Source

cpython-withatomic / Lib / pickle.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
"""\
Pickling Algorithm
------------------

This module implements a basic but powerful algorithm for "pickling" (a.k.a.
serializing, marshalling or flattening) nearly arbitrary Python objects.
This is a more primitive notion than persistency -- although pickle
reads and writes file objects, it does not handle the issue of naming
persistent objects, nor the (even more complicated) area of concurrent
access to persistent objects.  The pickle module can transform a complex
object into a byte stream and it can transform the byte stream into
an object with the same internal structure.  The most obvious thing to
do with these byte streams is to write them onto a file, but it is also
conceivable to send them across a network or store them in a database.

Unlike the built-in marshal module, pickle handles the following correctly:

- recursive objects
- pointer sharing
- classes and class instances

Pickle is Python-specific.  This has the advantage that there are no
restrictions imposed by external standards such as CORBA (which probably
can't represent pointer sharing or recursive objects); however it means
that non-Python programs may not be able to reconstruct pickled Python
objects.

Pickle uses a printable ASCII representation.  This is slightly more
voluminous than a binary representation.  However, small integers actually
take *less* space when represented as minimal-size decimal strings than
when represented as 32-bit binary numbers, and strings are only much longer
if they contain control characters or 8-bit characters.  The big advantage
of using printable ASCII (and of some other characteristics of pickle's
representation) is that for debugging or recovery purposes it is possible
for a human to read the pickled file with a standard text editor.  (I could
have gone a step further and used a notation like S-expressions, but the
parser would have been considerably more complicated and slower, and the
files would probably have become much larger.)

Pickle doesn't handle code objects, which marshal does.
I suppose pickle could, and maybe it should, but there's probably no
great need for it right now (as long as marshal continues to be used
for reading and writing code objects), and at least this avoids
the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written using pickle, it supports
the notion of a reference to an object outside the pickled data stream.
Such objects are referenced by a name, which is an arbitrary string of
printable ASCII characters.  The resolution of such names is not defined
by the pickle module -- the persistent object module will have to implement
a method "persistent_load".  To write references to persistent objects,
the persistent module must define a method "persistent_id" which returns
either None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module.

Next, it must normally be possible to create class instances by
calling the class without arguments.  Usually, this is best
accomplished by providing default values for all arguments to its
__init__ method (if it has one).  If this is undesirable, the
class can define a method __getinitargs__, which should return a
*tuple* containing the arguments to be passed to the class
constructor.

Classes can influence how their instances are pickled -- if the class defines
the method __getstate__, it is called and the return state is pickled
as the contents for the instance, and if the class defines the
method __setstate__, it is called with the unpickled state.  (Note
that these methods can also be used to implement copying class instances.)
If there is no __getstate__ method, the instance's __dict__
is pickled.  If there is no __setstate__ method, the pickled object
must be a dictionary and its items are assigned to the new instance's
dictionary.  (If a class defines both __getstate__ and __setstate__,
the state object needn't be a dictionary -- these methods can do what they
want.)

Note that when class instances are pickled, their class's code and data
is not pickled along with them.  Only the instance data is pickled.
This is done on purpose, so you can fix bugs in a class or add methods and
still load objects that were created with an earlier version of the
class.  If you plan to have long-lived objects that will see many versions
of a class, it may be worth to put a version number in the objects so
that suitable conversions can be made by the class's __setstate__ method.

The interface is as follows:

To pickle an object x onto a file f, open for writing:

    p = pickle.Pickler(f)
    p.dump(x)

To unpickle an object x from a file f, open for reading:

    u = pickle.Unpickler(f)
    x = u.load()

The Pickler class only calls the method f.write with a string argument
(XXX possibly the interface should pass f.write instead of f).
The Unpickler calls the methods f.read(with an integer argument)
and f.readline(without argument), both returning a string.
It is explicitly allowed to pass non-file objects here, as long as they
have the right methods.

The following types can be pickled:

- None
- integers, long integers, floating point numbers
- strings
- tuples, lists and dictionaries containing only picklable objects
- class instances whose __dict__ or __setstate__() is picklable
- classes

Attempts to pickle unpicklable objects will raise an exception
after having written an unspecified number of bytes to the file argument.

