_detail::true_)
   {  this->priv_fill_assign((size_type) n, (T)val); }

   template <class InpIt>
   void priv_assign_dispatch(InpIt first, InpIt last, container_detail::false_)
   {
      iterator end_n(this->end());
      iterator prev(this->before_begin());
      iterator node(this->begin());
      while (node != end_n && first != last){
         *node = *first;
         prev = node;
         ++node;
         ++first;
      }
      if (first != last)
         this->priv_create_and_insert_nodes(prev, first, last);
      else
         this->erase_after(prev, end_n);
   }

   template <class Int>
   void priv_insert_after_range_dispatch(const_iterator prev_pos, Int n, Int x, container_detail::true_)
   {  this->priv_create_and_insert_nodes(prev_pos, (size_type)n, x);  }

   template <class InIter>
   void priv_insert_after_range_dispatch(const_iterator prev_pos, InIter first, InIter last, container_detail::false_)
   {  this->priv_create_and_insert_nodes(prev_pos, first, last); }

   //Functors for member algorithm defaults
   struct value_less
   {
      bool operator()(const value_type &a, const value_type &b) const
         {  return a < b;  }
   };

   struct value_equal
   {
      bool operator()(const value_type &a, const value_type &b) const
         {  return a == b;  }
   };

   struct value_equal_to_this
   {
      explicit value_equal_to_this(const value_type &ref)
         : m_ref(ref){}

      bool operator()(const value_type &val) const
         {  return m_ref == val;  }

      const value_type &m_ref;
   };
   /// @endcond
};

template <class T, class A>
inline bool
operator==(const slist<T,A>& x, const slist<T,A>& y)
{
   if(x.size() != y.size()){
      return false;
   }
   typedef typename slist<T,A>::const_iterator const_iterator;
   const_iterator end1 = x.end();

   const_iterator i1 = x.begin();
   const_iterator i2 = y.begin();
   while (i1 != end1 && *i1 == *i2){
      ++i1;
      ++i2;
   }
   return i1 == end1;
}

template <class T, class A>
inline bool
operator<(const slist<T,A>& sL1, const slist<T,A>& sL2)
{
   return std::lexicographical_compare
      (sL1.begin(), sL1.end(), sL2.begin(), sL2.end());
}

template <class T, class A>
inline bool
operator!=(const slist<T,A>& sL1, const slist<T,A>& sL2)
   {  return !(sL1 == sL2);   }

template <class T, class A>
inline bool
operator>(const slist<T,A>& sL1, const slist<T,A>& sL2)
   {  return sL2 < sL1; }

template <class T, class A>
inline bool
operator<=(const slist<T,A>& sL1, const slist<T,A>& sL2)
   {  return !(sL2 < sL1); }

template <class T, class A>
inline bool
operator>=(const slist<T,A>& sL1, const slist<T,A>& sL2)
   {  return !(sL1 < sL2); }

template <class T, class A>
inline void swap(slist<T,A>& x, slist<T,A>& y)
   {  x.swap(y);  }

}}

/// @cond

namespace boost {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class A>
struct has_trivial_destructor_after_move<boost::container::slist<T, A> >
{
   static const bool value = has_trivial_destructor<A>::value;
};
*/
namespace container {

/// @endcond

}} //namespace boost{  namespace container {

// Specialization of insert_iterator so that insertions will be constant
// time rather than linear time.

///@cond

//Ummm, I don't like to define things in namespace std, but
//there is no other way
namespace std {

template <class T, class A>
class insert_iterator<boost::container::slist<T, A> >
{
 protected:
   typedef boost::container::slist<T, A> Container;
   Container* container;
   typename Container::iterator iter;
   public:
   typedef Container           container_type;
   typedef output_iterator_tag iterator_category;
   typedef void                value_type;
   typedef void                difference_type;
   typedef void                pointer;
   typedef void                reference;

   insert_iterator(Container& x,
                   typename Container::iterator i,
                   bool is_previous = false)
      : container(&x), iter(is_previous ? i : x.previous(i)){ }

   insert_iterator<Container>&
      operator=(const typename Container::value_type& value)
   {
      iter = container->insert_after(iter, value);
      return *this;
   }
   insert_iterator<Container>& operator*(){ return *this; }
   insert_iterator<Container>& operator++(){ return *this; }
   insert_iterator<Container>& operator++(int){ return *this; }
};

}  //namespace std;

///@endcond

#include <boost/container/detail/config_end.hpp>

#endif /* BOOST_CONTAINER_SLIST_HPP */