Source

GL Profile Suite / boost_1_51_0 / boost / tuple / detail / tuple_basic.hpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
//  tuple_basic.hpp -----------------------------------------------------

// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

// For more information, see http://www.boost.org

// Outside help:
// This and that, Gary Powell.
// Fixed return types for get_head/get_tail
// ( and other bugs ) per suggestion of Jens Maurer
// simplified element type accessors + bug fix  (Jeremy Siek)
// Several changes/additions according to suggestions by Douglas Gregor,
// William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes,
// David Abrahams.

// Revision history:
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
// 2002 04 18 Jaakko: tuple element types can be void or plain function
//                    types, as long as no object is created.
//                    Tuple objects can no hold even noncopyable types
//                    such as arrays.
// 2001 10 22 John Maddock
//      Fixes for Borland C++
// 2001 08 30 David Abrahams
//      Added default constructor for cons<>.
// -----------------------------------------------------------------

#ifndef BOOST_TUPLE_BASIC_HPP
#define BOOST_TUPLE_BASIC_HPP


#include <utility> // needed for the assignment from pair to tuple

#include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
#include "boost/utility/swap.hpp"

#include "boost/detail/workaround.hpp" // needed for BOOST_WORKAROUND

namespace boost {
namespace tuples {

// -- null_type --------------------------------------------------------
struct null_type {};

// a helper function to provide a const null_type type temporary
namespace detail {
  inline const null_type cnull() { return null_type(); }


// -- if construct ------------------------------------------------
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker

template <bool If, class Then, class Else> struct IF { typedef Then RET; };

template <class Then, class Else> struct IF<false, Then, Else> {
  typedef Else RET;
};

} // end detail

// - cons forward declaration -----------------------------------------------
template <class HT, class TT> struct cons;


// - tuple forward declaration -----------------------------------------------
template <
  class T0 = null_type, class T1 = null_type, class T2 = null_type,
  class T3 = null_type, class T4 = null_type, class T5 = null_type,
  class T6 = null_type, class T7 = null_type, class T8 = null_type,
  class T9 = null_type>
class tuple;

// tuple_length forward declaration
template<class T> struct length;



namespace detail {

// -- generate error template, referencing to non-existing members of this
// template is used to produce compilation errors intentionally
template<class T>
class generate_error;

template<int N>
struct drop_front {
    template<class Tuple>
    struct apply {
        typedef BOOST_DEDUCED_TYPENAME drop_front<N-1>::BOOST_NESTED_TEMPLATE
            apply<Tuple> next;
        typedef BOOST_DEDUCED_TYPENAME next::type::tail_type type;
        static const type& call(const Tuple& tup) {
            return next::call(tup).tail;
        }
    };
};

template<>
struct drop_front<0> {
    template<class Tuple>
    struct apply {
        typedef Tuple type;
        static const type& call(const Tuple& tup) {
            return tup;
        }
    };
};

} // end of namespace detail


// -cons type accessors ----------------------------------------
// typename tuples::element<N,T>::type gets the type of the
// Nth element ot T, first element is at index 0
// -------------------------------------------------------

#ifndef BOOST_NO_CV_SPECIALIZATIONS

template<int N, class T>
struct element
{
  typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
      apply<T>::type::head_type type;
};

template<int N, class T>
struct element<N, const T>
{
private:
  typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
      apply<T>::type::head_type unqualified_type;
public:
#if BOOST_WORKAROUND(__BORLANDC__,<0x600)
  typedef const unqualified_type type;
#else
  typedef BOOST_DEDUCED_TYPENAME boost::add_const<unqualified_type>::type type;
#endif
};
#else // def BOOST_NO_CV_SPECIALIZATIONS

namespace detail {

template<int N, class T, bool IsConst>
struct element_impl
{
  typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
      apply<T>::type::head_type type;
};

template<int N, class T>
struct element_impl<N, T, true /* IsConst */>
{
  typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
      apply<T>::type::head_type unqualified_type;
  typedef const unqualified_type type;
};

} // end of namespace detail


template<int N, class T>
struct element:
  public detail::element_impl<N, T, ::boost::is_const<T>::value>
{
};

#endif


// -get function templates -----------------------------------------------
// Usage: get<N>(aTuple)

