Source

protobuf / src / google / protobuf / io / coded_stream.h

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains the CodedInputStream and CodedOutputStream classes,
// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
// and allow you to read or write individual pieces of data in various
// formats.  In particular, these implement the varint encoding for
// integers, a simple variable-length encoding in which smaller numbers
// take fewer bytes.
//
// Typically these classes will only be used internally by the protocol
// buffer library in order to encode and decode protocol buffers.  Clients
// of the library only need to know about this class if they wish to write
// custom message parsing or serialization procedures.
//
// CodedOutputStream example:
//   // Write some data to "myfile".  First we write a 4-byte "magic number"
//   // to identify the file type, then write a length-delimited string.  The
//   // string is composed of a varint giving the length followed by the raw
//   // bytes.
//   int fd = open("myfile", O_WRONLY);
//   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
//   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
//
//   int magic_number = 1234;
//   char text[] = "Hello world!";
//   coded_output->WriteLittleEndian32(magic_number);
//   coded_output->WriteVarint32(strlen(text));
//   coded_output->WriteRaw(text, strlen(text));
//
//   delete coded_output;
//   delete raw_output;
//   close(fd);
//
// CodedInputStream example:
//   // Read a file created by the above code.
//   int fd = open("myfile", O_RDONLY);
//   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
//   CodedInputStream coded_input = new CodedInputStream(raw_input);
//
//   coded_input->ReadLittleEndian32(&magic_number);
//   if (magic_number != 1234) {
//     cerr << "File not in expected format." << endl;
//     return;
//   }
//
//   uint32 size;
//   coded_input->ReadVarint32(&size);
//
//   char* text = new char[size + 1];
//   coded_input->ReadRaw(buffer, size);
//   text[size] = '\0';
//
//   delete coded_input;
//   delete raw_input;
//   close(fd);
//
//   cout << "Text is: " << text << endl;
//   delete [] text;
//
// For those who are interested, varint encoding is defined as follows:
//
// The encoding operates on unsigned integers of up to 64 bits in length.
// Each byte of the encoded value has the format:
// * bits 0-6: Seven bits of the number being encoded.
// * bit 7: Zero if this is the last byte in the encoding (in which
//   case all remaining bits of the number are zero) or 1 if
//   more bytes follow.
// The first byte contains the least-significant 7 bits of the number, the
// second byte (if present) contains the next-least-significant 7 bits,
// and so on.  So, the binary number 1011000101011 would be encoded in two
// bytes as "10101011 00101100".
//
// In theory, varint could be used to encode integers of any length.
// However, for practicality we set a limit at 64 bits.  The maximum encoded
// length of a number is thus 10 bytes.

#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__

#include <string>
#ifdef _MSC_VER
  #if defined(_M_IX86) && \
      !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
    #define PROTOBUF_LITTLE_ENDIAN 1
  #endif
  #if _MSC_VER >= 1300
    // If MSVC has "/RTCc" set, it will complain about truncating casts at
    // runtime.  This file contains some intentional truncating casts.
    #pragma runtime_checks("c", off)
  #endif
#else
  #include <sys/param.h>   // __BYTE_ORDER
  #if defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN && \
      !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
    #define PROTOBUF_LITTLE_ENDIAN 1
  #endif
#endif
#include <google/protobuf/stubs/common.h>


namespace google {
namespace protobuf {

class DescriptorPool;
class MessageFactory;

namespace io {

// Defined in this file.
class CodedInputStream;
class CodedOutputStream;

// Defined in other files.
class ZeroCopyInputStream;           // zero_copy_stream.h
class ZeroCopyOutputStream;          // zero_copy_stream.h

// Class which reads and decodes binary data which is composed of varint-
// encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
// Most users will not need to deal with CodedInputStream.
//
// Most methods of CodedInputStream that return a bool return false if an
// underlying I/O error occurs or if the data is malformed.  Once such a
// failure occurs, the CodedInputStream is broken and is no longer useful.
class LIBPROTOBUF_EXPORT CodedInputStream {
 public:
  // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
  explicit CodedInputStream(ZeroCopyInputStream* input);

  // Create a CodedInputStream that reads from the given flat array.  This is
  // faster than using an ArrayInputStream.  PushLimit(size) is implied by
  // this constructor.
  explicit CodedInputStream(const uint8* buffer, int size);

  // Destroy the CodedInputStream and position the underlying
  // ZeroCopyInputStream at the first unread byte.  If an error occurred while
  // reading (causing a method to return false), then the exact position of
  // the input stream may be anywhere between the last value that was read
  // successfully and the stream's byte limit.
  ~CodedInputStream();


