GL Profile Suite / boost_1_51_0 / boost / intrusive / rbtree_algorithms.hpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga  2006-2012.
//
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
// The internal implementation of red-black trees is based on that of SGI STL
// stl_tree.h file:
//
// Copyright (c) 1996,1997
// Silicon Graphics Computer Systems, Inc.
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation.  Silicon Graphics makes no
// representations about the suitability of this software for any
// purpose.  It is provided "as is" without express or implied warranty.
//
//
// Copyright (c) 1994
// Hewlett-Packard Company
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation.  Hewlett-Packard Company makes no
// representations about the suitability of this software for any
// purpose.  It is provided "as is" without express or implied warranty.
//
// The tree destruction algorithm is based on Julienne Walker and The EC Team code:
//
// This code is in the public domain. Anyone may use it or change it in any way that
// they see fit. The author assumes no responsibility for damages incurred through
// use of the original code or any variations thereof.
//
// It is requested, but not required, that due credit is given to the original author
// and anyone who has modified the code through a header comment, such as this one.

#ifndef BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP

#include <boost/intrusive/detail/config_begin.hpp>

#include <cstddef>
#include <boost/intrusive/intrusive_fwd.hpp>

#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/detail/utilities.hpp>
#include <boost/intrusive/detail/tree_algorithms.hpp>
#include <boost/intrusive/pointer_traits.hpp>

namespace boost {
namespace intrusive {

//! rbtree_algorithms provides basic algorithms to manipulate
//! nodes forming a red-black tree. The insertion and deletion algorithms are
//! based on those in Cormen, Leiserson, and Rivest, Introduction to Algorithms
//! (MIT Press, 1990), except that
//!
//! (1) the header node is maintained with links not only to the root
//! but also to the leftmost node of the tree, to enable constant time
//! begin(), and to the rightmost node of the tree, to enable linear time
//! performance when used with the generic set algorithms (set_union,
//! etc.);
//!
//! (2) when a node being deleted has two children its successor node is
//! relinked into its place, rather than copied, so that the only
//! pointers invalidated are those referring to the deleted node.
//!
//! rbtree_algorithms is configured with a NodeTraits class, which encapsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the circular list
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <tt>color</tt>: The type that can store the color of a node
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//!
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//!
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//!
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
//!
//! <tt>static color get_color(const_node_ptr n);</tt>
//!
//! <tt>static void set_color(node_ptr n, color c);</tt>
//!
//! <tt>static color black();</tt>
//!
//! <tt>static color red();</tt>
template<class NodeTraits>
class rbtree_algorithms
{
   public:
   typedef NodeTraits                           node_traits;
   typedef typename NodeTraits::node            node;
   typedef typename NodeTraits::node_ptr        node_ptr;
   typedef typename NodeTraits::const_node_ptr  const_node_ptr;
   typedef typename NodeTraits::color           color;

   /// @cond
   private:

   typedef detail::tree_algorithms<NodeTraits>  tree_algorithms;

   template<class F>
   struct rbtree_node_cloner
      :  private detail::ebo_functor_holder<F>
   {
      typedef detail::ebo_functor_holder<F>                 base_t;

      rbtree_node_cloner(F f)
         :  base_t(f)
      {}

      node_ptr operator()(const node_ptr & p)
      {
         node_ptr n = base_t::get()(p);
         NodeTraits::set_color(n, NodeTraits::get_color(p));
         return n;
      }
   };

   struct rbtree_erase_fixup
   {
      void operator()(const node_ptr & to_erase, const node_ptr & successor)
      {
         //Swap color of y and z
         color tmp(NodeTraits::get_color(successor));
         NodeTraits::set_color(successor, NodeTraits::get_color(to_erase));
         NodeTraits::set_color(to_erase, tmp);
      }
   };

   static node_ptr uncast(const const_node_ptr & ptr)
   {  return pointer_traits<node_ptr>::const_cast_from(ptr);  }
   /// @endcond

   public:
   static node_ptr begin_node(const const_node_ptr & header)
   {  return tree_algorithms::begin_node(header);   }

   static node_ptr end_node(const const_node_ptr & header)
   {  return tree_algorithms::end_node(header);   }

   //! This type is the information that will be
   //! filled by insert_unique_check
   typedef typename tree_algorithms::insert_commit_data insert_commit_data;

