cpython-withatomic / Modules / rotormodule.c

The branch 'legacy-trunk' does not exist.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/***********************************************************
Copyright 1994 by Lance Ellinghouse,
Cathedral City, California Republic, United States of America.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its 
documentation for any purpose and without fee is hereby granted, 
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in 
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution 
of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE BE LIABLE FOR ANY SPECIAL, 
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING 
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, 
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION 
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

******************************************************************/

/* This creates an encryption and decryption engine I am calling
   a rotor due to the original design was a hardware rotor with
   contacts used in Germany during WWII.

Rotor Module:

-  rotor.newrotor('key') -> rotorobject  (default of 6 rotors)
-  rotor.newrotor('key', num_rotors) -> rotorobject

Rotor Objects:

-  ro.setkey('string') -> None (resets the key as defined in newrotor().
-  ro.encrypt('string') -> encrypted string
-  ro.decrypt('encrypted string') -> unencrypted string

-  ro.encryptmore('string') -> encrypted string
-  ro.decryptmore('encrypted string') -> unencrypted string

NOTE: the {en,de}cryptmore() methods use the setup that was
      established via the {en,de}crypt calls. They will NOT
      re-initalize the rotors unless: 1) They have not been
      initialized with {en,de}crypt since the last setkey() call;
      2) {en,de}crypt has not been called for this rotor yet.

NOTE: you MUST use the SAME key in rotor.newrotor()
      if you wish to decrypt an encrypted string.
      Also, the encrypted string is NOT 0-127 ASCII. 
      It is considered BINARY data.

*/

/* Rotor objects */

#include "Python.h"

#ifndef TRUE
#define TRUE	1
#endif
#ifndef FALSE
#define FALSE	0
#endif

typedef struct {
	PyObject_HEAD
	int seed[3];
    	short key[5];
	int  isinited;
	int  size;
	int  size_mask;
    	int  rotors;
	unsigned char *e_rotor;		     /* [num_rotors][size] */
	unsigned char *d_rotor;		     /* [num_rotors][size] */
	unsigned char *positions;	     /* [num_rotors] */
	unsigned char *advances;	     /* [num_rotors] */
} Rotorobj;

staticforward PyTypeObject Rotor_Type;

#define is_rotor(v)		((v)->ob_type == &Rotor_Type)


/* This defines the necessary routines to manage rotor objects */

static void
set_seed(Rotorobj *r)
{
	r->seed[0] = r->key[0];
	r->seed[1] = r->key[1];
	r->seed[2] = r->key[2];
	r->isinited = FALSE;
}
	
/* Return the next random number in the range [0.0 .. 1.0) */
static double
r_random(Rotorobj *r)
{
	int x, y, z;
	double val, term;

	x = r->seed[0];
	y = r->seed[1];
	z = r->seed[2];

	x = 171 * (x % 177) - 2 * (x/177);
	y = 172 * (y % 176) - 35 * (y/176);
	z = 170 * (z % 178) - 63 * (z/178);
	
	if (x < 0) x = x + 30269;
	if (y < 0) y = y + 30307;
	if (z < 0) z = z + 30323;
	
	r->seed[0] = x;
	r->seed[1] = y;
	r->seed[2] = z;

	term = (double)(
		(((double)x)/(double)30269.0) + 
		(((double)y)/(double)30307.0) + 
		(((double)z)/(double)30323.0)
		);
	val = term - (double)floor((double)term);

	if (val >= 1.0)
		val = 0.0;

	return val;
}

static short
r_rand(Rotorobj *r, short s)
{
	return (short)((short)(r_random(r) * (double)s) % s);
}

static void
set_key(Rotorobj *r, char *key)
{
	unsigned long k1=995, k2=576, k3=767, k4=671, k5=463;
	size_t i;
	size_t len = strlen(key);

	for (i = 0; i < len; i++) {
		unsigned short ki = Py_CHARMASK(key[i]);

		k1 = (((k1<<3 | k1>>13) + ki) & 65535);
		k2 = (((k2<<3 | k2>>13) ^ ki) & 65535);
		k3 = (((k3<<3 | k3>>13) - ki) & 65535);
		k4 = ((ki - (k4<<3 | k4>>13)) & 65535);
		k5 = (((k5<<3 | k5>>13) ^ ~ki) & 65535);
	}
	r->key[0] = (short)k1;
	r->key[1] = (short)(k2|1);
	r->key[2] = (short)k3;
	r->key[3] = (short)k4;
	r->key[4] = (short)k5;

