Source

GL Profile Suite / boost_1_51_0 / boost / random / piecewise_linear_distribution.hpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/* boost random/piecewise_linear_distribution.hpp header file
 *
 * Copyright Steven Watanabe 2011
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id: piecewise_linear_distribution.hpp 79771 2012-07-27 18:15:55Z jewillco $
 */

#ifndef BOOST_RANDOM_PIECEWISE_LINEAR_DISTRIBUTION_HPP_INCLUDED
#define BOOST_RANDOM_PIECEWISE_LINEAR_DISTRIBUTION_HPP_INCLUDED

#include <vector>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <boost/assert.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/discrete_distribution.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/detail/vector_io.hpp>

#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
#include <initializer_list>
#endif

#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>

namespace boost {
namespace random {

/**
 * The class @c piecewise_linear_distribution models a \random_distribution.
 */
template<class RealType = double>
class piecewise_linear_distribution {
public:
    typedef std::size_t input_type;
    typedef RealType result_type;

    class param_type {
    public:

        typedef piecewise_linear_distribution distribution_type;

        /**
         * Constructs a @c param_type object, representing a distribution
         * that produces values uniformly distributed in the range [0, 1).
         */
        param_type()
        {
            _weights.push_back(RealType(1));
            _weights.push_back(RealType(1));
            _intervals.push_back(RealType(0));
            _intervals.push_back(RealType(1));
        }
        /**
         * Constructs a @c param_type object from two iterator ranges
         * containing the interval boundaries and weights at the boundaries.
         * If there are fewer than two boundaries, then this is equivalent to
         * the default constructor and the distribution will produce values
         * uniformly distributed in the range [0, 1).
         *
         * The values of the interval boundaries must be strictly
         * increasing, and the number of weights must be the same as
         * the number of interval boundaries.  If there are extra
         * weights, they are ignored.
         */
        template<class IntervalIter, class WeightIter>
        param_type(IntervalIter intervals_first, IntervalIter intervals_last,
                   WeightIter weight_first)
          : _intervals(intervals_first, intervals_last)
        {
            if(_intervals.size() < 2) {
                _intervals.clear();
                _weights.push_back(RealType(1));
                _weights.push_back(RealType(1));
                _intervals.push_back(RealType(0));
                _intervals.push_back(RealType(1));
            } else {
                _weights.reserve(_intervals.size());
                for(std::size_t i = 0; i < _intervals.size(); ++i) {
                    _weights.push_back(*weight_first++);
                }
            }
        }
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
        /**
         * Constructs a @c param_type object from an initializer_list
         * containing the interval boundaries and a unary function
         * specifying the weights at the boundaries.  Each weight is
         * determined by calling the function at the corresponding point.
         *
         * If the initializer_list contains fewer than two elements,
         * this is equivalent to the default constructor and the
         * distribution will produce values uniformly distributed
         * in the range [0, 1).
         */
        template<class T, class F>
        param_type(const std::initializer_list<T>& il, F f)
          : _intervals(il.begin(), il.end())
        {
            if(_intervals.size() < 2) {
                _intervals.clear();
                _weights.push_back(RealType(1));
                _weights.push_back(RealType(1));
                _intervals.push_back(RealType(0));
                _intervals.push_back(RealType(1));
            } else {
                _weights.reserve(_intervals.size());
                for(typename std::vector<RealType>::const_iterator
                    iter = _intervals.begin(), end = _intervals.end();
                    iter != end; ++iter)
                {
                    _weights.push_back(f(*iter));
                }
            }
        }
#endif
        /**
         * Constructs a @c param_type object from Boost.Range ranges holding
         * the interval boundaries and the weights at the boundaries.  If
         * there are fewer than two interval boundaries, this is equivalent
         * to the default constructor and the distribution will produce
         * values uniformly distributed in the range [0, 1).  The
         * number of weights must be equal to the number of
         * interval boundaries.
         */
        template<class IntervalRange, class WeightRange>
        param_type(const IntervalRange& intervals_arg,
                   const WeightRange& weights_arg)
          : _intervals(boost::begin(intervals_arg), boost::end(intervals_arg)),
            _weights(boost::begin(weights_arg), boost::end(weights_arg))
        {
            if(_intervals.size() < 2) {
                _weights.clear();
                _weights.push_back(RealType(1));
                _weights.push_back(RealType(1));
                _intervals.clear();
                _intervals.push_back(RealType(0));
                _intervals.push_back(RealType(1));
            }
        }