// -- some traits classes for get functions

// access traits lifted from detail namespace to be part of the interface,
// (Joel de Guzman's suggestion). Rationale: get functions are part of the
// interface, so should the way to express their return types be.

template <class T> struct access_traits {
  typedef const T& const_type;
  typedef T& non_const_type;

  typedef const typename boost::remove_cv<T>::type& parameter_type;

// used as the tuple constructors parameter types
// Rationale: non-reference tuple element types can be cv-qualified.
// It should be possible to initialize such types with temporaries,
// and when binding temporaries to references, the reference must
// be non-volatile and const. 8.5.3. (5)
};

template <class T> struct access_traits<T&> {

  typedef T& const_type;
  typedef T& non_const_type;

  typedef T& parameter_type;
};

// get function for non-const cons-lists, returns a reference to the element

template<int N, class HT, class TT>
inline typename access_traits<
                  typename element<N, cons<HT, TT> >::type
                >::non_const_type
get(cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
  typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
      apply<cons<HT, TT> > impl;
  typedef BOOST_DEDUCED_TYPENAME impl::type cons_element;
  return const_cast<cons_element&>(impl::call(c)).head;
}

// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
// as such (that is, can return a non-const reference)
template<int N, class HT, class TT>
inline typename access_traits<
                  typename element<N, cons<HT, TT> >::type
                >::const_type
get(const cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
  typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
      apply<cons<HT, TT> > impl;
  typedef BOOST_DEDUCED_TYPENAME impl::type cons_element;
  return impl::call(c).head;
}

// -- the cons template  --------------------------------------------------
namespace detail {

//  These helper templates wrap void types and plain function types.
//  The reationale is to allow one to write tuple types with those types
//  as elements, even though it is not possible to instantiate such object.
//  E.g: typedef tuple<void> some_type; // ok
//  but: some_type x; // fails

template <class T> class non_storeable_type {
  non_storeable_type();
};

template <class T> struct wrap_non_storeable_type {
  typedef typename IF<
    ::boost::is_function<T>::value, non_storeable_type<T>, T
  >::RET type;
};
template <> struct wrap_non_storeable_type<void> {
  typedef non_storeable_type<void> type;
};

} // detail

template <class HT, class TT>
struct cons {

  typedef HT head_type;
  typedef TT tail_type;

  typedef typename
    detail::wrap_non_storeable_type<head_type>::type stored_head_type;

  stored_head_type head;
  tail_type tail;

  typename access_traits<stored_head_type>::non_const_type
  get_head() { return head; }

  typename access_traits<tail_type>::non_const_type
  get_tail() { return tail; }

  typename access_traits<stored_head_type>::const_type
  get_head() const { return head; }

  typename access_traits<tail_type>::const_type
  get_tail() const { return tail; }

  cons() : head(), tail() {}
  //  cons() : head(detail::default_arg<HT>::f()), tail() {}

  // the argument for head is not strictly needed, but it prevents
  // array type elements. This is good, since array type elements
  // cannot be supported properly in any case (no assignment,
  // copy works only if the tails are exactly the same type, ...)

  cons(typename access_traits<stored_head_type>::parameter_type h,
       const tail_type& t)
    : head (h), tail(t) {}

  template <class T1, class T2, class T3, class T4, class T5,
            class T6, class T7, class T8, class T9, class T10>
  cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
        T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
    : head (t1),
      tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
      {}

  template <class T2, class T3, class T4, class T5,
            class T6, class T7, class T8, class T9, class T10>
  cons( const null_type& /*t1*/, T2& t2, T3& t3, T4& t4, T5& t5,
        T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
    : head (),
      tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
      {}


  template <class HT2, class TT2>
  cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}

  template <class HT2, class TT2>
  cons& operator=( const cons<HT2, TT2>& u ) {
    head=u.head; tail=u.tail; return *this;
  }

  // must define assignment operator explicitly, implicit version is
  // illformed if HT is a reference (12.8. (12))
  cons& operator=(const cons& u) {
    head = u.head; tail = u.tail;  return *this;
  }

  template <class T1, class T2>
  cons& operator=( const std::pair<T1, T2>& u ) {
    BOOST_STATIC_ASSERT(length<cons>::value == 2); // check length = 2
    head = u.first; tail.head = u.second; return *this;
  }