   //! <b>Requires</b>: header1 and header2 must be the header nodes
   //!  of two trees.
   //!
   //! <b>Effects</b>: Swaps two trees. After the function header1 will contain
   //!   links to the second tree and header2 will have links to the first tree.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static void swap_tree(const node_ptr & header1, const node_ptr & header2)
   {  return tree_algorithms::swap_tree(header1, header2);  }

   //! <b>Requires</b>: node1 and node2 can't be header nodes
   //!  of two trees.
   //!
   //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
   //!   in the position node2 before the function. node2 will be inserted in the
   //!   position node1 had before the function.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   node1 and node2 are not equivalent according to the ordering rules.
   //!
   //!Experimental function
   static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
   {
      if(node1 == node2)
         return;

      node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2));
      swap_nodes(node1, header1, node2, header2);
   }

   //! <b>Requires</b>: node1 and node2 can't be header nodes
   //!  of two trees with header header1 and header2.
   //!
   //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
   //!   in the position node2 before the function. node2 will be inserted in the
   //!   position node1 had before the function.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   node1 and node2 are not equivalent according to the ordering rules.
   //!
   //!Experimental function
   static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
   {
      if(node1 == node2)   return;

      tree_algorithms::swap_nodes(node1, header1, node2, header2);
      //Swap color
      color c = NodeTraits::get_color(node1);
      NodeTraits::set_color(node1, NodeTraits::get_color(node2));
      NodeTraits::set_color(node2, c);
   }

   //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
   //!   and new_node must not be inserted in a tree.
   //!
   //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
   //!   tree with new_node. The tree does not need to be rebalanced
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   new_node is not equivalent to node_to_be_replaced according to the
   //!   ordering rules. This function is faster than erasing and inserting
   //!   the node, since no rebalancing and comparison is needed.
   //!
   //!Experimental function
   static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
   {
      if(node_to_be_replaced == new_node)
         return;
      replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node);
   }

   //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
   //!   with header "header" and new_node must not be inserted in a tree.
   //!
   //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
   //!   tree with new_node. The tree does not need to be rebalanced
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   new_node is not equivalent to node_to_be_replaced according to the
   //!   ordering rules. This function is faster than erasing and inserting
   //!   the node, since no rebalancing or comparison is needed.
   //!
   //!Experimental function
   static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
   {
      tree_algorithms::replace_node(node_to_be_replaced, header, new_node);
      NodeTraits::set_color(new_node, NodeTraits::get_color(node_to_be_replaced));
   }

   //! <b>Requires</b>: node is a tree node but not the header.
   //!
   //! <b>Effects</b>: Unlinks the node and rebalances the tree.
   //!
   //! <b>Complexity</b>: Average complexity is constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static void unlink(const node_ptr & node)
   {
      node_ptr x = NodeTraits::get_parent(node);
      if(x){
         while(!is_header(x))
            x = NodeTraits::get_parent(x);
         erase(x, node);
      }
   }

   //! <b>Requires</b>: header is the header of a tree.
   //!
   //! <b>Effects</b>: Unlinks the leftmost node from the tree, and
   //!   updates the header link to the new leftmost node.
   //!
   //! <b>Complexity</b>: Average complexity is constant time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Notes</b>: This function breaks the tree and the tree can
   //!   only be used for more unlink_leftmost_without_rebalance calls.
   //!   This function is normally used to achieve a step by step
   //!   controlled destruction of the tree.
   static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header)
   {  return tree_algorithms::unlink_leftmost_without_rebalance(header);   }

   //! <b>Requires</b>: node is a node of the tree or an node initialized
   //!   by init(...).
   //!
   //! <b>Effects</b>: Returns true if the node is initialized by init().
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static bool unique(const const_node_ptr & node)
   {  return tree_algorithms::unique(node);  }

   //! <b>Requires</b>: node is a node of the tree but it's not the header.
   //!
   //! <b>Effects</b>: Returns the number of nodes of the subtree.
   //!
   //! <b>Complexity</b>: Linear time.
   //!
   //! <b>Throws</b>: Nothing.
   static std::size_t count(const const_node_ptr & node)
   {  return tree_algorithms::count(node);   }

   //! <b>Requires</b>: header is the header node of the tree.
   //!
   //! <b>Effects</b>: Returns the number of nodes above the header.
   //!
   //! <b>Complexity</b>: Linear time.
   //!
   //! <b>Throws</b>: Nothing.
   static std::size_t size(const const_node_ptr & header)
   {  return tree_algorithms::size(header);   }

