protobuf / src / google / protobuf / io / coded_stream_unittest.cc

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains tests and benchmarks.

#include <vector>

#include <google/protobuf/io/coded_stream.h>

#include <limits.h>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/stubs/strutil.h>


// This declares an unsigned long long integer literal in a portable way.
// (The original macro is way too big and ruins my formatting.)
#undef ULL
#define ULL(x) GOOGLE_ULONGLONG(x)

namespace google {
namespace protobuf {
namespace io {
namespace {

// ===================================================================
// Data-Driven Test Infrastructure

// TEST_1D and TEST_2D are macros I'd eventually like to see added to
// gTest.  These macros can be used to declare tests which should be
// run multiple times, once for each item in some input array.  TEST_1D
// tests all cases in a single input array.  TEST_2D tests all
// combinations of cases from two arrays.  The arrays must be statically
// defined such that the GOOGLE_ARRAYSIZE() macro works on them.  Example:
//
// int kCases[] = {1, 2, 3, 4}
// TEST_1D(MyFixture, MyTest, kCases) {
//   EXPECT_GT(kCases_case, 0);
// }
//
// This test iterates through the numbers 1, 2, 3, and 4 and tests that
// they are all grater than zero.  In case of failure, the exact case
// which failed will be printed.  The case type must be printable using
// ostream::operator<<.

// TODO(kenton):  gTest now supports "parameterized tests" which would be
//   a better way to accomplish this.  Rewrite when time permits.

#define TEST_1D(FIXTURE, NAME, CASES)                                      \
  class FIXTURE##_##NAME##_DD : public FIXTURE {                           \
   protected:                                                              \
    template <typename CaseType>                                           \
    void DoSingleCase(const CaseType& CASES##_case);                       \
  };                                                                       \
                                                                           \
  TEST_F(FIXTURE##_##NAME##_DD, NAME) {                                    \
    for (int i = 0; i < GOOGLE_ARRAYSIZE(CASES); i++) {                           \
      SCOPED_TRACE(testing::Message()                                      \
        << #CASES " case #" << i << ": " << CASES[i]);                     \
      DoSingleCase(CASES[i]);                                              \
    }                                                                      \
  }                                                                        \
                                                                           \
  template <typename CaseType>                                             \
  void FIXTURE##_##NAME##_DD::DoSingleCase(const CaseType& CASES##_case)

#define TEST_2D(FIXTURE, NAME, CASES1, CASES2)                             \
  class FIXTURE##_##NAME##_DD : public FIXTURE {                           \
   protected:                                                              \
    template <typename CaseType1, typename CaseType2>                      \
    void DoSingleCase(const CaseType1& CASES1##_case,                      \
                      const CaseType2& CASES2##_case);                     \
  };                                                                       \
                                                                           \
  TEST_F(FIXTURE##_##NAME##_DD, NAME) {                                    \
    for (int i = 0; i < GOOGLE_ARRAYSIZE(CASES1); i++) {                          \
      for (int j = 0; j < GOOGLE_ARRAYSIZE(CASES2); j++) {                        \
        SCOPED_TRACE(testing::Message()                                    \
          << #CASES1 " case #" << i << ": " << CASES1[i] << ", "           \
          << #CASES2 " case #" << j << ": " << CASES2[j]);                 \
        DoSingleCase(CASES1[i], CASES2[j]);                                \
      }                                                                    \
    }                                                                      \
  }                                                                        \
                                                                           \
  template <typename CaseType1, typename CaseType2>                        \
  void FIXTURE##_##NAME##_DD::DoSingleCase(const CaseType1& CASES1##_case, \
                                           const CaseType2& CASES2##_case)

// ===================================================================

class CodedStreamTest : public testing::Test {
 protected:
  static const int kBufferSize = 1024 * 64;
  static uint8 buffer_[kBufferSize];
};

uint8 CodedStreamTest::buffer_[CodedStreamTest::kBufferSize];

// We test each operation over a variety of block sizes to insure that
// we test cases where reads or writes cross buffer boundaries, cases
// where they don't, and cases where there is so much buffer left that
// we can use special optimized paths that don't worry about bounds
// checks.
const int kBlockSizes[] = {1, 2, 3, 5, 7, 13, 32, 1024};

// -------------------------------------------------------------------
// Varint tests.

