Source

cpython-withatomic / Lib / threading.py

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
"""Thread module emulating a subset of Java's threading model."""

import sys as _sys
import _thread

from time import time as _time, sleep as _sleep
from traceback import format_exc as _format_exc
from collections import deque

# Note regarding PEP 8 compliant names
#  This threading model was originally inspired by Java, and inherited
# the convention of camelCase function and method names from that
# language. Those originaly names are not in any imminent danger of
# being deprecated (even for Py3k),so this module provides them as an
# alias for the PEP 8 compliant names
# Note that using the new PEP 8 compliant names facilitates substitution
# with the multiprocessing module, which doesn't provide the old
# Java inspired names.

__all__ = ['active_count', 'Condition', 'current_thread', 'enumerate', 'Event',
           'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread', 'Barrier',
           'Timer', 'setprofile', 'settrace', 'local', 'stack_size']

# Rename some stuff so "from threading import *" is safe
_start_new_thread = _thread.start_new_thread
_allocate_lock = _thread.allocate_lock
_get_ident = _thread.get_ident
ThreadError = _thread.error
try:
    _CRLock = _thread.RLock
except AttributeError:
    _CRLock = None
TIMEOUT_MAX = _thread.TIMEOUT_MAX
del _thread


# Debug support (adapted from ihooks.py).

_VERBOSE = False

if __debug__:

    class _Verbose(object):

        def __init__(self, verbose=None):
            if verbose is None:
                verbose = _VERBOSE
            self._verbose = verbose

        def _note(self, format, *args):
            if self._verbose:
                format = format % args
                # Issue #4188: calling current_thread() can incur an infinite
                # recursion if it has to create a DummyThread on the fly.
                ident = _get_ident()
                try:
                    name = _active[ident].name
                except KeyError:
                    name = "<OS thread %d>" % ident
                format = "%s: %s\n" % (name, format)
                _sys.stderr.write(format)

else:
    # Disable this when using "python -O"
    class _Verbose(object):
        def __init__(self, verbose=None):
            pass
        def _note(self, *args):
            pass

# Support for profile and trace hooks

_profile_hook = None
_trace_hook = None

def setprofile(func):
    global _profile_hook
    _profile_hook = func

def settrace(func):
    global _trace_hook
    _trace_hook = func

# Synchronization classes

Lock = _allocate_lock

def RLock(verbose=None, *args, **kwargs):
    if verbose is None:
        verbose = _VERBOSE
    if (__debug__ and verbose) or _CRLock is None:
        return _PyRLock(verbose, *args, **kwargs)
    return _CRLock(*args, **kwargs)

class _RLock(_Verbose):

    def __init__(self, verbose=None):
        _Verbose.__init__(self, verbose)
        self._block = _allocate_lock()
        self._owner = None
        self._count = 0

    def __repr__(self):
        owner = self._owner
        try:
            owner = _active[owner].name
        except KeyError:
            pass
        return "<%s owner=%r count=%d>" % (
                self.__class__.__name__, owner, self._count)

    def acquire(self, blocking=True, timeout=-1):
        me = _get_ident()
        if self._owner == me:
            self._count = self._count + 1
            if __debug__:
                self._note("%s.acquire(%s): recursive success", self, blocking)
            return 1
        rc = self._block.acquire(blocking, timeout)
        if rc:
            self._owner = me
            self._count = 1
            if __debug__:
                self._note("%s.acquire(%s): initial success", self, blocking)
        else:
            if __debug__:
                self._note("%s.acquire(%s): failure", self, blocking)
        return rc

    __enter__ = acquire

    def release(self):
        if self._owner != _get_ident():
            raise RuntimeError("cannot release un-acquired lock")
        self._count = count = self._count - 1
        if not count:
            self._owner = None
            self._block.release()
            if __debug__:
                self._note("%s.release(): final release", self)
        else:
            if __debug__:
                self._note("%s.release(): non-final release", self)

    def __exit__(self, t, v, tb):
        self.release()

    # Internal methods used by condition variables

    def _acquire_restore(self, state):
        self._block.acquire()
        self._count, self._owner = state
        if __debug__:
            self._note("%s._acquire_restore()", self)

    def _release_save(self):
        if __debug__:
            self._note("%s._release_save()", self)
        count = self._count
        self._count = 0
        owner = self._owner
        self._owner = None
        self._block.release()
        return (count, owner)

    def _is_owned(self):
        return self._owner == _get_ident()

