cpython-withatomic / Doc / libmpz.tex

The branch 'legacy-trunk' does not exist.
\section{Built-in module \sectcode{mpz}}

This module implements the interface to part of the GNU MP library.
This library contains arbitrary precision integer and rational number
arithmetic routines. Only the interfaces to the \emph{integer}
(\samp{mpz_{\rm \ldots}}) routines are provided. If not stated
otherwise, the description in the GNU MP documentation can be applied.

In general, \dfn{mpz}-numbers can be used just like other standard
Python numbers, e.g. you can use the built-in operators like \code{+},
\code{*}, etc., as well as the standard built-in functions like
\code{abs}, \code{int}, \ldots, \code{divmod}, \code{pow}.
\strong{Please note:} the {\it bitwise-xor} operation has been implemented as
a bunch of {\it and}s, {\it invert}s and {\it or}s, because the library
lacks an \code{mpz_xor} function, and I didn't need one.

You create an mpz-number, by calling the function called \code{mpz} (see
below for an excact description). An mpz-number is printed like this:

\renewcommand{\indexsubitem}{(in module mpz)}
  Create a new mpz-number. \var{value} can be an integer, a long,
  another mpz-number, or even a string. If it is a string, it is
  interpreted as an array of radix-256 digits, least significant digit
  first, resulting in a positive number. See also the \code{binary}
  method, described below.

A number of {\em extra} functions are defined in this module. Non
mpz-arguments are converted to mpz-values first, and the functions
return mpz-numbers.

\begin{funcdesc}{powm}{base\, exponent\, modulus}
  Return \code{pow(\var{base}, \var{exponent}) \%{} \var{modulus}}. If
  \code{\var{exponent} == 0}, return \code{mpz(1)}. In contrast to the
  \C-library function, this version can handle negative exponents.

\begin{funcdesc}{gcd}{op1\, op2}
  Return the greatest common divisor of \var{op1} and \var{op2}.

\begin{funcdesc}{gcdext}{a\, b}
  Return a tuple \code{(\var{g}, \var{s}, \var{t})}, such that
  \code{\var{a}*\var{s} + \var{b}*\var{t} == \var{g} == gcd(\var{a}, \var{b})}.

  Return the square root of \var{op}. The result is rounded towards zero.

  Return a tuple \code{(\var{root}, \var{remainder})}, such that
  \code{\var{root}*\var{root} + \var{remainder} == \var{op}}.

\begin{funcdesc}{divm}{numerator\, denominator\, modulus}
  Returns a number \var{q}. such that
  \code{\var{q} * \var{denominator} \%{} \var{modulus} == \var{numerator}}.
  One could also implement this function in python, using \code{gcdext}.

An mpz-number has one method:

\renewcommand{\indexsubitem}{(mpz method)}
  Convert this mpz-number to a binary string, where the number has been
  stored as an array of radix-256 digits, least significant digit first.

  The mpz-number must have a value greater than- or equal to zero,
  otherwise a \code{ValueError}-exception will be raised.