struct VarintCase {
  uint8 bytes[10];          // Encoded bytes.
  int size;                 // Encoded size, in bytes.
  uint64 value;             // Parsed value.
};

inline std::ostream& operator<<(std::ostream& os, const VarintCase& c) {
  return os << c.value;
}

VarintCase kVarintCases[] = {
  // 32-bit values
  {{0x00}      , 1, 0},
  {{0x01}      , 1, 1},
  {{0x7f}      , 1, 127},
  {{0xa2, 0x74}, 2, (0x22 << 0) | (0x74 << 7)},          // 14882
  {{0xbe, 0xf7, 0x92, 0x84, 0x0b}, 5,                    // 2961488830
    (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) |
    (ULL(0x0b) << 28)},

  // 64-bit
  {{0xbe, 0xf7, 0x92, 0x84, 0x1b}, 5,                    // 7256456126
    (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) |
    (ULL(0x1b) << 28)},
  {{0x80, 0xe6, 0xeb, 0x9c, 0xc3, 0xc9, 0xa4, 0x49}, 8,  // 41256202580718336
    (0x00 << 0) | (0x66 << 7) | (0x6b << 14) | (0x1c << 21) |
    (ULL(0x43) << 28) | (ULL(0x49) << 35) | (ULL(0x24) << 42) |
    (ULL(0x49) << 49)},
  // 11964378330978735131
  {{0x9b, 0xa8, 0xf9, 0xc2, 0xbb, 0xd6, 0x80, 0x85, 0xa6, 0x01}, 10,
    (0x1b << 0) | (0x28 << 7) | (0x79 << 14) | (0x42 << 21) |
    (ULL(0x3b) << 28) | (ULL(0x56) << 35) | (ULL(0x00) << 42) |
    (ULL(0x05) << 49) | (ULL(0x26) << 56) | (ULL(0x01) << 63)},
};

TEST_2D(CodedStreamTest, ReadVarint32, kVarintCases, kBlockSizes) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint32 value;
    EXPECT_TRUE(coded_input.ReadVarint32(&value));
    EXPECT_EQ(static_cast<uint32>(kVarintCases_case.value), value);
  }

  EXPECT_EQ(kVarintCases_case.size, input.ByteCount());
}

TEST_2D(CodedStreamTest, ReadTag, kVarintCases, kBlockSizes) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint32 expected_value = static_cast<uint32>(kVarintCases_case.value);
    EXPECT_EQ(expected_value, coded_input.ReadTag());

    EXPECT_TRUE(coded_input.LastTagWas(expected_value));
    EXPECT_FALSE(coded_input.LastTagWas(expected_value + 1));
  }

  EXPECT_EQ(kVarintCases_case.size, input.ByteCount());
}

// This is the regression test that verifies that there is no issues
// with the empty input buffers handling.
TEST_F(CodedStreamTest, EmptyInputBeforeEos) {
  class In : public ZeroCopyInputStream {
   public:
    In() : count_(0) {}
   private:
    virtual bool Next(const void** data, int* size) {
      *data = NULL;
      *size = 0;
      return count_++ < 2;
    }
    virtual void BackUp(int count)  {
      GOOGLE_LOG(FATAL) << "Tests never call this.";
    }
    virtual bool Skip(int count) {
      GOOGLE_LOG(FATAL) << "Tests never call this.";
      return false;
    }
    virtual int64 ByteCount() const { return 0; }
    int count_;
  } in;
  CodedInputStream input(&in);
  input.ReadTag();
  EXPECT_TRUE(input.ConsumedEntireMessage());
}

TEST_1D(CodedStreamTest, ExpectTag, kVarintCases) {
  // Leave one byte at the beginning of the buffer so we can read it
  // to force the first buffer to be loaded.
  buffer_[0] = '\0';
  memcpy(buffer_ + 1, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_));

  {
    CodedInputStream coded_input(&input);

    // Read one byte to force coded_input.Refill() to be called.  Otherwise,
    // ExpectTag() will return a false negative.
    uint8 dummy;
    coded_input.ReadRaw(&dummy, 1);
    EXPECT_EQ((uint)'\0', (uint)dummy);

    uint32 expected_value = static_cast<uint32>(kVarintCases_case.value);