        /**
         * Constructs the parameters for a distribution that approximates a
         * function.  The range of the distribution is [xmin, xmax).  This
         * range is divided into nw equally sized intervals and the weights
         * are found by calling the unary function f on the boundaries of the
         * intervals.
         */
        template<class F>
        param_type(std::size_t nw, RealType xmin, RealType xmax, F f)
        {
            std::size_t n = (nw == 0) ? 1 : nw;
            double delta = (xmax - xmin) / n;
            BOOST_ASSERT(delta > 0);
            for(std::size_t k = 0; k < n; ++k) {
                _weights.push_back(f(xmin + k*delta));
                _intervals.push_back(xmin + k*delta);
            }
            _weights.push_back(f(xmax));
            _intervals.push_back(xmax);
        }

        /**  Returns a vector containing the interval boundaries. */
        std::vector<RealType> intervals() const { return _intervals; }

        /**
         * Returns a vector containing the probability densities
         * at all the interval boundaries.
         */
        std::vector<RealType> densities() const
        {
            RealType sum = static_cast<RealType>(0);
            for(std::size_t i = 0; i < _intervals.size() - 1; ++i) {
                RealType width = _intervals[i + 1] - _intervals[i];
                sum += (_weights[i] + _weights[i + 1]) * width / 2;
            }
            std::vector<RealType> result;
            result.reserve(_weights.size());
            for(typename std::vector<RealType>::const_iterator
                iter = _weights.begin(), end = _weights.end();
                iter != end; ++iter)
            {
                result.push_back(*iter / sum);
            }
            return result;
        }

        /** Writes the parameters to a @c std::ostream. */
        BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
        {
            detail::print_vector(os, parm._intervals);
            detail::print_vector(os, parm._weights);
            return os;
        }
        
        /** Reads the parameters from a @c std::istream. */
        BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
        {
            std::vector<RealType> new_intervals;
            std::vector<RealType> new_weights;
            detail::read_vector(is, new_intervals);
            detail::read_vector(is, new_weights);
            if(is) {
                parm._intervals.swap(new_intervals);
                parm._weights.swap(new_weights);
            }
            return is;
        }

        /** Returns true if the two sets of parameters are the same. */
        BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        {
            return lhs._intervals == rhs._intervals
                && lhs._weights == rhs._weights;
        }
        /** Returns true if the two sets of parameters are different. */
        BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)

    private:
        friend class piecewise_linear_distribution;

        std::vector<RealType> _intervals;
        std::vector<RealType> _weights;
    };