  // get member functions (non-const and const)
  template <int N>
  typename access_traits<
             typename element<N, cons<HT, TT> >::type
           >::non_const_type
  get() {
    return boost::tuples::get<N>(*this); // delegate to non-member get
  }

  template <int N>
  typename access_traits<
             typename element<N, cons<HT, TT> >::type
           >::const_type
  get() const {
    return boost::tuples::get<N>(*this); // delegate to non-member get
  }
};

template <class HT>
struct cons<HT, null_type> {

  typedef HT head_type;
  typedef null_type tail_type;
  typedef cons<HT, null_type> self_type;

  typedef typename
    detail::wrap_non_storeable_type<head_type>::type stored_head_type;
  stored_head_type head;

  typename access_traits<stored_head_type>::non_const_type
  get_head() { return head; }

  null_type get_tail() { return null_type(); }

  typename access_traits<stored_head_type>::const_type
  get_head() const { return head; }

  const null_type get_tail() const { return null_type(); }

  //  cons() : head(detail::default_arg<HT>::f()) {}
  cons() : head() {}

  cons(typename access_traits<stored_head_type>::parameter_type h,
       const null_type& = null_type())
    : head (h) {}

  template<class T1>
  cons(T1& t1, const null_type&, const null_type&, const null_type&,
       const null_type&, const null_type&, const null_type&,
       const null_type&, const null_type&, const null_type&)
  : head (t1) {}

  cons(const null_type&,
       const null_type&, const null_type&, const null_type&,
       const null_type&, const null_type&, const null_type&,
       const null_type&, const null_type&, const null_type&)
  : head () {}

  template <class HT2>
  cons( const cons<HT2, null_type>& u ) : head(u.head) {}

  template <class HT2>
  cons& operator=(const cons<HT2, null_type>& u )
  { head = u.head; return *this; }

  // must define assignment operator explicitely, implicit version
  // is illformed if HT is a reference
  cons& operator=(const cons& u) { head = u.head; return *this; }

  template <int N>
  typename access_traits<
             typename element<N, self_type>::type
            >::non_const_type
  get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
    return boost::tuples::get<N>(*this);
  }

  template <int N>
  typename access_traits<
             typename element<N, self_type>::type
           >::const_type
  get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) const {
    return boost::tuples::get<N>(*this);
  }

};

// templates for finding out the length of the tuple -------------------

template<class T>
struct length  {
  BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value);
};

template<>
struct length<tuple<> > {
  BOOST_STATIC_CONSTANT(int, value = 0);
};

template<>
struct length<tuple<> const> {
  BOOST_STATIC_CONSTANT(int, value = 0);
};

template<>
struct length<null_type> {
  BOOST_STATIC_CONSTANT(int, value = 0);
};

template<>
struct length<null_type const> {
  BOOST_STATIC_CONSTANT(int, value = 0);
};

namespace detail {

// Tuple to cons mapper --------------------------------------------------
template <class T0, class T1, class T2, class T3, class T4,
          class T5, class T6, class T7, class T8, class T9>
struct map_tuple_to_cons
{
  typedef cons<T0,
               typename map_tuple_to_cons<T1, T2, T3, T4, T5,
                                          T6, T7, T8, T9, null_type>::type
              > type;
};

// The empty tuple is a null_type
template <>
struct map_tuple_to_cons<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type>
{
  typedef null_type type;
};

} // end detail

// -------------------------------------------------------------------
// -- tuple ------------------------------------------------------
template <class T0, class T1, class T2, class T3, class T4,
          class T5, class T6, class T7, class T8, class T9>

class tuple :
  public detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
{
public:
  typedef typename
    detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type inherited;
  typedef typename inherited::head_type head_type;
  typedef typename inherited::tail_type tail_type;