    // ExpectTag() produces false negatives for large values.
    if (kVarintCases_case.size <= 2) {
      EXPECT_FALSE(coded_input.ExpectTag(expected_value + 1));
      EXPECT_TRUE(coded_input.ExpectTag(expected_value));
    } else {
      EXPECT_FALSE(coded_input.ExpectTag(expected_value));
    }
  }

  if (kVarintCases_case.size <= 2) {
    EXPECT_EQ(kVarintCases_case.size + 1, input.ByteCount());
  } else {
    EXPECT_EQ(1, input.ByteCount());
  }
}

TEST_1D(CodedStreamTest, ExpectTagFromArray, kVarintCases) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);

  const uint32 expected_value = static_cast<uint32>(kVarintCases_case.value);

  // If the expectation succeeds, it should return a pointer past the tag.
  if (kVarintCases_case.size <= 2) {
    EXPECT_TRUE(NULL ==
                CodedInputStream::ExpectTagFromArray(buffer_,
                                                     expected_value + 1));
    EXPECT_TRUE(buffer_ + kVarintCases_case.size ==
                CodedInputStream::ExpectTagFromArray(buffer_, expected_value));
  } else {
    EXPECT_TRUE(NULL ==
                CodedInputStream::ExpectTagFromArray(buffer_, expected_value));
  }
}

TEST_2D(CodedStreamTest, ReadVarint64, kVarintCases, kBlockSizes) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint64 value;
    EXPECT_TRUE(coded_input.ReadVarint64(&value));
    EXPECT_EQ(kVarintCases_case.value, value);
  }

  EXPECT_EQ(kVarintCases_case.size, input.ByteCount());
}

TEST_2D(CodedStreamTest, WriteVarint32, kVarintCases, kBlockSizes) {
  if (kVarintCases_case.value > ULL(0x00000000FFFFFFFF)) {
    // Skip this test for the 64-bit values.
    return;
  }

  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    coded_output.WriteVarint32(static_cast<uint32>(kVarintCases_case.value));
    EXPECT_FALSE(coded_output.HadError());

    EXPECT_EQ(kVarintCases_case.size, coded_output.ByteCount());
  }

  EXPECT_EQ(kVarintCases_case.size, output.ByteCount());
  EXPECT_EQ(0,
    memcmp(buffer_, kVarintCases_case.bytes, kVarintCases_case.size));
}

TEST_2D(CodedStreamTest, WriteVarint64, kVarintCases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    coded_output.WriteVarint64(kVarintCases_case.value);
    EXPECT_FALSE(coded_output.HadError());

    EXPECT_EQ(kVarintCases_case.size, coded_output.ByteCount());
  }

  EXPECT_EQ(kVarintCases_case.size, output.ByteCount());
  EXPECT_EQ(0,
    memcmp(buffer_, kVarintCases_case.bytes, kVarintCases_case.size));
}

// This test causes gcc 3.3.5 (and earlier?) to give the cryptic error:
//   "sorry, unimplemented: `method_call_expr' not supported by dump_expr"
#if !defined(__GNUC__) || __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)

int32 kSignExtendedVarintCases[] = {
  0, 1, -1, 1237894, -37895138
};

TEST_2D(CodedStreamTest, WriteVarint32SignExtended,
        kSignExtendedVarintCases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    coded_output.WriteVarint32SignExtended(kSignExtendedVarintCases_case);
    EXPECT_FALSE(coded_output.HadError());

    if (kSignExtendedVarintCases_case < 0) {
      EXPECT_EQ(10, coded_output.ByteCount());
    } else {
      EXPECT_LE(coded_output.ByteCount(), 5);
    }
  }

  if (kSignExtendedVarintCases_case < 0) {
    EXPECT_EQ(10, output.ByteCount());
  } else {
    EXPECT_LE(output.ByteCount(), 5);
  }

  // Read value back in as a varint64 and insure it matches.
  ArrayInputStream input(buffer_, sizeof(buffer_));

  {
    CodedInputStream coded_input(&input);

    uint64 value;
    EXPECT_TRUE(coded_input.ReadVarint64(&value));

    EXPECT_EQ(kSignExtendedVarintCases_case, static_cast<int64>(value));
  }

  EXPECT_EQ(output.ByteCount(), input.ByteCount());
}

#endif


// -------------------------------------------------------------------
// Varint failure test.