  // Skips a number of bytes.  Returns false if an underlying read error
  // occurs.
  bool Skip(int count);

  // Sets *data to point directly at the unread part of the CodedInputStream's
  // underlying buffer, and *size to the size of that buffer, but does not
  // advance the stream's current position.  This will always either produce
  // a non-empty buffer or return false.  If the caller consumes any of
  // this data, it should then call Skip() to skip over the consumed bytes.
  // This may be useful for implementing external fast parsing routines for
  // types of data not covered by the CodedInputStream interface.
  bool GetDirectBufferPointer(const void** data, int* size);

  // Like GetDirectBufferPointer, but this method is inlined, and does not
  // attempt to Refresh() if the buffer is currently empty.
  inline void GetDirectBufferPointerInline(const void** data,
                                           int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Read raw bytes, copying them into the given buffer.
  bool ReadRaw(void* buffer, int size);

  // Like ReadRaw, but reads into a string.
  //
  // Implementation Note:  ReadString() grows the string gradually as it
  // reads in the data, rather than allocating the entire requested size
  // upfront.  This prevents denial-of-service attacks in which a client
  // could claim that a string is going to be MAX_INT bytes long in order to
  // crash the server because it can't allocate this much space at once.
  bool ReadString(string* buffer, int size);
  // Like the above, with inlined optimizations. This should only be used
  // by the protobuf implementation.
  inline bool InternalReadStringInline(string* buffer,
                                       int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;


  // Read a 32-bit little-endian integer.
  bool ReadLittleEndian32(uint32* value);
  // Read a 64-bit little-endian integer.
  bool ReadLittleEndian64(uint64* value);

  // These methods read from an externally provided buffer. The caller is
  // responsible for ensuring that the buffer has sufficient space.
  // Read a 32-bit little-endian integer.
  static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
                                                   uint32* value);
  // Read a 64-bit little-endian integer.
  static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
                                                   uint64* value);

  // Read an unsigned integer with Varint encoding, truncating to 32 bits.
  // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
  // it to uint32, but may be more efficient.
  bool ReadVarint32(uint32* value);
  // Read an unsigned integer with Varint encoding.
  bool ReadVarint64(uint64* value);

  // Read a tag.  This calls ReadVarint32() and returns the result, or returns
  // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
  // the last tag value, which can be checked with LastTagWas().
  // Always inline because this is only called in once place per parse loop
  // but it is called for every iteration of said loop, so it should be fast.
  // GCC doesn't want to inline this by default.
  uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Usually returns true if calling ReadVarint32() now would produce the given
  // value.  Will always return false if ReadVarint32() would not return the
  // given value.  If ExpectTag() returns true, it also advances past
  // the varint.  For best performance, use a compile-time constant as the
  // parameter.
  // Always inline because this collapses to a small number of instructions
  // when given a constant parameter, but GCC doesn't want to inline by default.
  bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Like above, except this reads from the specified buffer. The caller is
  // responsible for ensuring that the buffer is large enough to read a varint
  // of the expected size. For best performance, use a compile-time constant as
  // the expected tag parameter.
  //
  // Returns a pointer beyond the expected tag if it was found, or NULL if it
  // was not.
  static const uint8* ExpectTagFromArray(
      const uint8* buffer,
      uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Usually returns true if no more bytes can be read.  Always returns false
  // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
  // call to LastTagWas() will act as if ReadTag() had been called and returned
  // zero, and ConsumedEntireMessage() will return true.
  bool ExpectAtEnd();

  // If the last call to ReadTag() returned the given value, returns true.
  // Otherwise, returns false;
  //
  // This is needed because parsers for some types of embedded messages
  // (with field type TYPE_GROUP) don't actually know that they've reached the
  // end of a message until they see an ENDGROUP tag, which was actually part
  // of the enclosing message.  The enclosing message would like to check that
  // tag to make sure it had the right number, so it calls LastTagWas() on
  // return from the embedded parser to check.
  bool LastTagWas(uint32 expected);

  // When parsing message (but NOT a group), this method must be called
  // immediately after MergeFromCodedStream() returns (if it returns true)
  // to further verify that the message ended in a legitimate way.  For
  // example, this verifies that parsing did not end on an end-group tag.
  // It also checks for some cases where, due to optimizations,
  // MergeFromCodedStream() can incorrectly return true.
  bool ConsumedEntireMessage();

  // Limits ----------------------------------------------------------
  // Limits are used when parsing length-delimited embedded messages.
  // After the message's length is read, PushLimit() is used to prevent
  // the CodedInputStream from reading beyond that length.  Once the
  // embedded message has been parsed, PopLimit() is called to undo the
  // limit.