It is possible to make multiple calls to Pickler.dump() or to
Unpickler.load(), as long as there is a one-to-one correspondence
between pickler and Unpickler objects and between dump and load calls
for any pair of corresponding Pickler and Unpicklers.  WARNING: this
is intended for pickleing multiple objects without intervening modifications
to the objects or their parts.  If you modify an object and then pickle
it again using the same Pickler instance, the object is not pickled
again -- a reference to it is pickled and the Unpickler will return
the old value, not the modified one.  (XXX There are two problems here:
(a) detecting changes, and (b) marshalling a minimal set of changes.
I have no answers.  Garbage Collection may also become a problem here.)
"""

__version__ = "1.8"                     # Code version

from types import *
from copy_reg import *
import string, marshal

format_version = "1.2"                  # File format version we write
compatible_formats = ["1.0", "1.1"]     # Old format versions we can read

mdumps = marshal.dumps
mloads = marshal.loads

PicklingError = "pickle.PicklingError"
UnpicklingError = "pickle.UnpicklingError"

MARK            = '('
STOP            = '.'
POP             = '0'
POP_MARK        = '1'
DUP             = '2'
FLOAT           = 'F'
INT             = 'I'
BININT          = 'J'
BININT1         = 'K'
LONG            = 'L'
BININT2         = 'M'
NONE            = 'N'
PERSID          = 'P'
BINPERSID       = 'Q'
REDUCE          = 'R'
STRING          = 'S'
BINSTRING       = 'T'
SHORT_BINSTRING = 'U'
APPEND          = 'a'
BUILD           = 'b'
GLOBAL          = 'c'
DICT            = 'd'
EMPTY_DICT      = '}'
APPENDS         = 'e'
GET             = 'g'
BINGET          = 'h'
INST            = 'i'
LONG_BINGET     = 'j'
LIST            = 'l'
EMPTY_LIST      = ']'
OBJ             = 'o'
PUT             = 'p'
BINPUT          = 'q'
LONG_BINPUT     = 'r'
SETITEM         = 's'
TUPLE           = 't'
EMPTY_TUPLE     = ')'
SETITEMS        = 'u'

class Pickler:

    def __init__(self, file, bin = 0):
        self.write = file.write
        self.memo = {}
        self.bin = bin

    def dump(self, object):
        self.save(object)
        self.write(STOP)

    def dump_special(self, callable, args, state = None):
	if (type(args) is not TupleType):
            raise PicklingError, "Second argument to dump_special " \
                                 "must be a tuple"

        self.save_reduce(callable, args, state)
        self.write(STOP)

    def put(self, i):
        if (self.bin):
            s = mdumps(i)[1:]
            if (i < 256):
                return BINPUT + s[0]

            return LONG_BINPUT + s

        return PUT + `i` + '\n'

    def get(self, i):
        if (self.bin):
            s = mdumps(i)[1:]

            if (i < 256):
                return BINGET + s[0]

            return LONG_BINGET + s

        return GET + `i` + '\n'
        
    def save(self, object, pers_save = 0):
        memo = self.memo

        if (not pers_save):
	    pid = self.persistent_id(object)
	    if (pid is not None):
                self.save_pers(pid)
                return

        d = id(object)
 
        t = type(object)

	if ((t is TupleType) and (len(object) == 0)):
	    if (self.bin):
                self.save_empty_tuple(object)
            else:
                self.save_tuple(object)
            return

        if memo.has_key(d):
            self.write(self.get(memo[d][0]))
            return

        try:
            f = self.dispatch[t]
        except KeyError:
            pid = self.inst_persistent_id(object)
            if pid is not None:
                self.save_pers(pid)
                return

            try:
                reduce = dispatch_table[t]
            except KeyError:
                try:
                    reduce = object.__reduce__
                except AttributeError:
                    raise PicklingError, \
                        "can't pickle %s objects" % `t.__name__`
                else:
                    tup = reduce()
            else:
                tup = reduce(object)

            if (type(tup) is not TupleType):
                raise PicklingError, "Value returned by %s must be a " \
                                     "tuple" % reduce

            l = len(tup)
   