_PyRLock = _RLock


def Condition(*args, **kwargs):
    return _Condition(*args, **kwargs)

class _Condition(_Verbose):

    def __init__(self, lock=None, verbose=None):
        _Verbose.__init__(self, verbose)
        if lock is None:
            lock = RLock()
        self._lock = lock
        # Export the lock's acquire() and release() methods
        self.acquire = lock.acquire
        self.release = lock.release
        # If the lock defines _release_save() and/or _acquire_restore(),
        # these override the default implementations (which just call
        # release() and acquire() on the lock).  Ditto for _is_owned().
        try:
            self._release_save = lock._release_save
        except AttributeError:
            pass
        try:
            self._acquire_restore = lock._acquire_restore
        except AttributeError:
            pass
        try:
            self._is_owned = lock._is_owned
        except AttributeError:
            pass
        self._waiters = []

    def __enter__(self):
        return self._lock.__enter__()

    def __exit__(self, *args):
        return self._lock.__exit__(*args)

    def __repr__(self):
        return "<Condition(%s, %d)>" % (self._lock, len(self._waiters))

    def _release_save(self):
        self._lock.release()           # No state to save

    def _acquire_restore(self, x):
        self._lock.acquire()           # Ignore saved state

    def _is_owned(self):
        # Return True if lock is owned by current_thread.
        # This method is called only if __lock doesn't have _is_owned().
        if self._lock.acquire(0):
            self._lock.release()
            return False
        else:
            return True

    def wait(self, timeout=None):
        if not self._is_owned():
            raise RuntimeError("cannot wait on un-acquired lock")
        waiter = _allocate_lock()
        waiter.acquire()
        self._waiters.append(waiter)
        saved_state = self._release_save()
        try:    # restore state no matter what (e.g., KeyboardInterrupt)
            if timeout is None:
                waiter.acquire()
                gotit = True
                if __debug__:
                    self._note("%s.wait(): got it", self)
            else:
                if timeout > 0:
                    gotit = waiter.acquire(True, timeout)
                else:
                    gotit = waiter.acquire(False)
                if not gotit:
                    if __debug__:
                        self._note("%s.wait(%s): timed out", self, timeout)
                    try:
                        self._waiters.remove(waiter)
                    except ValueError:
                        pass
                else:
                    if __debug__:
                        self._note("%s.wait(%s): got it", self, timeout)
            return gotit
        finally:
            self._acquire_restore(saved_state)

    def wait_for(self, predicate, timeout=None):
        endtime = None
        waittime = timeout
        result = predicate()
        while not result:
            if waittime is not None:
                if endtime is None:
                    endtime = _time() + waittime
                else:
                    waittime = endtime - _time()
                    if waittime <= 0:
                        if __debug__:
                            self._note("%s.wait_for(%r, %r): Timed out.",
                                       self, predicate, timeout)
                        break
            if __debug__:
                self._note("%s.wait_for(%r, %r): Waiting with timeout=%s.",
                           self, predicate, timeout, waittime)
            self.wait(waittime)
            result = predicate()
        else:
            if __debug__:
                self._note("%s.wait_for(%r, %r): Success.",
                           self, predicate, timeout)
        return result

    def notify(self, n=1):
        if not self._is_owned():
            raise RuntimeError("cannot notify on un-acquired lock")
        __waiters = self._waiters
        waiters = __waiters[:n]
        if not waiters:
            if __debug__:
                self._note("%s.notify(): no waiters", self)
            return
        self._note("%s.notify(): notifying %d waiter%s", self, n,
                   n!=1 and "s" or "")
        for waiter in waiters:
            waiter.release()
            try:
                __waiters.remove(waiter)
            except ValueError:
                pass

    def notify_all(self):
        self.notify(len(self._waiters))

    notifyAll = notify_all


def Semaphore(*args, **kwargs):
    return _Semaphore(*args, **kwargs)

class _Semaphore(_Verbose):

