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Overview - |

= Purpose

= An empirical study of confidence measures based on
posterior probabilities of n-grams

= Contributions

= An efficient and practical algorithm for fast
computation of n-gram posterior probabilities

= From large translation word lattices

= Required for lattice Minimum Bayes-Risk (MBR)
decoding and for confidence estimation



Overview - I

= Comprehensive evaluation for

Different language pairs, domains and conditions

Effect on reference precision of using single or
multiple references

Computation from k-best lists vs. full evidence
space of the lattice

Improved confidence by combination of multiple
lattices in a multi-source translation framework



N-gram Posterior Probabilities

= Posterior probabilities for words have been used as a
confidence measure for SMT

= This papers tries the same with n-grams

= From the probability distribution based on the translation model
and language model:

= “With what probability does an n-gram occur in the
reference translations”

= “What percentage of words in a hypothesis can be
expected to occur in the reference translations?”

= Builds on the idea that high posterior probability n-grams in the
maximum likelihood translation hypothesis are more likely to be
found in human reference translations



Applications of N-gram Posterior

Probabilities

= Interactive MT and Computer Aided Translation

= Assign sentence level confidence estimates to
hypotheses In interactive MT

= Rapidly identify parts that require correction or refinement
= Error-driven source sentence paraphrasing for better translation
= Address particular deficiencies in SMT hypotheses, such as the

monolingual coverage constraints

= Apply more sophisticated models in re-coding over
low confidence regions

= Better harvest user corrections



Lattice MBR Decoding

= MBR decoding can be applied to any MT system that defines a
posterior distribution over translation hypotheses

= For SMT, it has the general form:

-~

E =arg mi% Y L(E,E"YP(E|F)
E'e
Ee&

= Where € is some space of translation hypotheses

= L(E, E') Is some loss between two hypotheses E and E'

= P(E|F) Is the posterior probability of translating the source
sentence F as the target sentence E



Posterior Probability

= For a log-linear model of translation:

exp(aH(E, F))

PN = S @R, F))

= Where H(E, F) is the score assigned by the model to sentence

pair (E, F), e.g. dot product of feature weights and feature
values

= The scaling factor o smooths the posterior distribution,
flattening when a < 1 and sharpening when a > 1



Loss Function

The linearized form of the lattice MBR decoder becomes the
loss function in the earlier equation

= With a conditional expected gain based on an
approximation of BLEU score

This gain is computed as a weighted sum of local n-gram gain
functions and a constant multiplied by the sentence length:

4
BOIE'|+ D D buth(E) pulé)
n=1ueN,
Where N s the set of n-grams (of order n) in the lattice

E = arg max
E'ef

#u (E') I1s the number of times the n-gram u occurs in hypothesis
E' and parameters 0 are constants estimated over the data



Path Posterior Probability of N-

= The quantity p(u|&) is the path posterior probability of the n-

gram u :
pl€) =) Su(E)P(EIF)= ) P(E|F)
Eeé Eeé,

= Thatis, over the subset of paths containing the n-gram u at
least once

= Note that posterior probability is different from the expected
count (it is accumulated once per path)

= |t is possible to extract and enumerate all these n-grams exactly

= Whereas it is usually impossible to enumerate all
paths

= While linearisation of the gain function is an approximation, it
can be computed exactly even for very large lattices



Efficient posterior probability

computation

= From translation lattices, having the form of a directed acyclic
graph

= Word sequences and scores of translation hypotheses are
encoded in the lattice as a Weighted Finite State Transducer

= |t is particularly efficient in its representation of translation
hypotheses, and thus for posterior probability computation

= Previous approaches using WFSA can be slow over large
lattices with many n-grams

= As they may Involve separate intersection and
summation over matching paths for each n-gram in
the lattice



Efficient posterior probability

computation

The efficient algorithm presented is based on a forward
procedure that allows fast and exact computation

A lattice specialization of the hypergraph vector-indexed
algorithm

The typical forward procedure calculates forward probabillities
a(q): The marginal probabillity of the partial paths which lead
from the start state to state g

The modified forward procedure calculates quantities a(g, u):
The marginal probabilities of the paths which lead to state g and
that pass through at least one arc with the input symbol u