  // Opaque type used with PushLimit() and PopLimit().  Do not modify
  // values of this type yourself.  The only reason that this isn't a
  // struct with private internals is for efficiency.
  typedef int Limit;

  // Places a limit on the number of bytes that the stream may read,
  // starting from the current position.  Once the stream hits this limit,
  // it will act like the end of the input has been reached until PopLimit()
  // is called.
  //
  // As the names imply, the stream conceptually has a stack of limits.  The
  // shortest limit on the stack is always enforced, even if it is not the
  // top limit.
  //
  // The value returned by PushLimit() is opaque to the caller, and must
  // be passed unchanged to the corresponding call to PopLimit().
  Limit PushLimit(int byte_limit);

  // Pops the last limit pushed by PushLimit().  The input must be the value
  // returned by that call to PushLimit().
  void PopLimit(Limit limit);

  // Returns the number of bytes left until the nearest limit on the
  // stack is hit, or -1 if no limits are in place.
  int BytesUntilLimit();

  // Total Bytes Limit -----------------------------------------------
  // To prevent malicious users from sending excessively large messages
  // and causing integer overflows or memory exhaustion, CodedInputStream
  // imposes a hard limit on the total number of bytes it will read.

  // Sets the maximum number of bytes that this CodedInputStream will read
  // before refusing to continue.  To prevent integer overflows in the
  // protocol buffers implementation, as well as to prevent servers from
  // allocating enormous amounts of memory to hold parsed messages, the
  // maximum message length should be limited to the shortest length that
  // will not harm usability.  The theoretical shortest message that could
  // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
  // should set shorter limits if possible.  If warning_threshold is not -1,
  // a warning will be printed to stderr after warning_threshold bytes are
  // read.  An error will always be printed to stderr if the limit is
  // reached.
  //
  // This is unrelated to PushLimit()/PopLimit().
  //
  // Hint:  If you are reading this because your program is printing a
  //   warning about dangerously large protocol messages, you may be
  //   confused about what to do next.  The best option is to change your
  //   design such that excessively large messages are not necessary.
  //   For example, try to design file formats to consist of many small
  //   messages rather than a single large one.  If this is infeasible,
  //   you will need to increase the limit.  Chances are, though, that
  //   your code never constructs a CodedInputStream on which the limit
  //   can be set.  You probably parse messages by calling things like
  //   Message::ParseFromString().  In this case, you will need to change
  //   your code to instead construct some sort of ZeroCopyInputStream
  //   (e.g. an ArrayInputStream), construct a CodedInputStream around
  //   that, then call Message::ParseFromCodedStream() instead.  Then
  //   you can adjust the limit.  Yes, it's more work, but you're doing
  //   something unusual.
  void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);

  // Recursion Limit -------------------------------------------------
  // To prevent corrupt or malicious messages from causing stack overflows,
  // we must keep track of the depth of recursion when parsing embedded
  // messages and groups.  CodedInputStream keeps track of this because it
  // is the only object that is passed down the stack during parsing.

  // Sets the maximum recursion depth.  The default is 64.
  void SetRecursionLimit(int limit);

  // Increments the current recursion depth.  Returns true if the depth is
  // under the limit, false if it has gone over.
  bool IncrementRecursionDepth();

  // Decrements the recursion depth.
  void DecrementRecursionDepth();

  // Extension Registry ----------------------------------------------
  // ADVANCED USAGE:  99.9% of people can ignore this section.
  //
  // By default, when parsing extensions, the parser looks for extension
  // definitions in the pool which owns the outer message's Descriptor.
  // However, you may call SetExtensionRegistry() to provide an alternative
  // pool instead.  This makes it possible, for example, to parse a message
  // using a generated class, but represent some extensions using
  // DynamicMessage.