    # After Tim Peters' semaphore class, but not quite the same (no maximum)

    def __init__(self, value=1, verbose=None):
        if value < 0:
            raise ValueError("semaphore initial value must be >= 0")
        _Verbose.__init__(self, verbose)
        self._cond = Condition(Lock())
        self._value = value

    def acquire(self, blocking=True, timeout=None):
        if not blocking and timeout is not None:
            raise ValueError("can't specify timeout for non-blocking acquire")
        rc = False
        endtime = None
        self._cond.acquire()
        while self._value == 0:
            if not blocking:
                break
            if __debug__:
                self._note("%s.acquire(%s): blocked waiting, value=%s",
                           self, blocking, self._value)
            if timeout is not None:
                if endtime is None:
                    endtime = _time() + timeout
                else:
                    timeout = endtime - _time()
                    if timeout <= 0:
                        break
            self._cond.wait(timeout)
        else:
            self._value = self._value - 1
            if __debug__:
                self._note("%s.acquire: success, value=%s",
                           self, self._value)
            rc = True
        self._cond.release()
        return rc

    __enter__ = acquire

    def release(self):
        self._cond.acquire()
        self._value = self._value + 1
        if __debug__:
            self._note("%s.release: success, value=%s",
                       self, self._value)
        self._cond.notify()
        self._cond.release()

    def __exit__(self, t, v, tb):
        self.release()


def BoundedSemaphore(*args, **kwargs):
    return _BoundedSemaphore(*args, **kwargs)

class _BoundedSemaphore(_Semaphore):
    """Semaphore that checks that # releases is <= # acquires"""
    def __init__(self, value=1, verbose=None):
        _Semaphore.__init__(self, value, verbose)
        self._initial_value = value

    def release(self):
        if self._value >= self._initial_value:
            raise ValueError("Semaphore released too many times")
        return _Semaphore.release(self)


def Event(*args, **kwargs):
    return _Event(*args, **kwargs)

class _Event(_Verbose):

    # After Tim Peters' event class (without is_posted())

    def __init__(self, verbose=None):
        _Verbose.__init__(self, verbose)
        self._cond = Condition(Lock())
        self._flag = False

    def _reset_internal_locks(self):
        # private!  called by Thread._reset_internal_locks by _after_fork()
        self._cond.__init__()

    def is_set(self):
        return self._flag

    isSet = is_set

    def set(self):
        self._cond.acquire()
        try:
            self._flag = True
            self._cond.notify_all()
        finally:
            self._cond.release()

    def clear(self):
        self._cond.acquire()
        try:
            self._flag = False
        finally:
            self._cond.release()

    def wait(self, timeout=None):
        self._cond.acquire()
        try:
            if not self._flag:
                self._cond.wait(timeout)
            return self._flag
        finally:
            self._cond.release()


# A barrier class.  Inspired in part by the pthread_barrier_* api and
# the CyclicBarrier class from Java.  See
# http://sourceware.org/pthreads-win32/manual/pthread_barrier_init.html and
# http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/
#        CyclicBarrier.html
# for information.
# We maintain two main states, 'filling' and 'draining' enabling the barrier
# to be cyclic.  Threads are not allowed into it until it has fully drained
# since the previous cycle.  In addition, a 'resetting' state exists which is
# similar to 'draining' except that threads leave with a BrokenBarrierError,
# and a 'broken' state in which all threads get get the exception.
class Barrier(_Verbose):
    """
    Barrier.  Useful for synchronizing a fixed number of threads
    at known synchronization points.  Threads block on 'wait()' and are
    simultaneously once they have all made that call.
    """
    def __init__(self, parties, action=None, timeout=None, verbose=None):
        """
        Create a barrier, initialised to 'parties' threads.
        'action' is a callable which, when supplied, will be called
        by one of the threads after they have all entered the
        barrier and just prior to releasing them all.
        If a 'timeout' is provided, it is uses as the default for
        all subsequent 'wait()' calls.
        """
        _Verbose.__init__(self, verbose)
        self._cond = Condition(Lock())
        self._action = action
        self._timeout = timeout
        self._parties = parties
        self._state = 0 #0 filling, 1, draining, -1 resetting, -2 broken
        self._count = 0

    def wait(self, timeout=None):
        """
        Wait for the barrier.  When the specified number of threads have
        started waiting, they are all simultaneously awoken. If an 'action'
        was provided for the barrier, one of the threads will have executed
        that callback prior to returning.
        Returns an individual index number from 0 to 'parties-1'.
        """
        if timeout is None:
            timeout = self._timeout
        with self._cond:
            self._enter() # Block while the barrier drains.
            index = self._count
            self._count += 1
            try:
                if index + 1 == self._parties:
                    # We release the barrier
                    self._release()
                else:
                    # We wait until someone releases us
                    self._wait(timeout)
                return index
            finally:
                self._count -= 1
                # Wake up any threads waiting for barrier to drain.
                self._exit()