   //! <b>Requires</b>: p is a node from the tree except the header.
   //!
   //! <b>Effects</b>: Returns the next node of the tree.
   //!
   //! <b>Complexity</b>: Average constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr next_node(const node_ptr & p)
   {  return tree_algorithms::next_node(p); }

   //! <b>Requires</b>: p is a node from the tree except the leftmost node.
   //!
   //! <b>Effects</b>: Returns the previous node of the tree.
   //!
   //! <b>Complexity</b>: Average constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr prev_node(const node_ptr & p)
   {  return tree_algorithms::prev_node(p); }

   //! <b>Requires</b>: node must not be part of any tree.
   //!
   //! <b>Effects</b>: After the function unique(node) == true.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
   static void init(const node_ptr & node)
   {  tree_algorithms::init(node);  }

   //! <b>Requires</b>: node must not be part of any tree.
   //!
   //! <b>Effects</b>: Initializes the header to represent an empty tree.
   //!   unique(header) == true.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
   static void init_header(const node_ptr & header)
   {
      tree_algorithms::init_header(header);
      NodeTraits::set_color(header, NodeTraits::red());
   }

   //! <b>Requires</b>: header must be the header of a tree, z a node
   //!    of that tree and z != header.
   //!
   //! <b>Effects</b>: Erases node "z" from the tree with header "header".
   //!
   //! <b>Complexity</b>: Amortized constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr erase(const node_ptr & header, const node_ptr & z)
   {
      typename tree_algorithms::data_for_rebalance info;
      tree_algorithms::erase(header, z, rbtree_erase_fixup(), info);
      node_ptr x = info.x;
      node_ptr x_parent = info.x_parent;

      //Rebalance rbtree
      if(NodeTraits::get_color(z) != NodeTraits::red()){
         rebalance_after_erasure(header, x, x_parent);
      }
      return z;
   }

   //! <b>Requires</b>: "cloner" must be a function
   //!   object taking a node_ptr and returning a new cloned node of it. "disposer" must
   //!   take a node_ptr and shouldn't throw.
   //!
   //! <b>Effects</b>: First empties target tree calling
   //!   <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
   //!    except the header.
   //!
   //!   Then, duplicates the entire tree pointed by "source_header" cloning each
   //!   source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
   //!   the nodes of the target tree. If "cloner" throws, the cloned target nodes
   //!   are disposed using <tt>void disposer(const node_ptr &)</tt>.
   //!
   //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
   //!   number of elements of tree target tree when calling this function.
   //!
   //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
   template <class Cloner, class Disposer>
   static void clone
      (const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
   {
      rbtree_node_cloner<Cloner> new_cloner(cloner);
      tree_algorithms::clone(source_header, target_header, new_cloner, disposer);
   }

   //! <b>Requires</b>: "disposer" must be an object function
   //!   taking a node_ptr parameter and shouldn't throw.
   //!
   //! <b>Effects</b>: Empties the target tree calling
   //!   <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
   //!    except the header.
   //!
   //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
   //!   number of elements of tree target tree when calling this function.
   //!
   //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
   template<class Disposer>
   static void clear_and_dispose(const node_ptr & header, Disposer disposer)
   {  tree_algorithms::clear_and_dispose(header, disposer); }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an node_ptr to the first element that is
   //!   not less than "key" according to "comp" or "header" if that element does
   //!   not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr lower_bound
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::lower_bound(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an node_ptr to the first element that is greater
   //!   than "key" according to "comp" or "header" if that element does not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr upper_bound
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::upper_bound(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
   //!   "key" according to "comp" or "header" if that element does not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr find
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::find(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
   //!   all elements that are equivalent to "key" according to "comp" or an
   //!   empty range that indicates the position where those elements would be
   //!   if they there are no equivalent elements.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, node_ptr> equal_range
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::equal_range(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!   'lower_key' must not be greater than 'upper_key' according to 'comp'. If
   //!   'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false.
   //!
   //! <b>Effects</b>: Returns an a pair with the following criteria:
   //!
   //!   first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
   //!
   //!   second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   //!
   //! <b>Note</b>: This function can be more efficient than calling upper_bound
   //!   and lower_bound for lower_key and upper_key.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, node_ptr> bounded_range
      (const const_node_ptr & header, const KeyType &lower_key, const KeyType &upper_key, KeyNodePtrCompare comp
      , bool left_closed, bool right_closed)
   {  return tree_algorithms::bounded_range(header, lower_key, upper_key, comp, left_closed, right_closed);  }