  // Set the pool used to look up extensions.  Most users do not need to call
  // this as the correct pool will be chosen automatically.
  //
  // WARNING:  It is very easy to misuse this.  Carefully read the requirements
  //   below.  Do not use this unless you are sure you need it.  Almost no one
  //   does.
  //
  // Let's say you are parsing a message into message object m, and you want
  // to take advantage of SetExtensionRegistry().  You must follow these
  // requirements:
  //
  // The given DescriptorPool must contain m->GetDescriptor().  It is not
  // sufficient for it to simply contain a descriptor that has the same name
  // and content -- it must be the *exact object*.  In other words:
  //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
  //          m->GetDescriptor());
  // There are two ways to satisfy this requirement:
  // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
  //    because this is the pool that would be used anyway if you didn't call
  //    SetExtensionRegistry() at all.
  // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
  //    "underlay".  Read the documentation for DescriptorPool for more
  //    information about underlays.
  //
  // You must also provide a MessageFactory.  This factory will be used to
  // construct Message objects representing extensions.  The factory's
  // GetPrototype() MUST return non-NULL for any Descriptor which can be found
  // through the provided pool.
  //
  // If the provided factory might return instances of protocol-compiler-
  // generated (i.e. compiled-in) types, or if the outer message object m is
  // a generated type, then the given factory MUST have this property:  If
  // GetPrototype() is given a Descriptor which resides in
  // DescriptorPool::generated_pool(), the factory MUST return the same
  // prototype which MessageFactory::generated_factory() would return.  That
  // is, given a descriptor for a generated type, the factory must return an
  // instance of the generated class (NOT DynamicMessage).  However, when
  // given a descriptor for a type that is NOT in generated_pool, the factory
  // is free to return any implementation.
  //
  // The reason for this requirement is that generated sub-objects may be
  // accessed via the standard (non-reflection) extension accessor methods,
  // and these methods will down-cast the object to the generated class type.
  // If the object is not actually of that type, the results would be undefined.
  // On the other hand, if an extension is not compiled in, then there is no
  // way the code could end up accessing it via the standard accessors -- the
  // only way to access the extension is via reflection.  When using reflection,
  // DynamicMessage and generated messages are indistinguishable, so it's fine
  // if these objects are represented using DynamicMessage.
  //
  // Using DynamicMessageFactory on which you have called
  // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
  // above requirement.
  //
  // If either pool or factory is NULL, both must be NULL.
  //
  // Note that this feature is ignored when parsing "lite" messages as they do
  // not have descriptors.
  void SetExtensionRegistry(DescriptorPool* pool, MessageFactory* factory);

  // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
  // has been provided.
  const DescriptorPool* GetExtensionPool();

  // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
  // factory has been provided.
  MessageFactory* GetExtensionFactory();

 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);

  ZeroCopyInputStream* input_;
  const uint8* buffer_;
  const uint8* buffer_end_;     // pointer to the end of the buffer.
  int total_bytes_read_;  // total bytes read from input_, including
                          // the current buffer

  // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
  // so that we can BackUp() on destruction.
  int overflow_bytes_;

  // LastTagWas() stuff.
  uint32 last_tag_;         // result of last ReadTag().

  // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
  // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
  // reach the end of a message and attempt to read another tag.
  bool legitimate_message_end_;

  // See EnableAliasing().
  bool aliasing_enabled_;

  // Limits
  Limit current_limit_;   // if position = -1, no limit is applied

  // For simplicity, if the current buffer crosses a limit (either a normal
  // limit created by PushLimit() or the total bytes limit), buffer_size_
  // only tracks the number of bytes before that limit.  This field
  // contains the number of bytes after it.  Note that this implies that if
  // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
  // hit a limit.  However, if both are zero, it doesn't necessarily mean
  // we aren't at a limit -- the buffer may have ended exactly at the limit.
  int buffer_size_after_limit_;

  // Maximum number of bytes to read, period.  This is unrelated to
  // current_limit_.  Set using SetTotalBytesLimit().
  int total_bytes_limit_;
  int total_bytes_warning_threshold_;

  // Current recursion depth, controlled by IncrementRecursionDepth() and
  // DecrementRecursionDepth().
  int recursion_depth_;
  // Recursion depth limit, set by SetRecursionLimit().
  int recursion_limit_;

  // See SetExtensionRegistry().
  const DescriptorPool* extension_pool_;
  MessageFactory* extension_factory_;

  // Private member functions.