    # Block until the barrier is ready for us, or raise an exception
    # if it is broken.
    def _enter(self):
        while self._state in (-1, 1):
            # It is draining or resetting, wait until done
            self._cond.wait()
        #see if the barrier is in a broken state
        if self._state < 0:
            raise BrokenBarrierError
        assert self._state == 0

    # Optionally run the 'action' and release the threads waiting
    # in the barrier.
    def _release(self):
        try:
            if self._action:
                self._action()
            # enter draining state
            self._state = 1
            self._cond.notify_all()
        except:
            #an exception during the _action handler.  Break and reraise
            self._break()
            raise

    # Wait in the barrier until we are relased.  Raise an exception
    # if the barrier is reset or broken.
    def _wait(self, timeout):
        if not self._cond.wait_for(lambda : self._state != 0, timeout):
            #timed out.  Break the barrier
            self._break()
            raise BrokenBarrierError
        if self._state < 0:
            raise BrokenBarrierError
        assert self._state == 1

    # If we are the last thread to exit the barrier, signal any threads
    # waiting for the barrier to drain.
    def _exit(self):
        if self._count == 0:
            if self._state in (-1, 1):
                #resetting or draining
                self._state = 0
                self._cond.notify_all()

    def reset(self):
        """
        Reset the barrier to the initial state.
        Any threads currently waiting will get the BrokenBarrier exception
        raised.
        """
        with self._cond:
            if self._count > 0:
                if self._state == 0:
                    #reset the barrier, waking up threads
                    self._state = -1
                elif self._state == -2:
                    #was broken, set it to reset state
                    #which clears when the last thread exits
                    self._state = -1
            else:
                self._state = 0
            self._cond.notify_all()

    def abort(self):
        """
        Place the barrier into a 'broken' state.
        Useful in case of error.  Any currently waiting threads and
        threads attempting to 'wait()' will have BrokenBarrierError
        raised.
        """
        with self._cond:
            self._break()

    def _break(self):
        # An internal error was detected.  The barrier is set to
        # a broken state all parties awakened.
        self._state = -2
        self._cond.notify_all()

    @property
    def parties(self):
        """
        Return the number of threads required to trip the barrier.
        """
        return self._parties

    @property
    def n_waiting(self):
        """
        Return the number of threads that are currently waiting at the barrier.
        """
        # We don't need synchronization here since this is an ephemeral result
        # anyway.  It returns the correct value in the steady state.
        if self._state == 0:
            return self._count
        return 0

    @property
    def broken(self):
        """
        Return True if the barrier is in a broken state
        """
        return self._state == -2

#exception raised by the Barrier class
class BrokenBarrierError(RuntimeError): pass


# Helper to generate new thread names
_counter = 0
def _newname(template="Thread-%d"):
    global _counter
    _counter = _counter + 1
    return template % _counter

# Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {}    # maps thread id to Thread object
_limbo = {}


# Main class for threads

class Thread(_Verbose):

    __initialized = False
    # Need to store a reference to sys.exc_info for printing
    # out exceptions when a thread tries to use a global var. during interp.
    # shutdown and thus raises an exception about trying to perform some
    # operation on/with a NoneType
    __exc_info = _sys.exc_info
    # Keep sys.exc_clear too to clear the exception just before
    # allowing .join() to return.
    #XXX __exc_clear = _sys.exc_clear