   //! <b>Requires</b>: "h" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before the upper bound
   //!   according to "comp".
   //!
   //! <b>Complexity</b>: Average complexity for insert element is at
   //!   most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal_upper_bound
      (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp)
   {
      tree_algorithms::insert_equal_upper_bound(h, new_node, comp);
      rebalance_after_insertion(h, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "h" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before the lower bound
   //!   according to "comp".
   //!
   //! <b>Complexity</b>: Average complexity for insert element is at
   //!   most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal_lower_bound
      (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp)
   {
      tree_algorithms::insert_equal_lower_bound(h, new_node, comp);
      rebalance_after_insertion(h, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
   //!   the "header"'s tree.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
   //!   where it will be inserted. If "hint" is the upper_bound
   //!   the insertion takes constant time (two comparisons in the worst case).
   //!
   //! <b>Complexity</b>: Logarithmic in general, but it is amortized
   //!   constant time if new_node is inserted immediately before "hint".
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal
      (const node_ptr & header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp)
   {
      tree_algorithms::insert_equal(header, hint, new_node, comp);
      rebalance_after_insertion(header, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "pos" must be a valid iterator or header (end) node.
   //!   "pos" must be an iterator pointing to the successor to "new_node"
   //!   once inserted according to the order of already inserted nodes. This function does not
   //!   check "pos" and this precondition must be guaranteed by the caller.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before "pos".
   //!
   //! <b>Complexity</b>: Constant-time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node"
   //! tree invariants might be broken.
   static node_ptr insert_before
      (const node_ptr & header, const node_ptr & pos, const node_ptr & new_node)
   {
      tree_algorithms::insert_before(header, pos, new_node);
      rebalance_after_insertion(header, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "new_node" must be, according to the used ordering no less than the
   //!   greatest inserted key.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before "pos".
   //!
   //! <b>Complexity</b>: Constant-time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: If "new_node" is less than the greatest inserted key
   //! tree invariants are broken. This function is slightly faster than
   //! using "insert_before".
   static void push_back(const node_ptr & header, const node_ptr & new_node)
   {
      tree_algorithms::push_back(header, new_node);
      rebalance_after_insertion(header, new_node);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "new_node" must be, according to the used ordering, no greater than the
   //!   lowest inserted key.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before "pos".
   //!
   //! <b>Complexity</b>: Constant-time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: If "new_node" is greater than the lowest inserted key
   //! tree invariants are broken. This function is slightly faster than
   //! using "insert_before".
   static void push_front(const node_ptr & header, const node_ptr & new_node)
   {
      tree_algorithms::push_front(header, new_node);
      rebalance_after_insertion(header, new_node);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares KeyType with a node_ptr.
   //!
   //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
   //!   tree according to "comp" and obtains the needed information to realize
   //!   a constant-time node insertion if there is no equivalent node.
   //!
   //! <b>Returns</b>: If there is an equivalent value
   //!   returns a pair containing a node_ptr to the already present node
   //!   and false. If there is not equivalent key can be inserted returns true
   //!   in the returned pair's boolean and fills "commit_data" that is meant to
   //!   be used with the "insert_commit" function to achieve a constant-time
   //!   insertion function.
   //!
   //! <b>Complexity</b>: Average complexity is at most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   //!
   //! <b>Notes</b>: This function is used to improve performance when constructing
   //!   a node is expensive and the user does not want to have two equivalent nodes
   //!   in the tree: if there is an equivalent value
   //!   the constructed object must be discarded. Many times, the part of the
   //!   node that is used to impose the order is much cheaper to construct
   //!   than the node and this function offers the possibility to use that part
   //!   to check if the insertion will be successful.
   //!
   //!   If the check is successful, the user can construct the node and use
   //!   "insert_commit" to insert the node in constant-time. This gives a total
   //!   logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
   //!
   //!   "commit_data" remains valid for a subsequent "insert_unique_commit" only
   //!   if no more objects are inserted or erased from the set.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, bool> insert_unique_check
      (const const_node_ptr & header,  const KeyType &key
      ,KeyNodePtrCompare comp, insert_commit_data &commit_data)
   {  return tree_algorithms::insert_unique_check(header, key, comp, commit_data);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares KeyType with a node_ptr.
   //!   "hint" is node from the "header"'s tree.
   //!
   //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
   //!   tree according to "comp" using "hint" as a hint to where it should be
   //!   inserted and obtains the needed information to realize
   //!   a constant-time node insertion if there is no equivalent node.
   //!   If "hint" is the upper_bound the function has constant time
   //!   complexity (two comparisons in the worst case).
   //!
   //! <b>Returns</b>: If there is an equivalent value
   //!   returns a pair containing a node_ptr to the already present node
   //!   and false. If there is not equivalent key can be inserted returns true
   //!   in the returned pair's boolean and fills "commit_data" that is meant to
   //!   be used with the "insert_commit" function to achieve a constant-time
   //!   insertion function.
   //!
   //! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
   //!   amortized constant time if new_node should be inserted immediately before "hint".
   //!
   //! <b>Throws</b>: If "comp" throws.
   //!
   //! <b>Notes</b>: This function is used to improve performance when constructing
   //!   a node is expensive and the user does not want to have two equivalent nodes
   //!   in the tree: if there is an equivalent value
   //!   the constructed object must be discarded. Many times, the part of the
   //!   node that is used to impose the order is much cheaper to construct
   //!   than the node and this function offers the possibility to use that part
   //!   to check if the insertion will be successful.
   //!
   //!   If the check is successful, the user can construct the node and use
   //!   "insert_commit" to insert the node in constant-time. This gives a total
   //!   logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
   //!
   //!   "commit_data" remains valid for a subsequent "insert_unique_commit" only
   //!   if no more objects are inserted or erased from the set.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, bool> insert_unique_check
      (const const_node_ptr & header, const node_ptr &hint, const KeyType &key
      ,KeyNodePtrCompare comp, insert_commit_data &commit_data)
   {  return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "commit_data" must have been obtained from a previous call to
   //!   "insert_unique_check". No objects should have been inserted or erased
   //!   from the set between the "insert_unique_check" that filled "commit_data"
   //!   and the call to "insert_commit".
   //!
   //!
   //! <b>Effects</b>: Inserts new_node in the set using the information obtained
   //!   from the "commit_data" that a previous "insert_check" filled.
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
   //!   previously executed to fill "commit_data". No value should be inserted or
   //!   erased between the "insert_check" and "insert_commit" calls.
   static void insert_unique_commit
      (const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
   {
      tree_algorithms::insert_unique_commit(header, new_value, commit_data);
      rebalance_after_insertion(header, new_value);
   }