It can be seen as a modified form of marginalization, rather than
a counting procedure



Efficient posterior probability

computation

The modified forward procedure can be extended to marginalize
probabilities over paths which contain n-grams

However, it is easier first to transduce word lattices to n-gram
lattices and then use the modified forward procedure simply
count individual n-gram tokens

The order-n mapped lattice ¢ _is obtained by composing the
word lattice & with the mapping transducer @

E, = min(det(rmeps(I1,(£ o ©,))))

The resulting acceptor & is a compact lattice of n-gram

sequences of order-n consistent with the hypotheses and
scores of the original lattice &€

The path labeled with the words of a hypothesis has the weight
P(E | F)



CoMPUTE-NGRAM-POSTERIORS

1 for each state g € (J > In topologically sorted order
2 do for each edge ¢ € Eg]

3 do a(nle]) « a(nle]) + (alg) x wle])
1 if :"-[E: {f- J"u':l[ﬂ]
d then J"I.If;l[u] — '"h"-nl,_] . {E[E]}
6 a(nle],ile]) = a(nle],ile]) + (alg) x wle))
7 for each n-gram u € A, where u # i/¢]
8 do if u ¢ J"L';[,:]
9 then ,e"'l.';[,._] — J"'u"‘ﬂ[f_.] U{u}
10 af(nle],u) — a(nle],u) + (afg,u) x wle])
11 ifge F
12 then for each n-gram u € N
13 do p(ul€)  p(ul€) + (a(g, ) X plg)

14 N; « 0 > Clean up state g



Mapping Transducer for N-grams

words bigram

wiuh U]
Wwa w3 g
wnws u3
wo iy

Fig. 2 Mapping transducer &, for all possible bigrams X7 = {uy.w, w3, ug} formed from unigram
alphabet £y = {wy, wa ). States and arcs need only be added for bigrams u € N5



Predictive Power of N-gram

Posterior Probabilities

= Analyze the relation between posterior probability and
translation quality by computing:

= The precision of high posterior n-grams with respect
to the human reference translations available for
each source sentence

= The translation hypothesis coverage of high
posterior n-grams

= The converse precision of low posterior n-grams
with respect to the human references

= The precision of high posterior n-grams in a system
combination scenario



Posterior Probability Reference

Precisions

= The precision at order n for threshold [ is the proportion of n-
grams in N(n, B) also present in the references

= Rnis the set of n-grams of order n in the union of references



Posterior Probability Hypothesis

Coverage

= How many words in the top hypothesis are covered by N(n,[3) at
each confidence threshold 3

= The coverage at order n for threshold (3 is the proportion of
hypothesised words covered by n-grams in N(n,[3):

. 100 % W, 4]
N

= Where I is the length of the ML translation 1-best hypothesis

= W(n,B) is the set of words in the hypothesis that belong to n-
grams of order n with posterior probability greater than or equal

to 3

= Can be extended to k-best list or lattice



Posterior Probability Converse

Reference Precisions

= The converse precision at order n for threshold vy is the

proportion of n-grams in N(n,y) that are not present in the
references

= Tests the ability of the posteriors to indicate how reliable the
portions of translation are

= |deally, low posteriors should be as informative as high
posteriors



System Combination Reference

Precisions

= The effect on reference precision of computing n-gram posterior
probabilities from a combination of multiple translation lattices in
the context of multi-input and multi-source translation

pilEP)= D P(E|F)
Eegl!
= Treating each lattice as a WFSA, the evidence space is the
union of M individual lattices

= We sum over all paths in each lattice with one or more
occurrence of the n-gram u

= We compute the n-gram confidence p(u|&) as a weighted

combination (sum or product) of the probabilities from individual
lattices

= Weights should reflect qualities of various systems, e.g. using
grid search over parameters based on optimal BLEU score



System Development

= Arabic - English
= Chinese - English
= French- English
= Spanish - English
= English - Spanish



MBR Decoding Efficiency

Table 4 Average time (s/sentence) to compute n-gram path posterior probabilities using the sequential
method, path counting transducers, and symbol-specific forward algorithm