    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs=None, verbose=None):
        assert group is None, "group argument must be None for now"
        _Verbose.__init__(self, verbose)
        if kwargs is None:
            kwargs = {}
        self._target = target
        self._name = str(name or _newname())
        self._args = args
        self._kwargs = kwargs
        self._daemonic = self._set_daemon()
        self._ident = None
        self._started = Event()
        self._stopped = False
        self._block = Condition(Lock())
        self._initialized = True
        # sys.stderr is not stored in the class like
        # sys.exc_info since it can be changed between instances
        self._stderr = _sys.stderr

    def _reset_internal_locks(self):
        # private!  Called by _after_fork() to reset our internal locks as
        # they may be in an invalid state leading to a deadlock or crash.
        if hasattr(self, '_block'):  # DummyThread deletes _block
            self._block.__init__()
        self._started._reset_internal_locks()

    def _set_daemon(self):
        # Overridden in _MainThread and _DummyThread
        return current_thread().daemon

    def __repr__(self):
        assert self._initialized, "Thread.__init__() was not called"
        status = "initial"
        if self._started.is_set():
            status = "started"
        if self._stopped:
            status = "stopped"
        if self._daemonic:
            status += " daemon"
        if self._ident is not None:
            status += " %s" % self._ident
        return "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status)

    def start(self):
        if not self._initialized:
            raise RuntimeError("thread.__init__() not called")

        if self._started.is_set():
            raise RuntimeError("threads can only be started once")
        if __debug__:
            self._note("%s.start(): starting thread", self)
        with _active_limbo_lock:
            _limbo[self] = self
        try:
            _start_new_thread(self._bootstrap, ())
        except Exception:
            with _active_limbo_lock:
                del _limbo[self]
            raise
        self._started.wait()

    def run(self):
        try:
            if self._target:
                self._target(*self._args, **self._kwargs)
        finally:
            # Avoid a refcycle if the thread is running a function with
            # an argument that has a member that points to the thread.
            del self._target, self._args, self._kwargs

    def _bootstrap(self):
        # Wrapper around the real bootstrap code that ignores
        # exceptions during interpreter cleanup.  Those typically
        # happen when a daemon thread wakes up at an unfortunate
        # moment, finds the world around it destroyed, and raises some
        # random exception *** while trying to report the exception in
        # _bootstrap_inner() below ***.  Those random exceptions
        # don't help anybody, and they confuse users, so we suppress
        # them.  We suppress them only when it appears that the world
        # indeed has already been destroyed, so that exceptions in
        # _bootstrap_inner() during normal business hours are properly
        # reported.  Also, we only suppress them for daemonic threads;
        # if a non-daemonic encounters this, something else is wrong.
        try:
            self._bootstrap_inner()
        except:
            if self._daemonic and _sys is None:
                return
            raise

    def _set_ident(self):
        self._ident = _get_ident()

    def _bootstrap_inner(self):
        try:
            self._set_ident()
            self._started.set()
            with _active_limbo_lock:
                _active[self._ident] = self
                del _limbo[self]
            if __debug__:
                self._note("%s._bootstrap(): thread started", self)

            if _trace_hook:
                self._note("%s._bootstrap(): registering trace hook", self)
                _sys.settrace(_trace_hook)
            if _profile_hook:
                self._note("%s._bootstrap(): registering profile hook", self)
                _sys.setprofile(_profile_hook)

            try:
                self.run()
            except SystemExit:
                if __debug__:
                    self._note("%s._bootstrap(): raised SystemExit", self)
            except:
                if __debug__:
                    self._note("%s._bootstrap(): unhandled exception", self)
                # If sys.stderr is no more (most likely from interpreter
                # shutdown) use self._stderr.  Otherwise still use sys (as in
                # _sys) in case sys.stderr was redefined since the creation of
                # self.
                if _sys:
                    _sys.stderr.write("Exception in thread %s:\n%s\n" %
                                      (self.name, _format_exc()))
                else:
                    # Do the best job possible w/o a huge amt. of code to
                    # approximate a traceback (code ideas from
                    # Lib/traceback.py)
                    exc_type, exc_value, exc_tb = self._exc_info()
                    try:
                        print((
                            "Exception in thread " + self.name +
                            " (most likely raised during interpreter shutdown):"), file=self._stderr)
                        print((
                            "Traceback (most recent call last):"), file=self._stderr)
                        while exc_tb:
                            print((
                                '  File "%s", line %s, in %s' %
                                (exc_tb.tb_frame.f_code.co_filename,
                                    exc_tb.tb_lineno,
                                    exc_tb.tb_frame.f_code.co_name)), file=self._stderr)
                            exc_tb = exc_tb.tb_next
                        print(("%s: %s" % (exc_type, exc_value)), file=self._stderr)
                    # Make sure that exc_tb gets deleted since it is a memory
                    # hog; deleting everything else is just for thoroughness
                    finally:
                        del exc_type, exc_value, exc_tb
            else:
                if __debug__:
                    self._note("%s._bootstrap(): normal return", self)
            finally:
                # Prevent a race in
                # test_threading.test_no_refcycle_through_target when
                # the exception keeps the target alive past when we
                # assert that it's dead.
                #XXX self.__exc_clear()
                pass
        finally:
            with _active_limbo_lock:
                self._stop()
                try:
                    # We don't call self._delete() because it also
                    # grabs _active_limbo_lock.
                    del _active[_get_ident()]
                except:
                    pass