	    if ((l != 2) and (l != 3)):
                raise PicklingError, "tuple returned by %s must contain " \
                                     "only two or three elements" % reduce

            callable = tup[0]
            arg_tup  = tup[1]
          
            if (l > 2):
                state = tup[2]
            else:
                state = None

            if (type(arg_tup) is not TupleType):
                raise PicklingError, "Second element of tuple returned " \
                                     "by %s must be a tuple" % reduce

            self.save_reduce(callable, arg_tup, state) 
            return

        f(self, object)

    def persistent_id(self, object):
        return None

    def inst_persistent_id(self, object):
        return None

    def save_pers(self, pid):
        if (not self.bin):
            self.write(PERSID + str(pid) + '\n')
        else:
            self.save(pid, 1)
            self.write(BINPERSID)

    def save_reduce(self, callable, arg_tup, state = None):
        write = self.write
        save = self.save

        save(callable)
        save(arg_tup)
        write(REDUCE)
        
	if (state is not None):
            save(state)
            write(BUILD)

    dispatch = {}

    def save_none(self, object):
        self.write(NONE)
    dispatch[NoneType] = save_none

    def save_int(self, object):
        if (self.bin):
            i = mdumps(object)[1:]
            if (i[-2:] == '\000\000'):
                if (i[-3] == '\000'):
                    self.write(BININT1 + i[:-3])
                    return

                self.write(BININT2 + i[:-2])
                return

            self.write(BININT + i)
        else:
            self.write(INT + `object` + '\n')
    dispatch[IntType] = save_int

    def save_long(self, object):
        self.write(LONG + `object` + '\n')
    dispatch[LongType] = save_long

    def save_float(self, object):
        self.write(FLOAT + `object` + '\n')
    dispatch[FloatType] = save_float

    def save_string(self, object):
        d = id(object)
        memo = self.memo

        if (self.bin):
            l = len(object)
            s = mdumps(l)[1:]
            if (l < 256):
                self.write(SHORT_BINSTRING + s[0] + object)
            else:
                self.write(BINSTRING + s + object)
        else:
            self.write(STRING + `object` + '\n')

        memo_len = len(memo)
        self.write(self.put(memo_len))
        memo[d] = (memo_len, object)
    dispatch[StringType] = save_string

    def save_tuple(self, object):

        write = self.write
        save  = self.save
        memo  = self.memo

        d = id(object)

        write(MARK)

        for element in object:
            save(element)

        if (len(object) and memo.has_key(d)):
	    if (self.bin):
                write(POP_MARK + self.get(memo[d][0]))
                return
           
            write(POP * (len(object) + 1) + self.get(mem[d][0]))
            return

        memo_len = len(memo)
        self.write(TUPLE + self.put(memo_len))
        memo[d] = (memo_len, object)
    dispatch[TupleType] = save_tuple

    def save_empty_tuple(self, object):
        self.write(EMPTY_TUPLE)

    def save_list(self, object):
        d = id(object)

        write = self.write
        save  = self.save
        memo  = self.memo

	if (self.bin):
            write(EMPTY_LIST)
        else:
            write(MARK + LIST)

        memo_len = len(memo)
        write(self.put(memo_len))
        memo[d] = (memo_len, object)

        using_appends = (self.bin and (len(object) > 1))

        if (using_appends):
            write(MARK)

        for element in object:
            save(element)
  
            if (not using_appends):
                write(APPEND)

        if (using_appends):
            write(APPENDS)
    dispatch[ListType] = save_list

    def save_dict(self, object):
        d = id(object)

        write = self.write
        save  = self.save
        memo  = self.memo

	if (self.bin):
            write(EMPTY_DICT)
        else:
            write(MARK + DICT)

        memo_len = len(memo)
        self.write(self.put(memo_len))
        memo[d] = (memo_len, object)

        using_setitems = (self.bin and (len(object) > 1))

        if (using_setitems):
            write(MARK)

        items = object.items()
        for key, value in items:
            save(key)
            save(value)

            if (not using_setitems):
                write(SETITEM)

        if (using_setitems):
            write(SETITEMS)

    dispatch[DictionaryType] = save_dict

    def save_inst(self, object):
        d = id(object)
        cls = object.__class__