struct VarintErrorCase {
  uint8 bytes[12];
  int size;
  bool can_parse;
};

inline std::ostream& operator<<(std::ostream& os, const VarintErrorCase& c) {
  return os << "size " << c.size;
}

const VarintErrorCase kVarintErrorCases[] = {
  // Control case.  (Insures that there isn't something else wrong that
  // makes parsing always fail.)
  {{0x00}, 1, true},

  // No input data.
  {{}, 0, false},

  // Input ends unexpectedly.
  {{0xf0, 0xab}, 2, false},

  // Input ends unexpectedly after 32 bits.
  {{0xf0, 0xab, 0xc9, 0x9a, 0xf8, 0xb2}, 6, false},

  // Longer than 10 bytes.
  {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01},
   11, false},
};

TEST_2D(CodedStreamTest, ReadVarint32Error, kVarintErrorCases, kBlockSizes) {
  memcpy(buffer_, kVarintErrorCases_case.bytes, kVarintErrorCases_case.size);
  ArrayInputStream input(buffer_, kVarintErrorCases_case.size,
                         kBlockSizes_case);
  CodedInputStream coded_input(&input);

  uint32 value;
  EXPECT_EQ(kVarintErrorCases_case.can_parse, coded_input.ReadVarint32(&value));
}

TEST_2D(CodedStreamTest, ReadVarint64Error, kVarintErrorCases, kBlockSizes) {
  memcpy(buffer_, kVarintErrorCases_case.bytes, kVarintErrorCases_case.size);
  ArrayInputStream input(buffer_, kVarintErrorCases_case.size,
                         kBlockSizes_case);
  CodedInputStream coded_input(&input);

  uint64 value;
  EXPECT_EQ(kVarintErrorCases_case.can_parse, coded_input.ReadVarint64(&value));
}

// -------------------------------------------------------------------
// VarintSize

struct VarintSizeCase {
  uint64 value;
  int size;
};

inline std::ostream& operator<<(std::ostream& os, const VarintSizeCase& c) {
  return os << c.value;
}

VarintSizeCase kVarintSizeCases[] = {
  {0u, 1},
  {1u, 1},
  {127u, 1},
  {128u, 2},
  {758923u, 3},
  {4000000000u, 5},
  {ULL(41256202580718336), 8},
  {ULL(11964378330978735131), 10},
};

TEST_1D(CodedStreamTest, VarintSize32, kVarintSizeCases) {
  if (kVarintSizeCases_case.value > 0xffffffffu) {
    // Skip 64-bit values.
    return;
  }

  EXPECT_EQ(kVarintSizeCases_case.size,
    CodedOutputStream::VarintSize32(
      static_cast<uint32>(kVarintSizeCases_case.value)));
}

TEST_1D(CodedStreamTest, VarintSize64, kVarintSizeCases) {
  EXPECT_EQ(kVarintSizeCases_case.size,
    CodedOutputStream::VarintSize64(kVarintSizeCases_case.value));
}

// -------------------------------------------------------------------
// Fixed-size int tests

struct Fixed32Case {
  uint8 bytes[sizeof(uint32)];          // Encoded bytes.
  uint32 value;                         // Parsed value.
};

struct Fixed64Case {
  uint8 bytes[sizeof(uint64)];          // Encoded bytes.
  uint64 value;                         // Parsed value.
};

inline std::ostream& operator<<(std::ostream& os, const Fixed32Case& c) {
  return os << "0x" << hex << c.value << dec;
}

inline std::ostream& operator<<(std::ostream& os, const Fixed64Case& c) {
  return os << "0x" << hex << c.value << dec;
}

Fixed32Case kFixed32Cases[] = {
  {{0xef, 0xcd, 0xab, 0x90}, 0x90abcdefu},
  {{0x12, 0x34, 0x56, 0x78}, 0x78563412u},
};

Fixed64Case kFixed64Cases[] = {
  {{0xef, 0xcd, 0xab, 0x90, 0x12, 0x34, 0x56, 0x78}, ULL(0x7856341290abcdef)},
  {{0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}, ULL(0x8877665544332211)},
};

TEST_2D(CodedStreamTest, ReadLittleEndian32, kFixed32Cases, kBlockSizes) {
  memcpy(buffer_, kFixed32Cases_case.bytes, sizeof(kFixed32Cases_case.bytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint32 value;
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(kFixed32Cases_case.value, value);
  }