    def _stop(self):
        self._block.acquire()
        self._stopped = True
        self._block.notify_all()
        self._block.release()

    def _delete(self):
        "Remove current thread from the dict of currently running threads."

        # Notes about running with _dummy_thread:
        #
        # Must take care to not raise an exception if _dummy_thread is being
        # used (and thus this module is being used as an instance of
        # dummy_threading).  _dummy_thread.get_ident() always returns -1 since
        # there is only one thread if _dummy_thread is being used.  Thus
        # len(_active) is always <= 1 here, and any Thread instance created
        # overwrites the (if any) thread currently registered in _active.
        #
        # An instance of _MainThread is always created by 'threading'.  This
        # gets overwritten the instant an instance of Thread is created; both
        # threads return -1 from _dummy_thread.get_ident() and thus have the
        # same key in the dict.  So when the _MainThread instance created by
        # 'threading' tries to clean itself up when atexit calls this method
        # it gets a KeyError if another Thread instance was created.
        #
        # This all means that KeyError from trying to delete something from
        # _active if dummy_threading is being used is a red herring.  But
        # since it isn't if dummy_threading is *not* being used then don't
        # hide the exception.

        try:
            with _active_limbo_lock:
                del _active[_get_ident()]
                # There must not be any python code between the previous line
                # and after the lock is released.  Otherwise a tracing function
                # could try to acquire the lock again in the same thread, (in
                # current_thread()), and would block.
        except KeyError:
            if 'dummy_threading' not in _sys.modules:
                raise

    def join(self, timeout=None):
        if not self._initialized:
            raise RuntimeError("Thread.__init__() not called")
        if not self._started.is_set():
            raise RuntimeError("cannot join thread before it is started")
        if self is current_thread():
            raise RuntimeError("cannot join current thread")

        if __debug__:
            if not self._stopped:
                self._note("%s.join(): waiting until thread stops", self)

        self._block.acquire()
        try:
            if timeout is None:
                while not self._stopped:
                    self._block.wait()
                if __debug__:
                    self._note("%s.join(): thread stopped", self)
            else:
                deadline = _time() + timeout
                while not self._stopped:
                    delay = deadline - _time()
                    if delay <= 0:
                        if __debug__:
                            self._note("%s.join(): timed out", self)
                        break
                    self._block.wait(delay)
                else:
                    if __debug__:
                        self._note("%s.join(): thread stopped", self)
        finally:
            self._block.release()

    @property
    def name(self):
        assert self._initialized, "Thread.__init__() not called"
        return self._name

    @name.setter
    def name(self, name):
        assert self._initialized, "Thread.__init__() not called"
        self._name = str(name)

    @property
    def ident(self):
        assert self._initialized, "Thread.__init__() not called"
        return self._ident

    def is_alive(self):
        assert self._initialized, "Thread.__init__() not called"
        return self._started.is_set() and not self._stopped

    isAlive = is_alive

    @property
    def daemon(self):
        assert self._initialized, "Thread.__init__() not called"
        return self._daemonic

    @daemon.setter
    def daemon(self, daemonic):
        if not self._initialized:
            raise RuntimeError("Thread.__init__() not called")
        if self._started.is_set():
            raise RuntimeError("cannot set daemon status of active thread");
        self._daemonic = daemonic

    def isDaemon(self):
        return self.daemon

    def setDaemon(self, daemonic):
        self.daemon = daemonic

    def getName(self):
        return self.name

    def setName(self, name):
        self.name = name

# The timer class was contributed by Itamar Shtull-Trauring

def Timer(*args, **kwargs):
    return _Timer(*args, **kwargs)

class _Timer(Thread):
    """Call a function after a specified number of seconds:

    t = Timer(30.0, f, args=[], kwargs={})
    t.start()
    t.cancel() # stop the timer's action if it's still waiting
    """

    def __init__(self, interval, function, args=[], kwargs={}):
        Thread.__init__(self)
        self.interval = interval
        self.function = function
        self.args = args
        self.kwargs = kwargs
        self.finished = Event()

    def cancel(self):
        """Stop the timer if it hasn't finished yet"""
        self.finished.set()

    def run(self):
        self.finished.wait(self.interval)
        if not self.finished.is_set():
            self.function(*self.args, **self.kwargs)
        self.finished.set()