    /**
     * Creates a new @c piecewise_linear_distribution that
     * produces values uniformly distributed in the range [0, 1).
     */
    piecewise_linear_distribution()
    {
        default_init();
    }
    /**
     * Constructs a piecewise_linear_distribution from two iterator ranges
     * containing the interval boundaries and the weights at the boundaries.
     * If there are fewer than two boundaries, then this is equivalent to
     * the default constructor and creates a distribution that
     * produces values uniformly distributed in the range [0, 1).
     *
     * The values of the interval boundaries must be strictly
     * increasing, and the number of weights must be equal to
     * the number of interval boundaries.  If there are extra
     * weights, they are ignored.
     *
     * For example,
     *
     * @code
     * double intervals[] = { 0.0, 1.0, 2.0 };
     * double weights[] = { 0.0, 1.0, 0.0 };
     * piecewise_constant_distribution<> dist(
     *     &intervals[0], &intervals[0] + 3, &weights[0]);
     * @endcode
     *
     * produces a triangle distribution.
     */
    template<class IntervalIter, class WeightIter>
    piecewise_linear_distribution(IntervalIter first_interval,
                                  IntervalIter last_interval,
                                  WeightIter first_weight)
      : _intervals(first_interval, last_interval)
    {
        if(_intervals.size() < 2) {
            default_init();
        } else {
            _weights.reserve(_intervals.size());
            for(std::size_t i = 0; i < _intervals.size(); ++i) {
                _weights.push_back(*first_weight++);
            }
            init();
        }
    }
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
    /**
     * Constructs a piecewise_linear_distribution from an
     * initializer_list containing the interval boundaries
     * and a unary function specifying the weights.  Each
     * weight is determined by calling the function at the
     * corresponding interval boundary.
     *
     * If the initializer_list contains fewer than two elements,
     * this is equivalent to the default constructor and the
     * distribution will produce values uniformly distributed
     * in the range [0, 1).
     */
    template<class T, class F>
    piecewise_linear_distribution(std::initializer_list<T> il, F f)
      : _intervals(il.begin(), il.end())
    {
        if(_intervals.size() < 2) {
            default_init();
        } else {
            _weights.reserve(_intervals.size());
            for(typename std::vector<RealType>::const_iterator
                iter = _intervals.begin(), end = _intervals.end();
                iter != end; ++iter)
            {
                _weights.push_back(f(*iter));
            }
            init();
        }
    }
#endif
    /**
     * Constructs a piecewise_linear_distribution from Boost.Range
     * ranges holding the interval boundaries and the weights.  If
     * there are fewer than two interval boundaries, this is equivalent
     * to the default constructor and the distribution will produce
     * values uniformly distributed in the range [0, 1).  The
     * number of weights must be equal to the number of
     * interval boundaries.
     */
    template<class IntervalsRange, class WeightsRange>
    piecewise_linear_distribution(const IntervalsRange& intervals_arg,
                                  const WeightsRange& weights_arg)
      : _intervals(boost::begin(intervals_arg), boost::end(intervals_arg)),
        _weights(boost::begin(weights_arg), boost::end(weights_arg))
    {
        if(_intervals.size() < 2) {
            default_init();
        } else {
            init();
        }
    }
    /**
     * Constructs a piecewise_linear_distribution that approximates a
     * function.  The range of the distribution is [xmin, xmax).  This
     * range is divided into nw equally sized intervals and the weights
     * are found by calling the unary function f on the interval boundaries.
     */
    template<class F>
    piecewise_linear_distribution(std::size_t nw,
                                  RealType xmin,
                                  RealType xmax,
                                  F f)
    {
        if(nw == 0) { nw = 1; }
        RealType delta = (xmax - xmin) / nw;
        _intervals.reserve(nw + 1);
        for(std::size_t i = 0; i < nw; ++i) {
            RealType x = xmin + i * delta;
            _intervals.push_back(x);
            _weights.push_back(f(x));
        }
        _intervals.push_back(xmax);
        _weights.push_back(f(xmax));
        init();
    }
    /**
     * Constructs a piecewise_linear_distribution from its parameters.
     */
    explicit piecewise_linear_distribution(const param_type& parm)
      : _intervals(parm._intervals),
        _weights(parm._weights)
    {
        init();
    }

    /**
     * Returns a value distributed according to the parameters of the
     * piecewise_linear_distribution.
     */
    template<class URNG>
    RealType operator()(URNG& urng) const
    {
        std::size_t i = _bins(urng);
        bool is_in_rectangle = (i % 2 == 0);
        i = i / 2;
        uniform_real<RealType> dist(_intervals[i], _intervals[i+1]);
        if(is_in_rectangle) {
            return dist(urng);
        } else if(_weights[i] < _weights[i+1]) {
            return (std::max)(dist(urng), dist(urng));
        } else {
            return (std::min)(dist(urng), dist(urng));
        }
    }
    