  EXPECT_EQ(sizeof(uint32), input.ByteCount());
}

TEST_2D(CodedStreamTest, ReadLittleEndian64, kFixed64Cases, kBlockSizes) {
  memcpy(buffer_, kFixed64Cases_case.bytes, sizeof(kFixed64Cases_case.bytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint64 value;
    EXPECT_TRUE(coded_input.ReadLittleEndian64(&value));
    EXPECT_EQ(kFixed64Cases_case.value, value);
  }

  EXPECT_EQ(sizeof(uint64), input.ByteCount());
}

TEST_2D(CodedStreamTest, WriteLittleEndian32, kFixed32Cases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    coded_output.WriteLittleEndian32(kFixed32Cases_case.value);
    EXPECT_FALSE(coded_output.HadError());

    EXPECT_EQ(sizeof(uint32), coded_output.ByteCount());
  }

  EXPECT_EQ(sizeof(uint32), output.ByteCount());
  EXPECT_EQ(0, memcmp(buffer_, kFixed32Cases_case.bytes, sizeof(uint32)));
}

TEST_2D(CodedStreamTest, WriteLittleEndian64, kFixed64Cases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    coded_output.WriteLittleEndian64(kFixed64Cases_case.value);
    EXPECT_FALSE(coded_output.HadError());

    EXPECT_EQ(sizeof(uint64), coded_output.ByteCount());
  }

  EXPECT_EQ(sizeof(uint64), output.ByteCount());
  EXPECT_EQ(0, memcmp(buffer_, kFixed64Cases_case.bytes, sizeof(uint64)));
}

// Tests using the static methods to read fixed-size values from raw arrays.

TEST_1D(CodedStreamTest, ReadLittleEndian32FromArray, kFixed32Cases) {
  memcpy(buffer_, kFixed32Cases_case.bytes, sizeof(kFixed32Cases_case.bytes));

  uint32 value;
  const uint8* end = CodedInputStream::ReadLittleEndian32FromArray(
      buffer_, &value);
  EXPECT_EQ(kFixed32Cases_case.value, value);
  EXPECT_TRUE(end == buffer_ + sizeof(value));
}

TEST_1D(CodedStreamTest, ReadLittleEndian64FromArray, kFixed64Cases) {
  memcpy(buffer_, kFixed64Cases_case.bytes, sizeof(kFixed64Cases_case.bytes));

  uint64 value;
  const uint8* end = CodedInputStream::ReadLittleEndian64FromArray(
      buffer_, &value);
  EXPECT_EQ(kFixed64Cases_case.value, value);
  EXPECT_TRUE(end == buffer_ + sizeof(value));
}

// -------------------------------------------------------------------
// Raw reads and writes

const char kRawBytes[] = "Some bytes which will be written and read raw.";

TEST_1D(CodedStreamTest, ReadRaw, kBlockSizes) {
  memcpy(buffer_, kRawBytes, sizeof(kRawBytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);
  char read_buffer[sizeof(kRawBytes)];

  {
    CodedInputStream coded_input(&input);

    EXPECT_TRUE(coded_input.ReadRaw(read_buffer, sizeof(kRawBytes)));
    EXPECT_EQ(0, memcmp(kRawBytes, read_buffer, sizeof(kRawBytes)));
  }

  EXPECT_EQ(sizeof(kRawBytes), input.ByteCount());
}

TEST_1D(CodedStreamTest, WriteRaw, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    coded_output.WriteRaw(kRawBytes, sizeof(kRawBytes));
    EXPECT_FALSE(coded_output.HadError());

    EXPECT_EQ(sizeof(kRawBytes), coded_output.ByteCount());
  }

  EXPECT_EQ(sizeof(kRawBytes), output.ByteCount());
  EXPECT_EQ(0, memcmp(buffer_, kRawBytes, sizeof(kRawBytes)));
}

TEST_1D(CodedStreamTest, ReadString, kBlockSizes) {
  memcpy(buffer_, kRawBytes, sizeof(kRawBytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    string str;
    EXPECT_TRUE(coded_input.ReadString(&str, strlen(kRawBytes)));
    EXPECT_EQ(kRawBytes, str);
  }