  // Advance the buffer by a given number of bytes.
  void Advance(int amount);

  // Back up input_ to the current buffer position.
  void BackUpInputToCurrentPosition();

  // Recomputes the value of buffer_size_after_limit_.  Must be called after
  // current_limit_ or total_bytes_limit_ changes.
  void RecomputeBufferLimits();

  // Writes an error message saying that we hit total_bytes_limit_.
  void PrintTotalBytesLimitError();

  // Called when the buffer runs out to request more data.  Implies an
  // Advance(BufferSize()).
  bool Refresh();

  // When parsing varints, we optimize for the common case of small values, and
  // then optimize for the case when the varint fits within the current buffer
  // piece. The Fallback method is used when we can't use the one-byte
  // optimization. The Slow method is yet another fallback when the buffer is
  // not large enough. Making the slow path out-of-line speeds up the common
  // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
  // message crosses multiple buffers.
  bool ReadVarint32Fallback(uint32* value);
  bool ReadVarint64Fallback(uint64* value);
  bool ReadVarint32Slow(uint32* value);
  bool ReadVarint64Slow(uint64* value);
  bool ReadLittleEndian32Fallback(uint32* value);
  bool ReadLittleEndian64Fallback(uint64* value);
  // Fallback/slow methods for reading tags. These do not update last_tag_,
  // but will set legitimate_message_end_ if we are at the end of the input
  // stream.
  uint32 ReadTagFallback();
  uint32 ReadTagSlow();
  bool ReadStringFallback(string* buffer, int size);

  // Return the size of the buffer.
  int BufferSize() const;

  static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB

  static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
  static const int kDefaultRecursionLimit = 64;
};

// Class which encodes and writes binary data which is composed of varint-
// encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
// Most users will not need to deal with CodedOutputStream.
//
// Most methods of CodedOutputStream which return a bool return false if an
// underlying I/O error occurs.  Once such a failure occurs, the
// CodedOutputStream is broken and is no longer useful. The Write* methods do
// not return the stream status, but will invalidate the stream if an error
// occurs. The client can probe HadError() to determine the status.
//
// Note that every method of CodedOutputStream which writes some data has
// a corresponding static "ToArray" version. These versions write directly
// to the provided buffer, returning a pointer past the last written byte.
// They require that the buffer has sufficient capacity for the encoded data.
// This allows an optimization where we check if an output stream has enough
// space for an entire message before we start writing and, if there is, we
// call only the ToArray methods to avoid doing bound checks for each
// individual value.
// i.e., in the example above:
//
//   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
//   int magic_number = 1234;
//   char text[] = "Hello world!";
//
//   int coded_size = sizeof(magic_number) +
//                    CodedOutputStream::Varint32Size(strlen(text)) +
//                    strlen(text);
//
//   uint8* buffer =
//       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
//   if (buffer != NULL) {
//     // The output stream has enough space in the buffer: write directly to
//     // the array.
//     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
//                                                            buffer);
//     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
//     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
//   } else {
//     // Make bound-checked writes, which will ask the underlying stream for
//     // more space as needed.
//     coded_output->WriteLittleEndian32(magic_number);
//     coded_output->WriteVarint32(strlen(text));
//     coded_output->WriteRaw(text, strlen(text));
//   }
//
//   delete coded_output;
class LIBPROTOBUF_EXPORT CodedOutputStream {
 public:
  // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
  explicit CodedOutputStream(ZeroCopyOutputStream* output);

  // Destroy the CodedOutputStream and position the underlying
  // ZeroCopyOutputStream immediately after the last byte written.
  ~CodedOutputStream();

  // Skips a number of bytes, leaving the bytes unmodified in the underlying
  // buffer.  Returns false if an underlying write error occurs.  This is
  // mainly useful with GetDirectBufferPointer().
  bool Skip(int count);

  // Sets *data to point directly at the unwritten part of the
  // CodedOutputStream's underlying buffer, and *size to the size of that
  // buffer, but does not advance the stream's current position.  This will
  // always either produce a non-empty buffer or return false.  If the caller
  // writes any data to this buffer, it should then call Skip() to skip over
  // the consumed bytes.  This may be useful for implementing external fast
  // serialization routines for types of data not covered by the
  // CodedOutputStream interface.
  bool GetDirectBufferPointer(void** data, int* size);

  // If there are at least "size" bytes available in the current buffer,
  // returns a pointer directly into the buffer and advances over these bytes.
  // The caller may then write directly into this buffer (e.g. using the
  // *ToArray static methods) rather than go through CodedOutputStream.  If
  // there are not enough bytes available, returns NULL.  The return pointer is
  // invalidated as soon as any other non-const method of CodedOutputStream
  // is called.
  inline uint8* GetDirectBufferForNBytesAndAdvance(int size);