# Special thread class to represent the main thread
# This is garbage collected through an exit handler

class _MainThread(Thread):

    def __init__(self):
        Thread.__init__(self, name="MainThread")
        self._started.set()
        self._set_ident()
        with _active_limbo_lock:
            _active[self._ident] = self

    def _set_daemon(self):
        return False

    def _exitfunc(self):
        self._stop()
        t = _pickSomeNonDaemonThread()
        if t:
            if __debug__:
                self._note("%s: waiting for other threads", self)
        while t:
            t.join()
            t = _pickSomeNonDaemonThread()
        if __debug__:
            self._note("%s: exiting", self)
        self._delete()

def _pickSomeNonDaemonThread():
    for t in enumerate():
        if not t.daemon and t.is_alive():
            return t
    return None


# Dummy thread class to represent threads not started here.
# These aren't garbage collected when they die, nor can they be waited for.
# If they invoke anything in threading.py that calls current_thread(), they
# leave an entry in the _active dict forever after.
# Their purpose is to return *something* from current_thread().
# They are marked as daemon threads so we won't wait for them
# when we exit (conform previous semantics).

class _DummyThread(Thread):

    def __init__(self):
        Thread.__init__(self, name=_newname("Dummy-%d"))

        # Thread._block consumes an OS-level locking primitive, which
        # can never be used by a _DummyThread.  Since a _DummyThread
        # instance is immortal, that's bad, so release this resource.
        del self._block

        self._started.set()
        self._set_ident()
        with _active_limbo_lock:
            _active[self._ident] = self

    def _set_daemon(self):
        return True

    def join(self, timeout=None):
        assert False, "cannot join a dummy thread"


# Global API functions

def current_thread():
    try:
        return _active[_get_ident()]
    except KeyError:
        ##print "current_thread(): no current thread for", _get_ident()
        return _DummyThread()

currentThread = current_thread

def active_count():
    with _active_limbo_lock:
        return len(_active) + len(_limbo)

activeCount = active_count

def _enumerate():
    # Same as enumerate(), but without the lock. Internal use only.
    return list(_active.values()) + list(_limbo.values())

def enumerate():
    with _active_limbo_lock:
        return list(_active.values()) + list(_limbo.values())

from _thread import stack_size

# Create the main thread object,
# and make it available for the interpreter
# (Py_Main) as threading._shutdown.

_shutdown = _MainThread()._exitfunc

# get thread-local implementation, either from the thread
# module, or from the python fallback

try:
    from _thread import _local as local
except ImportError:
    from _threading_local import local


def _after_fork():
    # This function is called by Python/ceval.c:PyEval_ReInitThreads which
    # is called from PyOS_AfterFork.  Here we cleanup threading module state
    # that should not exist after a fork.

    # Reset _active_limbo_lock, in case we forked while the lock was held
    # by another (non-forked) thread.  http://bugs.python.org/issue874900
    global _active_limbo_lock
    _active_limbo_lock = _allocate_lock()

    # fork() only copied the current thread; clear references to others.
    new_active = {}
    current = current_thread()
    with _active_limbo_lock:
        for thread in _active.values():
            if thread is current:
                # There is only one active thread. We reset the ident to
                # its new value since it can have changed.
                ident = _get_ident()
                thread._ident = ident
                # Any condition variables hanging off of the active thread may
                # be in an invalid state, so we reinitialize them.
                thread._reset_internal_locks()
                new_active[ident] = thread
            else:
                # All the others are already stopped.
                # We don't call _Thread__stop() because it tries to acquire
                # thread._Thread__block which could also have been held while
                # we forked.
                thread._stopped = True

        _limbo.clear()
        _active.clear()
        _active.update(new_active)
        assert len(_active) == 1