// access_traits<T>::parameter_type takes non-reference types as const T&
  tuple() {}

  tuple(typename access_traits<T0>::parameter_type t0)
    : inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1)
    : inherited(t0, t1, detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2)
    : inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3)
    : inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull(),
                detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3,
        typename access_traits<T4>::parameter_type t4)
    : inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull(), detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3,
        typename access_traits<T4>::parameter_type t4,
        typename access_traits<T5>::parameter_type t5)
    : inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
                detail::cnull(), detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3,
        typename access_traits<T4>::parameter_type t4,
        typename access_traits<T5>::parameter_type t5,
        typename access_traits<T6>::parameter_type t6)
    : inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
                detail::cnull(), detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3,
        typename access_traits<T4>::parameter_type t4,
        typename access_traits<T5>::parameter_type t5,
        typename access_traits<T6>::parameter_type t6,
        typename access_traits<T7>::parameter_type t7)
    : inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
                detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3,
        typename access_traits<T4>::parameter_type t4,
        typename access_traits<T5>::parameter_type t5,
        typename access_traits<T6>::parameter_type t6,
        typename access_traits<T7>::parameter_type t7,
        typename access_traits<T8>::parameter_type t8)
    : inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, detail::cnull()) {}

  tuple(typename access_traits<T0>::parameter_type t0,
        typename access_traits<T1>::parameter_type t1,
        typename access_traits<T2>::parameter_type t2,
        typename access_traits<T3>::parameter_type t3,
        typename access_traits<T4>::parameter_type t4,
        typename access_traits<T5>::parameter_type t5,
        typename access_traits<T6>::parameter_type t6,
        typename access_traits<T7>::parameter_type t7,
        typename access_traits<T8>::parameter_type t8,
        typename access_traits<T9>::parameter_type t9)
    : inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}


  template<class U1, class U2>
  tuple(const cons<U1, U2>& p) : inherited(p) {}

  template <class U1, class U2>
  tuple& operator=(const cons<U1, U2>& k) {
    inherited::operator=(k);
    return *this;
  }

  template <class U1, class U2>
  tuple& operator=(const std::pair<U1, U2>& k) {
    BOOST_STATIC_ASSERT(length<tuple>::value == 2);// check_length = 2
    this->head = k.first;
    this->tail.head = k.second;
    return *this;
  }

};

// The empty tuple
template <>
class tuple<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type>  :
  public null_type
{
public:
  typedef null_type inherited;
};


// Swallows any assignment   (by Doug Gregor)
namespace detail {

struct swallow_assign;
typedef void (detail::swallow_assign::*ignore_t)();
struct swallow_assign {
  swallow_assign(ignore_t(*)(ignore_t)) {}
  template<typename T>
  swallow_assign const& operator=(const T&) const {
    return *this;
  }
};


} // namespace detail

// "ignore" allows tuple positions to be ignored when using "tie".
inline detail::ignore_t ignore(detail::ignore_t) { return 0; }

// ---------------------------------------------------------------------------
// The call_traits for make_tuple
// Honours the reference_wrapper class.

// Must be instantiated with plain or const plain types (not with references)

// from template<class T> foo(const T& t) : make_tuple_traits<const T>::type
// from template<class T> foo(T& t) : make_tuple_traits<T>::type

// Conversions:
// T -> T,
// references -> compile_time_error
// reference_wrapper<T> -> T&
// const reference_wrapper<T> -> T&
// array -> const ref array


template<class T>
struct make_tuple_traits {
  typedef T type;

  // commented away, see below  (JJ)
  //  typedef typename IF<
  //  boost::is_function<T>::value,
  //  T&,
  //  T>::RET type;

};

// The is_function test was there originally for plain function types,
// which can't be stored as such (we must either store them as references or
// pointers). Such a type could be formed if make_tuple was called with a
// reference to a function.
// But this would mean that a const qualified function type was formed in
// the make_tuple function and hence make_tuple can't take a function
// reference as a parameter, and thus T can't be a function type.
// So is_function test was removed.
// (14.8.3. says that type deduction fails if a cv-qualified function type
// is created. (It only applies for the case of explicitly specifying template
// args, though?)) (JJ)

template<class T>
struct make_tuple_traits<T&> {
  typedef typename
     detail::generate_error<T&>::
       do_not_use_with_reference_type error;
};