    /**
     * Returns a value distributed according to the parameters
     * specified by param.
     */
    template<class URNG>
    RealType operator()(URNG& urng, const param_type& parm) const
    {
        return piecewise_linear_distribution(parm)(urng);
    }
    
    /** Returns the smallest value that the distribution can produce. */
    result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return _intervals.front(); }
    /** Returns the largest value that the distribution can produce. */
    result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return _intervals.back(); }

    /**
     * Returns a vector containing the probability densities
     * at the interval boundaries.
     */
    std::vector<RealType> densities() const
    {
        RealType sum = static_cast<RealType>(0);
        for(std::size_t i = 0; i < _intervals.size() - 1; ++i) {
            RealType width = _intervals[i + 1] - _intervals[i];
            sum += (_weights[i] + _weights[i + 1]) * width / 2;
        }
        std::vector<RealType> result;
        result.reserve(_weights.size());
        for(typename std::vector<RealType>::const_iterator
            iter = _weights.begin(), end = _weights.end();
            iter != end; ++iter)
        {
            result.push_back(*iter / sum);
        }
        return result;
    }
    /**  Returns a vector containing the interval boundaries. */
    std::vector<RealType> intervals() const { return _intervals; }

    /** Returns the parameters of the distribution. */
    param_type param() const
    {
        return param_type(_intervals, _weights);
    }
    /** Sets the parameters of the distribution. */
    void param(const param_type& parm)
    {
        std::vector<RealType> new_intervals(parm._intervals);
        std::vector<RealType> new_weights(parm._weights);
        init(new_intervals, new_weights);
        _intervals.swap(new_intervals);
        _weights.swap(new_weights);
    }
    
    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { _bins.reset(); }

    /** Writes a distribution to a @c std::ostream. */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(
        os, piecewise_linear_distribution, pld)
    {
        os << pld.param();
        return os;
    }

    /** Reads a distribution from a @c std::istream */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(
        is, piecewise_linear_distribution, pld)
    {
        param_type parm;
        if(is >> parm) {
            pld.param(parm);
        }
        return is;
    }

    /**
     * Returns true if the two distributions will return the
     * same sequence of values, when passed equal generators.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(
        piecewise_linear_distribution, lhs,  rhs)
    {
        return lhs._intervals == rhs._intervals && lhs._weights == rhs._weights;
    }
    /**
     * Returns true if the two distributions may return different
     * sequences of values, when passed equal generators.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(piecewise_linear_distribution)

private:

    /// @cond \show_private

    void init(const std::vector<RealType>& intervals_arg,
              const std::vector<RealType>& weights_arg)
    {
        std::vector<RealType> bin_weights;
        bin_weights.reserve((intervals_arg.size() - 1) * 2);
        for(std::size_t i = 0; i < intervals_arg.size() - 1; ++i) {
            RealType width = intervals_arg[i + 1] - intervals_arg[i];
            RealType w1 = weights_arg[i];
            RealType w2 = weights_arg[i + 1];
            bin_weights.push_back((std::min)(w1, w2) * width);
            bin_weights.push_back(std::abs(w1 - w2) * width / 2);
        }
        typedef discrete_distribution<std::size_t, RealType> bins_type;
        typename bins_type::param_type bins_param(bin_weights);
        _bins.param(bins_param);
    }

    void init()
    {
        init(_intervals, _weights);
    }

    void default_init()
    {
        _intervals.clear();
        _intervals.push_back(RealType(0));
        _intervals.push_back(RealType(1));
        _weights.clear();
        _weights.push_back(RealType(1));
        _weights.push_back(RealType(1));
        init();
    }

    discrete_distribution<std::size_t, RealType> _bins;
    std::vector<RealType> _intervals;
    std::vector<RealType> _weights;

    /// @endcond
};

}
}

#endif