Arabic— English Chinese— English

mt0205tune mt02(5test tune.nw tune.web
Sequential 1.52 1.62 4.43 4.73
Transducers (.84 (.88 .68 | .60

Symbol-specific 0.13 0.14 0.41 (.40




MBR Decoding Efficiency (Cond.)
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Fig. 3 Posterior probability computation time (s) versus # of lattice n-grams using the sequential
method, path counting transducers, and symbol-specific forward algorithm for each sentence of the Chi-
nese— English tune.nw testset



averagese per—-sentcence

precision Pn.f§

0.8

0.ar

0.7 F

0.6

nar

0.4 F

0.3r

0.2 r
01 r

1]

Precision and Coverage

AR=EN mt0205tune

— 1-pgram
= — —2-gram
A-gram

- = A-gram

0

01 02 03 04 05 06 07 OB 08 1

posterior probability threshold f

ptge of hyp words covered

by hype ngram

100

[0

BO L

ol

B0 L

=10 §

40 L

At

2001
0t

0

AR=EN mt0205tune

e

.

— 1-pgram
— — —2-gram

- A-gram

- — . d-gram

0

01 0 03 04 05 06 07 OB 08 1

posterior probability threshold f



Precision and Coverage (Contd.)
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Converse Precision
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Translation Edit Rate (TER)

TER =

#Dels + #Ins + #Subs + #Shifts

#Words in Ref

Hi‘

: [The international federation suspended as temporarily

S

: [The international federation temporarily suspended as

su? 5”5/

: [The international federation temporarily bans Kenleris

a5 a result of operations directed number fell to 20

‘/sﬁ:T

as a result of directed operations number fell to 20

e

with direcled operations this number fell 1o 20




percentage of 1-grams

percentage of 3-grams

Evaluation in Terms of TER
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Evidence Space Size and

Reference Precisions
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Missing Probability Mass from k-

best Lists

k mt205tune mt2051est
1000 24.41 24 91
10,000 13.96 14.27
20,000 11.73 120K}
50,000 930 9.52
100,000 7.78 798

Arabic - English



Single vs. Multiple References
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Confidence-based Hypothesis

Segmentation

the newspaper * constitution ” quoted brigadier abdullah krishan , the
chief of police in karak governorate ( 521 km south @-@ west of
amman ) as saying that the seizure took place after police received
information that there were attemptis by the group to sell for more than
$ 100 thousand dollars | the police rushed to the arrest in possession .

= High-confidence sub-sequences correspond to partial
hypotheses for which there is consensus amongst the
translations in the first-pass evidence space

= High-confidence subsequences are often of higher quality than
low-confidence subsequences

= Shows how n-gram posterior probability confidence measures
can be used to identify low-confidence portions of translation
hypotheses that may benefit from re-decoding, post-processing,
targeted application of specific models, or user input in an
Interactive translation setting
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Evaluation on FAUST Data

= More like real life data and based on actual user interaction
= Shows roughly similar results

= There is a difference, however, between translating from clean
data and 'noisy' data

= Precision, converse precision and coverage are good metrics
for this purpose

= As is TER, in a different way



Translating from Clean vs. Noisy

Data

noisy ‘os’ clean ‘cs)’ clean “csl”
dev Lest dev Lest dev est
HIFST 36.3 359 47.6 46.9 4549 4549

+LMER 36.2 359 48.6 479 47.1 46.7




Precision and Coverage on Noisy
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Precision and Coverage on Clean

Data

SP=EN FAUST dev (clean ‘cs’)
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Multi-source Translation

= Multi-source translation is possible whenever the source-
language sentence is available in multiple languages

= The motivation is that some of the ambiguity that must be
resolved in translating between one pair of languages may not
be present in a different pair



Multi-source Translation
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Conclusions

= N-gram posterior probabilities are good estimates of translation
quality

= There is an efficient method to calculate them

= Precision, converse precision and coverage are good metrics
for this purpose

= As is TER, in a different way

= Using the full lattice space helps, rather than increasing the size
of the k-best list

= More references help
= Multiple source translation helps

= Cleaning the source data helps too
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