// Arrays can't be stored as plain types; convert them to references.
// All arrays are converted to const. This is because make_tuple takes its
// parameters as const T& and thus the knowledge of the potential
// non-constness of actual argument is lost.
template<class T, int n>  struct make_tuple_traits <T[n]> {
  typedef const T (&type)[n];
};

template<class T, int n>
struct make_tuple_traits<const T[n]> {
  typedef const T (&type)[n];
};

template<class T, int n>  struct make_tuple_traits<volatile T[n]> {
  typedef const volatile T (&type)[n];
};

template<class T, int n>
struct make_tuple_traits<const volatile T[n]> {
  typedef const volatile T (&type)[n];
};

template<class T>
struct make_tuple_traits<reference_wrapper<T> >{
  typedef T& type;
};

template<class T>
struct make_tuple_traits<const reference_wrapper<T> >{
  typedef T& type;
};

template<>
struct make_tuple_traits<detail::ignore_t(detail::ignore_t)> {
  typedef detail::swallow_assign type;
};



namespace detail {

// a helper traits to make the make_tuple functions shorter (Vesa Karvonen's
// suggestion)
template <
  class T0 = null_type, class T1 = null_type, class T2 = null_type,
  class T3 = null_type, class T4 = null_type, class T5 = null_type,
  class T6 = null_type, class T7 = null_type, class T8 = null_type,
  class T9 = null_type
>
struct make_tuple_mapper {
  typedef
    tuple<typename make_tuple_traits<T0>::type,
          typename make_tuple_traits<T1>::type,
          typename make_tuple_traits<T2>::type,
          typename make_tuple_traits<T3>::type,
          typename make_tuple_traits<T4>::type,
          typename make_tuple_traits<T5>::type,
          typename make_tuple_traits<T6>::type,
          typename make_tuple_traits<T7>::type,
          typename make_tuple_traits<T8>::type,
          typename make_tuple_traits<T9>::type> type;
};

} // end detail

// -make_tuple function templates -----------------------------------
inline tuple<> make_tuple() {
  return tuple<>();
}

template<class T0>
inline typename detail::make_tuple_mapper<T0>::type
make_tuple(const T0& t0) {
  typedef typename detail::make_tuple_mapper<T0>::type t;
  return t(t0);
}

template<class T0, class T1>
inline typename detail::make_tuple_mapper<T0, T1>::type
make_tuple(const T0& t0, const T1& t1) {
  typedef typename detail::make_tuple_mapper<T0, T1>::type t;
  return t(t0, t1);
}

template<class T0, class T1, class T2>
inline typename detail::make_tuple_mapper<T0, T1, T2>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2) {
  typedef typename detail::make_tuple_mapper<T0, T1, T2>::type t;
  return t(t0, t1, t2);
}

template<class T0, class T1, class T2, class T3>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3) {
  typedef typename detail::make_tuple_mapper<T0, T1, T2, T3>::type t;
  return t(t0, t1, t2, t3);
}

template<class T0, class T1, class T2, class T3, class T4>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
                  const T4& t4) {
  typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type t;
  return t(t0, t1, t2, t3, t4);
}

template<class T0, class T1, class T2, class T3, class T4, class T5>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
                  const T4& t4, const T5& t5) {
  typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type t;
  return t(t0, t1, t2, t3, t4, t5);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
                  const T4& t4, const T5& t5, const T6& t6) {
  typedef typename detail::make_tuple_mapper
           <T0, T1, T2, T3, T4, T5, T6>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
         class T7>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
                  const T4& t4, const T5& t5, const T6& t6, const T7& t7) {
  typedef typename detail::make_tuple_mapper
           <T0, T1, T2, T3, T4, T5, T6, T7>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6, t7);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
         class T7, class T8>
inline typename detail::make_tuple_mapper
  <T0, T1, T2, T3, T4, T5, T6, T7, T8>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
                  const T4& t4, const T5& t5, const T6& t6, const T7& t7,
                  const T8& t8) {
  typedef typename detail::make_tuple_mapper
           <T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
         class T7, class T8, class T9>
inline typename detail::make_tuple_mapper
  <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
                  const T4& t4, const T5& t5, const T6& t6, const T7& t7,
                  const T8& t8, const T9& t9) {
  typedef typename detail::make_tuple_mapper
           <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
}

namespace detail {

template<class T>
struct tie_traits {
  typedef T& type;
};

template<>
struct tie_traits<ignore_t(ignore_t)> {
  typedef swallow_assign type;
};

template<>
struct tie_traits<void> {
  typedef null_type type;
};

template <
  class T0 = void, class T1 = void, class T2 = void,
  class T3 = void, class T4 = void, class T5 = void,
  class T6 = void, class T7 = void, class T8 = void,
  class T9 = void
>
struct tie_mapper {
  typedef
    tuple<typename tie_traits<T0>::type,
          typename tie_traits<T1>::type,
          typename tie_traits<T2>::type,
          typename tie_traits<T3>::type,
          typename tie_traits<T4>::type,
          typename tie_traits<T5>::type,
          typename tie_traits<T6>::type,
          typename tie_traits<T7>::type,
          typename tie_traits<T8>::type,
          typename tie_traits<T9>::type> type;
};