	set_seed(r);
}



/* These define the interface to a rotor object */
static Rotorobj *
rotorobj_new(int num_rotors, char *key)
{
	Rotorobj *xp;

	xp = PyObject_New(Rotorobj, &Rotor_Type);
	if (xp == NULL)
		return NULL;
	set_key(xp, key);

	xp->size = 256;
	xp->size_mask = xp->size - 1;
	xp->size_mask = 0;
	xp->rotors = num_rotors;
	xp->e_rotor = NULL;
	xp->d_rotor = NULL;
	xp->positions = NULL;
	xp->advances = NULL;

	if (!(xp->e_rotor = PyMem_NEW(unsigned char, num_rotors * xp->size)))
		goto finally;
	if (!(xp->d_rotor = PyMem_NEW(unsigned char, num_rotors * xp->size)))
		goto finally;
	if (!(xp->positions = PyMem_NEW(unsigned char, num_rotors)))
		goto finally;
	if (!(xp->advances = PyMem_NEW(unsigned char, num_rotors)))
		goto finally;

	return xp;

  finally:
	if (xp->e_rotor)
		PyMem_DEL(xp->e_rotor);
	if (xp->d_rotor)
		PyMem_DEL(xp->d_rotor);
	if (xp->positions)
		PyMem_DEL(xp->positions);
	if (xp->advances)
		PyMem_DEL(xp->advances);
	Py_DECREF(xp);
	return (Rotorobj*)PyErr_NoMemory();
}


/* These routines implement the rotor itself */

/*  Here is a fairly sophisticated {en,de}cryption system.  It is based on
    the idea of a "rotor" machine.  A bunch of rotors, each with a
    different permutation of the alphabet, rotate around a different amount
    after encrypting one character.  The current state of the rotors is
    used to encrypt one character.

    The code is smart enough to tell if your alphabet has a number of
    characters equal to a power of two.  If it does, it uses logical
    operations, if not it uses div and mod (both require a division).

    You will need to make two changes to the code 1) convert to c, and
    customize for an alphabet of 255 chars 2) add a filter at the begining,
    and end, which subtracts one on the way in, and adds one on the way
    out.

    You might wish to do some timing studies.  Another viable alternative
    is to "byte stuff" the encrypted data of a normal (perhaps this one)
    encryption routine.

    j'

 */

/* Note: the C code here is a fairly straightforward transliteration of a
 * rotor implemented in lisp.  The original lisp code has been removed from
 * this file to for simplification, but I've kept the docstrings as
 * comments in front of the functions.
 */


/* Set ROTOR to the identity permutation */
static void
RTR_make_id_rotor(Rotorobj *r, unsigned char *rtr)
{
	register int j;
	register int size = r->size;
	for (j = 0; j < size; j++) {
		rtr[j] = (unsigned char)j;
	}
}


/* The current set of encryption rotors */
static void
RTR_e_rotors(Rotorobj *r)
{
	int i;
	for (i = 0; i < r->rotors; i++) {
		RTR_make_id_rotor(r, &(r->e_rotor[(i*r->size)]));
	}
}

/* The current set of decryption rotors */
static void
RTR_d_rotors(Rotorobj *r)
{
	register int i, j;
	for (i = 0; i < r->rotors; i++) {
		for (j = 0; j < r->size; j++) {
			r->d_rotor[((i*r->size)+j)] = (unsigned char)j;
		}
	}
}

/* The positions of the rotors at this time */
static void
RTR_positions(Rotorobj *r)
{
	int i;
	for (i = 0; i < r->rotors; i++) {
		r->positions[i] = 1;
	}
}

/* The number of positions to advance the rotors at a time */
static void
RTR_advances(Rotorobj *r)
{
	int i;
	for (i = 0; i < r->rotors; i++) {
		r->advances[i] = 1;
	}
}

/* Permute the E rotor, and make the D rotor its inverse
 * see Knuth for explanation of algorithm.
 */
static void
RTR_permute_rotor(Rotorobj *r, unsigned char *e, unsigned char *d)
{
	short i = r->size;
	short q;
	unsigned char j;
	RTR_make_id_rotor(r,e);
	while (2 <= i) {
		q = r_rand(r,i);
		i--;
		j = e[q];
		e[q] = (unsigned char)e[i];
		e[i] = (unsigned char)j;
		d[j] = (unsigned char)i;
	}
	e[0] = (unsigned char)e[0];
	d[(e[0])] = (unsigned char)0;
}