  EXPECT_EQ(strlen(kRawBytes), input.ByteCount());
}

// Check to make sure ReadString doesn't crash on impossibly large strings.
TEST_1D(CodedStreamTest, ReadStringImpossiblyLarge, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    string str;
    // Try to read a gigabyte.
    EXPECT_FALSE(coded_input.ReadString(&str, 1 << 30));
  }
}

TEST_F(CodedStreamTest, ReadStringImpossiblyLargeFromStringOnStack) {
  // Same test as above, except directly use a buffer. This used to cause
  // crashes while the above did not.
  uint8 buffer[8];
  CodedInputStream coded_input(buffer, 8);
  string str;
  EXPECT_FALSE(coded_input.ReadString(&str, 1 << 30));
}

TEST_F(CodedStreamTest, ReadStringImpossiblyLargeFromStringOnHeap) {
  scoped_array<uint8> buffer(new uint8[8]);
  CodedInputStream coded_input(buffer.get(), 8);
  string str;
  EXPECT_FALSE(coded_input.ReadString(&str, 1 << 30));
}


// -------------------------------------------------------------------
// Skip

const char kSkipTestBytes[] =
  "<Before skipping><To be skipped><After skipping>";
const char kSkipOutputTestBytes[] =
  "-----------------<To be skipped>----------------";

TEST_1D(CodedStreamTest, SkipInput, kBlockSizes) {
  memcpy(buffer_, kSkipTestBytes, sizeof(kSkipTestBytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    string str;
    EXPECT_TRUE(coded_input.ReadString(&str, strlen("<Before skipping>")));
    EXPECT_EQ("<Before skipping>", str);
    EXPECT_TRUE(coded_input.Skip(strlen("<To be skipped>")));
    EXPECT_TRUE(coded_input.ReadString(&str, strlen("<After skipping>")));
    EXPECT_EQ("<After skipping>", str);
  }

  EXPECT_EQ(strlen(kSkipTestBytes), input.ByteCount());
}

// -------------------------------------------------------------------
// GetDirectBufferPointer

TEST_F(CodedStreamTest, GetDirectBufferPointerInput) {
  ArrayInputStream input(buffer_, sizeof(buffer_), 8);
  CodedInputStream coded_input(&input);

  const void* ptr;
  int size;

  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Peeking again should return the same pointer.
  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Skip forward in the same buffer then peek again.
  EXPECT_TRUE(coded_input.Skip(3));
  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 3, ptr);
  EXPECT_EQ(5, size);

  // Skip to end of buffer and peek -- should get next buffer.
  EXPECT_TRUE(coded_input.Skip(5));
  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 8, ptr);
  EXPECT_EQ(8, size);
}

TEST_F(CodedStreamTest, GetDirectBufferPointerInlineInput) {
  ArrayInputStream input(buffer_, sizeof(buffer_), 8);
  CodedInputStream coded_input(&input);

  const void* ptr;
  int size;

  coded_input.GetDirectBufferPointerInline(&ptr, &size);
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Peeking again should return the same pointer.
  coded_input.GetDirectBufferPointerInline(&ptr, &size);
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Skip forward in the same buffer then peek again.
  EXPECT_TRUE(coded_input.Skip(3));
  coded_input.GetDirectBufferPointerInline(&ptr, &size);
  EXPECT_EQ(buffer_ + 3, ptr);
  EXPECT_EQ(5, size);

  // Skip to end of buffer and peek -- should return false and provide an empty
  // buffer. It does not try to Refresh().
  EXPECT_TRUE(coded_input.Skip(5));
  coded_input.GetDirectBufferPointerInline(&ptr, &size);
  EXPECT_EQ(buffer_ + 8, ptr);
  EXPECT_EQ(0, size);
}

TEST_F(CodedStreamTest, GetDirectBufferPointerOutput) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), 8);
  CodedOutputStream coded_output(&output);

  void* ptr;
  int size;

  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Peeking again should return the same pointer.
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Skip forward in the same buffer then peek again.
  EXPECT_TRUE(coded_output.Skip(3));
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 3, ptr);
  EXPECT_EQ(5, size);

  // Skip to end of buffer and peek -- should get next buffer.
  EXPECT_TRUE(coded_output.Skip(5));
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 8, ptr);
  EXPECT_EQ(8, size);