}

// Tie function templates -------------------------------------------------
template<class T0>
inline typename detail::tie_mapper<T0>::type
tie(T0& t0) {
  typedef typename detail::tie_mapper<T0>::type t;
  return t(t0);
}

template<class T0, class T1>
inline typename detail::tie_mapper<T0, T1>::type
tie(T0& t0, T1& t1) {
  typedef typename detail::tie_mapper<T0, T1>::type t;
  return t(t0, t1);
}

template<class T0, class T1, class T2>
inline typename detail::tie_mapper<T0, T1, T2>::type
tie(T0& t0, T1& t1, T2& t2) {
  typedef typename detail::tie_mapper<T0, T1, T2>::type t;
  return t(t0, t1, t2);
}

template<class T0, class T1, class T2, class T3>
inline typename detail::tie_mapper<T0, T1, T2, T3>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3) {
  typedef typename detail::tie_mapper<T0, T1, T2, T3>::type t;
  return t(t0, t1, t2, t3);
}

template<class T0, class T1, class T2, class T3, class T4>
inline typename detail::tie_mapper<T0, T1, T2, T3, T4>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3,
                  T4& t4) {
  typedef typename detail::tie_mapper<T0, T1, T2, T3, T4>::type t;
  return t(t0, t1, t2, t3, t4);
}

template<class T0, class T1, class T2, class T3, class T4, class T5>
inline typename detail::tie_mapper<T0, T1, T2, T3, T4, T5>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3,
                  T4& t4, T5& t5) {
  typedef typename detail::tie_mapper<T0, T1, T2, T3, T4, T5>::type t;
  return t(t0, t1, t2, t3, t4, t5);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
inline typename detail::tie_mapper<T0, T1, T2, T3, T4, T5, T6>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3,
                  T4& t4, T5& t5, T6& t6) {
  typedef typename detail::tie_mapper
           <T0, T1, T2, T3, T4, T5, T6>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
         class T7>
inline typename detail::tie_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3,
                  T4& t4, T5& t5, T6& t6, T7& t7) {
  typedef typename detail::tie_mapper
           <T0, T1, T2, T3, T4, T5, T6, T7>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6, t7);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
         class T7, class T8>
inline typename detail::tie_mapper
  <T0, T1, T2, T3, T4, T5, T6, T7, T8>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3,
                  T4& t4, T5& t5, T6& t6, T7& t7,
                  T8& t8) {
  typedef typename detail::tie_mapper
           <T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
}

template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
         class T7, class T8, class T9>
inline typename detail::tie_mapper
  <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
tie(T0& t0, T1& t1, T2& t2, T3& t3,
                  T4& t4, T5& t5, T6& t6, T7& t7,
                  T8& t8, T9& t9) {
  typedef typename detail::tie_mapper
           <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
  return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
}

template <class T0, class T1, class T2, class T3, class T4,
          class T5, class T6, class T7, class T8, class T9>
void swap(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& lhs,
          tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& rhs);
inline void swap(null_type&, null_type&) {}
template<class HH>
inline void swap(cons<HH, null_type>& lhs, cons<HH, null_type>& rhs) {
  ::boost::swap(lhs.head, rhs.head);
}
template<class HH, class TT>
inline void swap(cons<HH, TT>& lhs, cons<HH, TT>& rhs) {
  ::boost::swap(lhs.head, rhs.head);
  ::boost::tuples::swap(lhs.tail, rhs.tail);
}
template <class T0, class T1, class T2, class T3, class T4,
          class T5, class T6, class T7, class T8, class T9>
inline void swap(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& lhs,
          tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& rhs) {
  typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> tuple_type;
  typedef typename tuple_type::inherited base;
  ::boost::tuples::swap(static_cast<base&>(lhs), static_cast<base&>(rhs));
}

} // end of namespace tuples
} // end of namespace boost


#endif // BOOST_TUPLE_BASIC_HPP