/* Given KEY (a list of 5 16 bit numbers), initialize the rotor machine.
 * Set the advancement, position, and permutation of the rotors
 */
static void
RTR_init(Rotorobj *r)
{
	int i;
	set_seed(r);
	RTR_positions(r);
	RTR_advances(r);
	RTR_e_rotors(r);
	RTR_d_rotors(r);
	for (i = 0; i < r->rotors; i++) {
		r->positions[i] = (unsigned char) r_rand(r, (short)r->size);
		r->advances[i] = (1+(2*(r_rand(r, (short)(r->size/2)))));
		RTR_permute_rotor(r,
				  &(r->e_rotor[(i*r->size)]),
				  &(r->d_rotor[(i*r->size)]));
	}
	r->isinited = TRUE;
}

/* Change the RTR-positions vector, using the RTR-advances vector */
static void
RTR_advance(Rotorobj *r)
{
	register int i=0, temp=0;
	if (r->size_mask) {
		while (i < r->rotors) {
			temp = r->positions[i] + r->advances[i];
			r->positions[i] = temp & r->size_mask;
			if ((temp >= r->size) && (i < (r->rotors - 1))) {
				r->positions[(i+1)] = 1 + r->positions[(i+1)];
			}
			i++;
		}
	} else {
		while (i < r->rotors) {
			temp = r->positions[i] + r->advances[i];
			r->positions[i] = temp%r->size;
			if ((temp >= r->size) && (i < (r->rotors - 1))) {
				r->positions[(i+1)] = 1 + r->positions[(i+1)];
			}
			i++;
		}
	}
}

/* Encrypt the character P with the current rotor machine */
static unsigned char
RTR_e_char(Rotorobj *r, unsigned char p)
{
	register int i=0;
	register unsigned char tp=p;
	if (r->size_mask) {
		while (i < r->rotors) {
			tp = r->e_rotor[(i*r->size) +
				       (((r->positions[i] ^ tp) &
					 r->size_mask))];
			i++;
		}
	} else {
		while (i < r->rotors) {
			tp = r->e_rotor[(i*r->size) +
				       (((r->positions[i] ^ tp) %
					 (unsigned int) r->size))];
			i++;
		}
	}
	RTR_advance(r);
	return ((unsigned char)tp);
}

/* Decrypt the character C with the current rotor machine */
static unsigned char
RTR_d_char(Rotorobj *r, unsigned char c)
{
	register int i = r->rotors - 1;
	register unsigned char tc = c;

	if (r->size_mask) {
		while (0 <= i) {
			tc = (r->positions[i] ^
			      r->d_rotor[(i*r->size)+tc]) & r->size_mask;
			i--;
		}
	} else {
		while (0 <= i) {
			tc = (r->positions[i] ^
			      r->d_rotor[(i*r->size)+tc]) %
				(unsigned int) r->size;
			i--;
		}
	}
	RTR_advance(r);
	return(tc);
}

/* Perform a rotor encryption of the region from BEG to END by KEY */
static void
RTR_e_region(Rotorobj *r, unsigned char *beg, int len, int doinit)
{
	register int i;
	if (doinit || r->isinited == FALSE)
		RTR_init(r);
	for (i = 0; i < len; i++) {
		beg[i] = RTR_e_char(r, beg[i]);
	}
}

/* Perform a rotor decryption of the region from BEG to END by KEY */
static void
RTR_d_region(Rotorobj *r, unsigned char *beg, int len, int doinit)
{
	register int i;
	if (doinit || r->isinited == FALSE)
		RTR_init(r);
	for (i = 0; i < len; i++) {
		beg[i] = RTR_d_char(r, beg[i]);
	}
}



/* Rotor methods */
static void
rotor_dealloc(Rotorobj *xp)
{
	if (xp->e_rotor)
		PyMem_DEL(xp->e_rotor);
	if (xp->d_rotor)
		PyMem_DEL(xp->d_rotor);
	if (xp->positions)
		PyMem_DEL(xp->positions);
	if (xp->advances)
		PyMem_DEL(xp->advances);
	PyObject_Del(xp);
}

static PyObject * 
rotorobj_encrypt(Rotorobj *self, PyObject *args)
{
	char *string = NULL;
	int len = 0;
	PyObject *rtn = NULL;
	char *tmp;

	if (!PyArg_Parse(args, "s#", &string, &len))
		return NULL;
	if (!(tmp = PyMem_NEW(char, len+5))) {
		PyErr_NoMemory();
		return NULL;
	}
	memset(tmp, '\0', len+1);
	memcpy(tmp, string, len);
	RTR_e_region(self, (unsigned char *)tmp, len, TRUE);
	rtn = PyString_FromStringAndSize(tmp, len);
	PyMem_DEL(tmp);
	return(rtn);
}