        memo  = self.memo
        write = self.write
        save  = self.save

        if hasattr(object, '__getinitargs__'):
            args = object.__getinitargs__()
            len(args) # XXX Assert it's a sequence
        else:
            args = ()

        write(MARK)

        if (self.bin):
            save(cls)

        for arg in args:
            save(arg)

        memo_len = len(memo)
        if (self.bin):
            write(OBJ + self.put(memo_len))
        else:
            module = whichmodule(cls, cls.__name__)
            name = cls.__name__
            write(INST + module + '\n' + name + '\n' +
                self.put(memo_len))

        memo[d] = (memo_len, object)

        try:
            getstate = object.__getstate__
        except AttributeError:
            stuff = object.__dict__
        else:
            stuff = getstate()
        save(stuff)
        write(BUILD)
    dispatch[InstanceType] = save_inst

    def save_global(self, object, name = None):
        write = self.write
        memo = self.memo

        if (name is None):
            name = object.__name__

        module = whichmodule(object, name)

        memo_len = len(memo)
        write(GLOBAL + module + '\n' + name + '\n' +
            self.put(memo_len))
        memo[id(object)] = (memo_len, object)
    dispatch[ClassType] = save_global
    dispatch[FunctionType] = save_global
    dispatch[BuiltinFunctionType] = save_global


classmap = {}

def whichmodule(cls, clsname):
    """Figure out the module in which a class occurs.

    Search sys.modules for the module.
    Cache in classmap.
    Return a module name.
    If the class cannot be found, return __main__.
    """
    if classmap.has_key(cls):
        return classmap[cls]
    import sys

    for name, module in sys.modules.items():
	if name != '__main__' and \
	    hasattr(module, clsname) and \
            getattr(module, clsname) is cls:
            break
    else:
        name = '__main__'
    classmap[cls] = name
    return name


class Unpickler:

    def __init__(self, file):
        self.readline = file.readline
        self.read = file.read
        self.memo = {}

    def load(self):
        self.mark = ['spam'] # Any new unique object
        self.stack = []
        self.append = self.stack.append
        read = self.read
        dispatch = self.dispatch
        try:
            while 1:
                key = read(1)
                dispatch[key](self)
        except STOP, value:
            return value

    def marker(self):
        stack = self.stack
        mark = self.mark
        k = len(stack)-1
        while stack[k] is not mark: k = k-1
        return k

    dispatch = {}

    def load_eof(self):
        raise EOFError
    dispatch[''] = load_eof

    def load_persid(self):
        pid = self.readline()[:-1]
        self.append(self.persistent_load(pid))
    dispatch[PERSID] = load_persid

    def load_binpersid(self):
        stack = self.stack
         
        pid = stack[-1]
        del stack[-1]

        self.append(self.persistent_load(pid))
    dispatch[BINPERSID] = load_binpersid

    def load_none(self):
        self.append(None)
    dispatch[NONE] = load_none

    def load_int(self):
        self.append(string.atoi(self.readline()[:-1], 0))
    dispatch[INT] = load_int

    def load_binint(self):
        self.append(mloads('i' + self.read(4)))
    dispatch[BININT] = load_binint

    def load_binint1(self):
        self.append(mloads('i' + self.read(1) + '\000\000\000'))
    dispatch[BININT1] = load_binint1

    def load_binint2(self):
        self.append(mloads('i' + self.read(2) + '\000\000'))
    dispatch[BININT2] = load_binint2
 
    def load_long(self):
        self.append(string.atol(self.readline()[:-1], 0))
    dispatch[LONG] = load_long

    def load_float(self):
        self.append(string.atof(self.readline()[:-1]))
    dispatch[FLOAT] = load_float

    def load_string(self):
        self.append(eval(self.readline()[:-1],
                         {'__builtins__': {}})) # Let's be careful
    dispatch[STRING] = load_string

    def load_binstring(self):
        len = mloads('i' + self.read(4))
        self.append(self.read(len))
    dispatch[BINSTRING] = load_binstring

    def load_short_binstring(self):
        len = mloads('i' + self.read(1) + '\000\000\000')
        self.append(self.read(len))
    dispatch[SHORT_BINSTRING] = load_short_binstring