  // Write raw bytes, copying them from the given buffer.
  void WriteRaw(const void* buffer, int size);
  // Like WriteRaw()  but writing directly to the target array.
  // This is _not_ inlined, as the compiler often optimizes memcpy into inline
  // copy loops. Since this gets called by every field with string or bytes
  // type, inlining may lead to a significant amount of code bloat, with only a
  // minor performance gain.
  static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);

  // Equivalent to WriteRaw(str.data(), str.size()).
  void WriteString(const string& str);
  // Like WriteString()  but writing directly to the target array.
  static uint8* WriteStringToArray(const string& str, uint8* target);


  // Write a 32-bit little-endian integer.
  void WriteLittleEndian32(uint32 value);
  // Like WriteLittleEndian32()  but writing directly to the target array.
  static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
  // Write a 64-bit little-endian integer.
  void WriteLittleEndian64(uint64 value);
  // Like WriteLittleEndian64()  but writing directly to the target array.
  static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);

  // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
  // is equivalent to casting it to uint64 and writing it as a 64-bit value,
  // but may be more efficient.
  void WriteVarint32(uint32 value);
  // Like WriteVarint32()  but writing directly to the target array.
  static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
  // Write an unsigned integer with Varint encoding.
  void WriteVarint64(uint64 value);
  // Like WriteVarint64()  but writing directly to the target array.
  static uint8* WriteVarint64ToArray(uint64 value, uint8* target);

  // Equivalent to WriteVarint32() except when the value is negative,
  // in which case it must be sign-extended to a full 10 bytes.
  void WriteVarint32SignExtended(int32 value);
  // Like WriteVarint32SignExtended()  but writing directly to the target array.
  static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);

  // This is identical to WriteVarint32(), but optimized for writing tags.
  // In particular, if the input is a compile-time constant, this method
  // compiles down to a couple instructions.
  // Always inline because otherwise the aformentioned optimization can't work,
  // but GCC by default doesn't want to inline this.
  void WriteTag(uint32 value);
  // Like WriteTag()  but writing directly to the target array.
  static uint8* WriteTagToArray(
      uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Returns the number of bytes needed to encode the given value as a varint.
  static int VarintSize32(uint32 value);
  // Returns the number of bytes needed to encode the given value as a varint.
  static int VarintSize64(uint64 value);

  // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
  static int VarintSize32SignExtended(int32 value);

  // Returns the total number of bytes written since this object was created.
  inline int ByteCount() const;

  // Returns true if there was an underlying I/O error since this object was
  // created.
  bool HadError() const { return had_error_; }

 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);

  ZeroCopyOutputStream* output_;
  uint8* buffer_;
  int buffer_size_;
  int total_bytes_;  // Sum of sizes of all buffers seen so far.
  bool had_error_;   // Whether an error occurred during output.

  // Advance the buffer by a given number of bytes.
  void Advance(int amount);

  // Called when the buffer runs out to request more data.  Implies an
  // Advance(buffer_size_).
  bool Refresh();

  static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);

  // Always-inlined versions of WriteVarint* functions so that code can be
  // reused, while still controlling size. For instance, WriteVarint32ToArray()
  // should not directly call this: since it is inlined itself, doing so
  // would greatly increase the size of generated code. Instead, it should call
  // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
  // out-of-line, so it should just invoke this directly to avoid any extra
  // function call overhead.
  static uint8* WriteVarint32FallbackToArrayInline(
      uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
  static uint8* WriteVarint64ToArrayInline(
      uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  static int VarintSize32Fallback(uint32 value);
};

// inline methods ====================================================
// The vast majority of varints are only one byte.  These inline
// methods optimize for that case.

inline bool CodedInputStream::ReadVarint32(uint32* value) {
  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    *value = *buffer_;
    Advance(1);
    return true;
  } else {
    return ReadVarint32Fallback(value);
  }
}

inline bool CodedInputStream::ReadVarint64(uint64* value) {
  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    *value = *buffer_;
    Advance(1);
    return true;
  } else {
    return ReadVarint64Fallback(value);
  }
}