  // Skip over multiple buffers.
  EXPECT_TRUE(coded_output.Skip(22));
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 30, ptr);
  EXPECT_EQ(2, size);
}

// -------------------------------------------------------------------
// Limits

TEST_1D(CodedStreamTest, BasicLimit, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit = coded_input.PushLimit(8);

    // Read until we hit the limit.
    uint32 value;
    EXPECT_EQ(8, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  }

  EXPECT_EQ(12, input.ByteCount());
}

// Test what happens when we push two limits where the second (top) one is
// shorter.
TEST_1D(CodedStreamTest, SmallLimitOnTopOfBigLimit, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit1 = coded_input.PushLimit(8);
    EXPECT_EQ(8, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit2 = coded_input.PushLimit(4);

    uint32 value;

    // Read until we hit limit2, the top and shortest limit.
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit2);

    // Read until we hit limit1.
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit1);

    // No more limits.
    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  }

  EXPECT_EQ(12, input.ByteCount());
}

// Test what happens when we push two limits where the second (top) one is
// longer.  In this case, the top limit is shortened to match the previous
// limit.
TEST_1D(CodedStreamTest, BigLimitOnTopOfSmallLimit, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit1 = coded_input.PushLimit(4);
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit2 = coded_input.PushLimit(8);

    uint32 value;

    // Read until we hit limit2.  Except, wait!  limit1 is shorter, so
    // we end up hitting that first, despite having 4 bytes to go on
    // limit2.
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit2);

    // OK, popped limit2, now limit1 is on top, which we've already hit.
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit1);

    // No more limits.
    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  }

  EXPECT_EQ(8, input.ByteCount());
}

TEST_F(CodedStreamTest, ExpectAtEnd) {
  // Test ExpectAtEnd(), which is based on limits.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);

  EXPECT_FALSE(coded_input.ExpectAtEnd());

  CodedInputStream::Limit limit = coded_input.PushLimit(4);

  uint32 value;
  EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  EXPECT_TRUE(coded_input.ExpectAtEnd());

  coded_input.PopLimit(limit);
  EXPECT_FALSE(coded_input.ExpectAtEnd());
}

TEST_F(CodedStreamTest, NegativeLimit) {
  // Check what happens when we push a negative limit.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);

  CodedInputStream::Limit limit = coded_input.PushLimit(-1234);
  // BytesUntilLimit() returns -1 to mean "no limit", which actually means
  // "the limit is INT_MAX relative to the beginning of the stream".
  EXPECT_EQ(-1, coded_input.BytesUntilLimit());
  coded_input.PopLimit(limit);
}

TEST_F(CodedStreamTest, NegativeLimitAfterReading) {
  // Check what happens when we push a negative limit.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  ASSERT_TRUE(coded_input.Skip(128));

  CodedInputStream::Limit limit = coded_input.PushLimit(-64);
  // BytesUntilLimit() returns -1 to mean "no limit", which actually means
  // "the limit is INT_MAX relative to the beginning of the stream".
  EXPECT_EQ(-1, coded_input.BytesUntilLimit());
  coded_input.PopLimit(limit);
}

TEST_F(CodedStreamTest, OverflowLimit) {
  // Check what happens when we push a limit large enough that its absolute
  // position is more than 2GB into the stream.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  ASSERT_TRUE(coded_input.Skip(128));

  CodedInputStream::Limit limit = coded_input.PushLimit(INT_MAX);
  // BytesUntilLimit() returns -1 to mean "no limit", which actually means
  // "the limit is INT_MAX relative to the beginning of the stream".
  EXPECT_EQ(-1, coded_input.BytesUntilLimit());
  coded_input.PopLimit(limit);
}

TEST_F(CodedStreamTest, TotalBytesLimit) {
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  coded_input.SetTotalBytesLimit(16, -1);

  string str;
  EXPECT_TRUE(coded_input.ReadString(&str, 16));

  vector<string> errors;

  {
    ScopedMemoryLog error_log;
    EXPECT_FALSE(coded_input.ReadString(&str, 1));
    errors = error_log.GetMessages(ERROR);
  }

  ASSERT_EQ(1, errors.size());
  EXPECT_PRED_FORMAT2(testing::IsSubstring,
    "A protocol message was rejected because it was too big", errors[0]);

  coded_input.SetTotalBytesLimit(32, -1);
  EXPECT_TRUE(coded_input.ReadString(&str, 16));
}

TEST_F(CodedStreamTest, TotalBytesLimitNotValidMessageEnd) {
  // total_bytes_limit_ is not a valid place for a message to end.