   //! <b>Requires</b>: "n" must be a node inserted in a tree.
   //!
   //! <b>Effects</b>: Returns a pointer to the header node of the tree.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr get_header(const node_ptr & n)
   {  return tree_algorithms::get_header(n);   }

   /// @cond
   private:

   //! <b>Requires</b>: p is a node of a tree.
   //!
   //! <b>Effects</b>: Returns true if p is the header of the tree.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static bool is_header(const const_node_ptr & p)
   {
      return NodeTraits::get_color(p) == NodeTraits::red() &&
            tree_algorithms::is_header(p);
      //return NodeTraits::get_color(p) == NodeTraits::red() &&
      //       NodeTraits::get_parent(NodeTraits::get_parent(p)) == p;
   }

   static void rebalance_after_erasure(const node_ptr & header, const node_ptr &xnode, const node_ptr &xnode_parent)
   {
      node_ptr x(xnode), x_parent(xnode_parent);
      while(x != NodeTraits::get_parent(header) && (x == node_ptr() || NodeTraits::get_color(x) == NodeTraits::black())){
         if(x == NodeTraits::get_left(x_parent)){
            node_ptr w = NodeTraits::get_right(x_parent);
            if(NodeTraits::get_color(w) == NodeTraits::red()){
               NodeTraits::set_color(w, NodeTraits::black());
               NodeTraits::set_color(x_parent, NodeTraits::red());
               tree_algorithms::rotate_left(x_parent, header);
               w = NodeTraits::get_right(x_parent);
            }
            if((NodeTraits::get_left(w) == node_ptr() || NodeTraits::get_color(NodeTraits::get_left(w))  == NodeTraits::black()) &&
               (NodeTraits::get_right(w) == node_ptr() || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black())){
               NodeTraits::set_color(w, NodeTraits::red());
               x = x_parent;
               x_parent = NodeTraits::get_parent(x_parent);
            }
            else {
               if(NodeTraits::get_right(w) == node_ptr() || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black()){
                  NodeTraits::set_color(NodeTraits::get_left(w), NodeTraits::black());
                  NodeTraits::set_color(w, NodeTraits::red());
                  tree_algorithms::rotate_right(w, header);
                  w = NodeTraits::get_right(x_parent);
               }
               NodeTraits::set_color(w, NodeTraits::get_color(x_parent));
               NodeTraits::set_color(x_parent, NodeTraits::black());
               if(NodeTraits::get_right(w))
                  NodeTraits::set_color(NodeTraits::get_right(w), NodeTraits::black());
               tree_algorithms::rotate_left(x_parent, header);
               break;
            }
         }
         else {
            // same as above, with right_ <-> left_.
            node_ptr w = NodeTraits::get_left(x_parent);
            if(NodeTraits::get_color(w) == NodeTraits::red()){
               NodeTraits::set_color(w, NodeTraits::black());
               NodeTraits::set_color(x_parent, NodeTraits::red());
               tree_algorithms::rotate_right(x_parent, header);
               w = NodeTraits::get_left(x_parent);
            }
            if((NodeTraits::get_right(w) == node_ptr() || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black()) &&
               (NodeTraits::get_left(w) == node_ptr() || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black())){
               NodeTraits::set_color(w, NodeTraits::red());
               x = x_parent;
               x_parent = NodeTraits::get_parent(x_parent);
            }