// static
inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
    const uint8* buffer,
    uint32* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(value, buffer, sizeof(*value));
  return buffer + sizeof(*value);
#else
  *value = (static_cast<uint32>(buffer[0])      ) |
           (static_cast<uint32>(buffer[1]) <<  8) |
           (static_cast<uint32>(buffer[2]) << 16) |
           (static_cast<uint32>(buffer[3]) << 24);
  return buffer + sizeof(*value);
#endif
}
// static
inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
    const uint8* buffer,
    uint64* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(value, buffer, sizeof(*value));
  return buffer + sizeof(*value);
#else
  uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
                 (static_cast<uint32>(buffer[1]) <<  8) |
                 (static_cast<uint32>(buffer[2]) << 16) |
                 (static_cast<uint32>(buffer[3]) << 24);
  uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
                 (static_cast<uint32>(buffer[5]) <<  8) |
                 (static_cast<uint32>(buffer[6]) << 16) |
                 (static_cast<uint32>(buffer[7]) << 24);
  *value = static_cast<uint64>(part0) |
          (static_cast<uint64>(part1) << 32);
  return buffer + sizeof(*value);
#endif
}

inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
#if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    memcpy(value, buffer_, sizeof(*value));
    Advance(sizeof(*value));
    return true;
  } else {
    return ReadLittleEndian32Fallback(value);
  }
#else
  return ReadLittleEndian32Fallback(value);
#endif
}

inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
#if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    memcpy(value, buffer_, sizeof(*value));
    Advance(sizeof(*value));
    return true;
  } else {
    return ReadLittleEndian64Fallback(value);
  }
#else
  return ReadLittleEndian64Fallback(value);
#endif
}

inline uint32 CodedInputStream::ReadTag() {
  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
    last_tag_ = buffer_[0];
    Advance(1);
    return last_tag_;
  } else {
    last_tag_ = ReadTagFallback();
    return last_tag_;
  }
}

inline bool CodedInputStream::LastTagWas(uint32 expected) {
  return last_tag_ == expected;
}

inline bool CodedInputStream::ConsumedEntireMessage() {
  return legitimate_message_end_;
}

inline bool CodedInputStream::ExpectTag(uint32 expected) {
  if (expected < (1 << 7)) {
    if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
      Advance(1);
      return true;
    } else {
      return false;
    }
  } else if (expected < (1 << 14)) {
    if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
        buffer_[0] == static_cast<uint8>(expected | 0x80) &&
        buffer_[1] == static_cast<uint8>(expected >> 7)) {
      Advance(2);
      return true;
    } else {
      return false;
    }
  } else {
    // Don't bother optimizing for larger values.
    return false;
  }
}

inline const uint8* CodedInputStream::ExpectTagFromArray(
    const uint8* buffer, uint32 expected) {
  if (expected < (1 << 7)) {
    if (buffer[0] == expected) {
      return buffer + 1;
    }
  } else if (expected < (1 << 14)) {
    if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
        buffer[1] == static_cast<uint8>(expected >> 7)) {
      return buffer + 2;
    }
  }
  return NULL;
}

inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
                                                           int* size) {
  *data = buffer_;
  *size = buffer_end_ - buffer_;
}

inline bool CodedInputStream::ExpectAtEnd() {
  // If we are at a limit we know no more bytes can be read.  Otherwise, it's
  // hard to say without calling Refresh(), and we'd rather not do that.

  if (buffer_ == buffer_end_ && buffer_size_after_limit_ != 0) {
    last_tag_ = 0;                   // Pretend we called ReadTag()...
    legitimate_message_end_ = true;  // ... and it hit EOF.
    return true;
  } else {
    return false;
  }
}

inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
  if (buffer_size_ < size) {
    return NULL;
  } else {
    uint8* result = buffer_;
    Advance(size);
    return result;
  }
}

inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
                                                        uint8* target) {
  if (value < 0x80) {
    *target = value;
    return target + 1;
  } else {
    return WriteVarint32FallbackToArray(value, target);
  }
}

inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
  if (value < 0) {
    WriteVarint64(static_cast<uint64>(value));
  } else {
    WriteVarint32(static_cast<uint32>(value));
  }
}

inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
    int32 value, uint8* target) {
  if (value < 0) {
    return WriteVarint64ToArray(static_cast<uint64>(value), target);
  } else {
    return WriteVarint32ToArray(static_cast<uint32>(value), target);
  }
}

inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
                                                            uint8* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(target, &value, sizeof(value));
#else
  target[0] = static_cast<uint8>(value);
  target[1] = static_cast<uint8>(value >>  8);
  target[2] = static_cast<uint8>(value >> 16);
  target[3] = static_cast<uint8>(value >> 24);
#endif
  return target + sizeof(value);
}

inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
                                                            uint8* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(target, &value, sizeof(value));
#else
  uint32 part0 = static_cast<uint32>(value);
  uint32 part1 = static_cast<uint32>(value >> 32);