  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);

  // Set both total_bytes_limit and a regular limit at 16 bytes.
  coded_input.SetTotalBytesLimit(16, -1);
  CodedInputStream::Limit limit = coded_input.PushLimit(16);

  // Read 16 bytes.
  string str;
  EXPECT_TRUE(coded_input.ReadString(&str, 16));

  // Read a tag.  Should fail, but report being a valid endpoint since it's
  // a regular limit.
  EXPECT_EQ(0, coded_input.ReadTag());
  EXPECT_TRUE(coded_input.ConsumedEntireMessage());

  // Pop the limit.
  coded_input.PopLimit(limit);

  // Read a tag.  Should fail, and report *not* being a valid endpoint, since
  // this time we're hitting the total bytes limit.
  EXPECT_EQ(0, coded_input.ReadTag());
  EXPECT_FALSE(coded_input.ConsumedEntireMessage());
}


TEST_F(CodedStreamTest, RecursionLimit) {
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  coded_input.SetRecursionLimit(4);

  // This is way too much testing for a counter.
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 1
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 2
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 3
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 4
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 5
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 6
  coded_input.DecrementRecursionDepth();                   // 5
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 6
  coded_input.DecrementRecursionDepth();                   // 5
  coded_input.DecrementRecursionDepth();                   // 4
  coded_input.DecrementRecursionDepth();                   // 3
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 4
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 5
  coded_input.DecrementRecursionDepth();                   // 4
  coded_input.DecrementRecursionDepth();                   // 3
  coded_input.DecrementRecursionDepth();                   // 2
  coded_input.DecrementRecursionDepth();                   // 1
  coded_input.DecrementRecursionDepth();                   // 0
  coded_input.DecrementRecursionDepth();                   // 0
  coded_input.DecrementRecursionDepth();                   // 0
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 1
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 2
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 3
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 4
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 5

  coded_input.SetRecursionLimit(6);
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 6
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 7
}

class ReallyBigInputStream : public ZeroCopyInputStream {
 public:
  ReallyBigInputStream() : backup_amount_(0), buffer_count_(0) {}
  ~ReallyBigInputStream() {}

  // implements ZeroCopyInputStream ----------------------------------
  bool Next(const void** data, int* size) {
    // We only expect BackUp() to be called at the end.
    EXPECT_EQ(0, backup_amount_);

    switch (buffer_count_++) {
      case 0:
        *data = buffer_;
        *size = sizeof(buffer_);
        return true;
      case 1:
        // Return an enormously large buffer that, when combined with the 1k
        // returned already, should overflow the total_bytes_read_ counter in
        // CodedInputStream.  Note that we'll only read the first 1024 bytes
        // of this buffer so it's OK that we have it point at buffer_.
        *data = buffer_;
        *size = INT_MAX;
        return true;
      default:
        return false;
    }
  }

  void BackUp(int count) {
    backup_amount_ = count;
  }

  bool Skip(int count)    { GOOGLE_LOG(FATAL) << "Not implemented."; return false; }
  int64 ByteCount() const { GOOGLE_LOG(FATAL) << "Not implemented."; return 0; }

  int backup_amount_;

 private:
  char buffer_[1024];
  int64 buffer_count_;
};

TEST_F(CodedStreamTest, InputOver2G) {
  // CodedInputStream should gracefully handle input over 2G and call
  // input.BackUp() with the correct number of bytes on destruction.
  ReallyBigInputStream input;

  vector<string> errors;

  {
    ScopedMemoryLog error_log;
    CodedInputStream coded_input(&input);
    string str;
    EXPECT_TRUE(coded_input.ReadString(&str, 512));
    EXPECT_TRUE(coded_input.ReadString(&str, 1024));
    errors = error_log.GetMessages(ERROR);
  }

  EXPECT_EQ(INT_MAX - 512, input.backup_amount_);
  EXPECT_EQ(0, errors.size());
}

// ===================================================================


}  // namespace
}  // namespace io
}  // namespace protobuf
}  // namespace google
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.