            else {
               if(NodeTraits::get_left(w) == node_ptr() || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black()){
                  NodeTraits::set_color(NodeTraits::get_right(w), NodeTraits::black());
                  NodeTraits::set_color(w, NodeTraits::red());
                  tree_algorithms::rotate_left(w, header);
                  w = NodeTraits::get_left(x_parent);
               }
               NodeTraits::set_color(w, NodeTraits::get_color(x_parent));
               NodeTraits::set_color(x_parent, NodeTraits::black());
               if(NodeTraits::get_left(w))
                  NodeTraits::set_color(NodeTraits::get_left(w), NodeTraits::black());
               tree_algorithms::rotate_right(x_parent, header);
               break;
            }
         }
      }
      if(x)
         NodeTraits::set_color(x, NodeTraits::black());
   }


   static void rebalance_after_insertion(const node_ptr & header, const node_ptr &pnode)
   {
      node_ptr p(pnode);
      NodeTraits::set_color(p, NodeTraits::red());
      while(p != NodeTraits::get_parent(header) && NodeTraits::get_color(NodeTraits::get_parent(p)) == NodeTraits::red()){
         node_ptr p_parent(NodeTraits::get_parent(p));
         node_ptr p_parent_parent(NodeTraits::get_parent(p_parent));
         if(tree_algorithms::is_left_child(p_parent)){
            node_ptr x = NodeTraits::get_right(p_parent_parent);
            if(x && NodeTraits::get_color(x) == NodeTraits::red()){
               NodeTraits::set_color(p_parent, NodeTraits::black());
               NodeTraits::set_color(p_parent_parent, NodeTraits::red());
               NodeTraits::set_color(x, NodeTraits::black());
               p = p_parent_parent;
            }
            else {
               if(!tree_algorithms::is_left_child(p)){
                  p = p_parent;
                  tree_algorithms::rotate_left(p, header);
               }
               node_ptr new_p_parent(NodeTraits::get_parent(p));
               node_ptr new_p_parent_parent(NodeTraits::get_parent(new_p_parent));
               NodeTraits::set_color(new_p_parent, NodeTraits::black());
               NodeTraits::set_color(new_p_parent_parent, NodeTraits::red());
               tree_algorithms::rotate_right(new_p_parent_parent, header);
            }
         }
         else{
            node_ptr x = NodeTraits::get_left(p_parent_parent);
            if(x && NodeTraits::get_color(x) == NodeTraits::red()){
               NodeTraits::set_color(p_parent, NodeTraits::black());
               NodeTraits::set_color(p_parent_parent, NodeTraits::red());
               NodeTraits::set_color(x, NodeTraits::black());
               p = p_parent_parent;
            }
            else{
               if(tree_algorithms::is_left_child(p)){
                  p = p_parent;
                  tree_algorithms::rotate_right(p, header);
               }
               node_ptr new_p_parent(NodeTraits::get_parent(p));
               node_ptr new_p_parent_parent(NodeTraits::get_parent(new_p_parent));
               NodeTraits::set_color(new_p_parent, NodeTraits::black());
               NodeTraits::set_color(new_p_parent_parent, NodeTraits::red());
               tree_algorithms::rotate_left(new_p_parent_parent, header);
            }
         }
      }
      NodeTraits::set_color(NodeTraits::get_parent(header), NodeTraits::black());
   }
   /// @endcond
};

} //namespace intrusive
} //namespace boost

#include <boost/intrusive/detail/config_end.hpp>

#endif //BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.