  target[0] = static_cast<uint8>(part0);
  target[1] = static_cast<uint8>(part0 >>  8);
  target[2] = static_cast<uint8>(part0 >> 16);
  target[3] = static_cast<uint8>(part0 >> 24);
  target[4] = static_cast<uint8>(part1);
  target[5] = static_cast<uint8>(part1 >>  8);
  target[6] = static_cast<uint8>(part1 >> 16);
  target[7] = static_cast<uint8>(part1 >> 24);
#endif
  return target + sizeof(value);
}

inline void CodedOutputStream::WriteTag(uint32 value) {
  WriteVarint32(value);
}

inline uint8* CodedOutputStream::WriteTagToArray(
    uint32 value, uint8* target) {
  if (value < (1 << 7)) {
    target[0] = value;
    return target + 1;
  } else if (value < (1 << 14)) {
    target[0] = static_cast<uint8>(value | 0x80);
    target[1] = static_cast<uint8>(value >> 7);
    return target + 2;
  } else {
    return WriteVarint32FallbackToArray(value, target);
  }
}

inline int CodedOutputStream::VarintSize32(uint32 value) {
  if (value < (1 << 7)) {
    return 1;
  } else  {
    return VarintSize32Fallback(value);
  }
}

inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
  if (value < 0) {
    return 10;     // TODO(kenton):  Make this a symbolic constant.
  } else {
    return VarintSize32(static_cast<uint32>(value));
  }
}

inline void CodedOutputStream::WriteString(const string& str) {
  WriteRaw(str.data(), str.size());
}

inline uint8* CodedOutputStream::WriteStringToArray(
    const string& str, uint8* target) {
  return WriteRawToArray(str.data(), str.size(), target);
}

inline int CodedOutputStream::ByteCount() const {
  return total_bytes_ - buffer_size_;
}

inline void CodedInputStream::Advance(int amount) {
  buffer_ += amount;
}

inline void CodedOutputStream::Advance(int amount) {
  buffer_ += amount;
  buffer_size_ -= amount;
}

inline void CodedInputStream::SetRecursionLimit(int limit) {
  recursion_limit_ = limit;
}

inline bool CodedInputStream::IncrementRecursionDepth() {
  ++recursion_depth_;
  return recursion_depth_ <= recursion_limit_;
}

inline void CodedInputStream::DecrementRecursionDepth() {
  if (recursion_depth_ > 0) --recursion_depth_;
}

inline void CodedInputStream::SetExtensionRegistry(DescriptorPool* pool,
                                                   MessageFactory* factory) {
  extension_pool_ = pool;
  extension_factory_ = factory;
}

inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
  return extension_pool_;
}

inline MessageFactory* CodedInputStream::GetExtensionFactory() {
  return extension_factory_;
}

inline int CodedInputStream::BufferSize() const {
  return buffer_end_ - buffer_;
}

inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
  : input_(input),
    buffer_(NULL),
    buffer_end_(NULL),
    total_bytes_read_(0),
    overflow_bytes_(0),
    last_tag_(0),
    legitimate_message_end_(false),
    aliasing_enabled_(false),
    current_limit_(kint32max),
    buffer_size_after_limit_(0),
    total_bytes_limit_(kDefaultTotalBytesLimit),
    total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
    recursion_depth_(0),
    recursion_limit_(kDefaultRecursionLimit),
    extension_pool_(NULL),
    extension_factory_(NULL) {
  // Eagerly Refresh() so buffer space is immediately available.
  Refresh();
}

inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
  : input_(NULL),
    buffer_(buffer),
    buffer_end_(buffer + size),
    total_bytes_read_(size),
    overflow_bytes_(0),
    last_tag_(0),
    legitimate_message_end_(false),
    aliasing_enabled_(false),
    current_limit_(size),
    buffer_size_after_limit_(0),
    total_bytes_limit_(kDefaultTotalBytesLimit),
    total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
    recursion_depth_(0),
    recursion_limit_(kDefaultRecursionLimit),
    extension_pool_(NULL),
    extension_factory_(NULL) {
  // Note that setting current_limit_ == size is important to prevent some
  // code paths from trying to access input_ and segfaulting.
}

inline CodedInputStream::~CodedInputStream() {
  if (input_ != NULL) {
    BackUpInputToCurrentPosition();
  }
}

}  // namespace io
}  // namespace protobuf


#if defined(_MSC_VER) && _MSC_VER >= 1300
  #pragma runtime_checks("c", restore)
#endif  // _MSC_VER

}  // namespace google
#endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.