static PyObject * 
rotorobj_encrypt_more(Rotorobj *self, PyObject *args)
{
	char *string = NULL;
	int len = 0;
	PyObject *rtn = NULL;
	char *tmp;

	if (!PyArg_Parse(args, "s#", &string, &len))
		return NULL;
	if (!(tmp = PyMem_NEW(char, len+5))) {
		PyErr_NoMemory();
		return NULL;
	}
	memset(tmp, '\0', len+1);
	memcpy(tmp, string, len);
	RTR_e_region(self, (unsigned char *)tmp, len, FALSE);
	rtn = PyString_FromStringAndSize(tmp, len);
	PyMem_DEL(tmp);
	return(rtn);
}

static PyObject * 
rotorobj_decrypt(Rotorobj *self, PyObject *args)
{
	char *string = NULL;
	int len = 0;
	PyObject *rtn = NULL;
	char *tmp;

	if (!PyArg_Parse(args, "s#", &string, &len))
		return NULL;
	if (!(tmp = PyMem_NEW(char, len+5))) {
		PyErr_NoMemory();
		return NULL;
	}
	memset(tmp, '\0', len+1);
	memcpy(tmp, string, len);
	RTR_d_region(self, (unsigned char *)tmp, len, TRUE);
	rtn = PyString_FromStringAndSize(tmp, len);
	PyMem_DEL(tmp);
	return(rtn);
}

static PyObject * 
rotorobj_decrypt_more(Rotorobj *self, PyObject *args)
{
	char *string = NULL;
	int len = 0;
	PyObject *rtn = NULL;
	char *tmp;

	if (!PyArg_Parse(args, "s#", &string, &len))
		return NULL;
	if (!(tmp = PyMem_NEW(char, len+5))) {
		PyErr_NoMemory();
		return NULL;
	}
	memset(tmp, '\0', len+1);
	memcpy(tmp, string, len);
	RTR_d_region(self, (unsigned char *)tmp, len, FALSE);
	rtn = PyString_FromStringAndSize(tmp, len);
	PyMem_DEL(tmp);
	return(rtn);
}

static PyObject * 
rotorobj_setkey(Rotorobj *self, PyObject *args)
{
	char *key;

	if (!PyArg_ParseTuple(args, "s:setkey", &key))
		return NULL;

	set_key(self, key);
	Py_INCREF(Py_None);
	return Py_None;
}

static struct PyMethodDef
rotorobj_methods[] = {
	{"encrypt",	(PyCFunction)rotorobj_encrypt},
	{"encryptmore",	(PyCFunction)rotorobj_encrypt_more},
	{"decrypt",	(PyCFunction)rotorobj_decrypt},
	{"decryptmore",	(PyCFunction)rotorobj_decrypt_more},
	{"setkey",	(PyCFunction)rotorobj_setkey, 1},
	{NULL,		NULL}		/* sentinel */
};


/* Return a rotor object's named attribute. */
static PyObject * 
rotorobj_getattr(Rotorobj *s, char *name)
{
	return Py_FindMethod(rotorobj_methods, (PyObject*)s, name);
}


statichere PyTypeObject Rotor_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,				/*ob_size*/
	"rotor",			/*tp_name*/
	sizeof(Rotorobj),		/*tp_size*/
	0,				/*tp_itemsize*/
	/* methods */
	(destructor)rotor_dealloc,	/*tp_dealloc*/
	0,				/*tp_print*/
	(getattrfunc)rotorobj_getattr,	/*tp_getattr*/
	0,				/*tp_setattr*/
	0,				/*tp_compare*/
	0,				/*tp_repr*/
	0,                              /*tp_hash*/
};


static PyObject * 
rotor_rotor(PyObject *self, PyObject *args)
{
	Rotorobj *r;
	char *string;
	int len;
	int num_rotors = 6;

	if (!PyArg_ParseTuple(args, "s#|i:newrotor", &string, &len, &num_rotors))
		return NULL;

	r = rotorobj_new(num_rotors, string);
	return (PyObject *)r;
}



static struct PyMethodDef
rotor_methods[] = {
	{"newrotor",  rotor_rotor, 1},
	{NULL,        NULL}		     /* sentinel */
};


DL_EXPORT(void)
initrotor(void)
{
	(void)Py_InitModule("rotor", rotor_methods);
}
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.