    def load_tuple(self):
        k = self.marker()
        self.stack[k:] = [tuple(self.stack[k+1:])]
    dispatch[TUPLE] = load_tuple

    def load_empty_tuple(self):
        self.stack.append(())
    dispatch[EMPTY_TUPLE] = load_empty_tuple

    def load_empty_list(self):
        self.stack.append([])
    dispatch[EMPTY_LIST] = load_empty_list

    def load_empty_dictionary(self):
        self.stack.append({})
    dispatch[EMPTY_DICT] = load_empty_dictionary

    def load_list(self):
        k = self.marker()
        self.stack[k:] = [self.stack[k+1:]]
    dispatch[LIST] = load_list

    def load_dict(self):
        k = self.marker()
        d = {}
        items = self.stack[k+1:]
        for i in range(0, len(items), 2):
            key = items[i]
            value = items[i+1]
            d[key] = value
        self.stack[k:] = [d]
    dispatch[DICT] = load_dict

    def load_inst(self):
        k = self.marker()
        args = tuple(self.stack[k+1:])
        del self.stack[k:]
        module = self.readline()[:-1]
        name = self.readline()[:-1]
        klass = self.find_class(module, name)
## 	if (type(klass) is not ClassType):
##             raise SystemError, "Imported object %s from module %s is " \
##                                "not a class" % (name, module)

        value = apply(klass, args)
        self.append(value)
    dispatch[INST] = load_inst

    def load_obj(self):
        stack = self.stack
        k = self.marker()
        klass = stack[k + 1]
        del stack[k + 1]
        args = tuple(stack[k + 1:]) 
        del stack[k:]
        value = apply(klass, args)
        self.append(value)
    dispatch[OBJ] = load_obj                

    def load_global(self):
        module = self.readline()[:-1]
        name = self.readline()[:-1]
        klass = self.find_class(module, name)
        self.append(klass)
    dispatch[GLOBAL] = load_global

    def find_class(self, module, name):
        env = {}

        try:
            exec 'from %s import %s' % (module, name) in env
        except ImportError:
            raise SystemError, \
                  "Failed to import class %s from module %s" % \
                  (name, module)
        klass = env[name]
        return klass

    def load_reduce(self):
        stack = self.stack

        callable = stack[-2]
        arg_tup  = stack[-1]
	del stack[-2:]

	if (type(callable) is not ClassType):
	    if (not safe_constructors.has_key(callable)):
		try:
                    safe = callable.__safe_for_unpickling__
                except AttributeError:
                    safe = None

                if (not safe):
                   raise UnpicklingError, "%s is not safe for " \
                                          "unpickling" % callable

        value = apply(callable, arg_tup)
        self.append(value)
    dispatch[REDUCE] = load_reduce

    def load_pop(self):
        del self.stack[-1]
    dispatch[POP] = load_pop

    def load_pop_mark(self):
        k = self.marker()
	del self.stack[k:]
    dispatch[POP_MARK] = load_pop_mark

    def load_dup(self):
        self.append(stack[-1])
    dispatch[DUP] = load_dup

    def load_get(self):
        self.append(self.memo[self.readline()[:-1]])
    dispatch[GET] = load_get

    def load_binget(self):
        i = mloads('i' + self.read(1) + '\000\000\000')
        self.append(self.memo[`i`])
    dispatch[BINGET] = load_binget

    def load_long_binget(self):
        i = mloads('i' + self.read(4))
        self.append(self.memo[`i`])
    dispatch[LONG_BINGET] = load_long_binget

    def load_put(self):
        self.memo[self.readline()[:-1]] = self.stack[-1]
    dispatch[PUT] = load_put

    def load_binput(self):
        i = mloads('i' + self.read(1) + '\000\000\000')
        self.memo[`i`] = self.stack[-1]
    dispatch[BINPUT] = load_binput

    def load_long_binput(self):
        i = mloads('i' + self.read(4))
        self.memo[`i`] = self.stack[-1]
    dispatch[LONG_BINPUT] = load_long_binput

    def load_append(self):
        stack = self.stack
        value = stack[-1]
        del stack[-1]
        list = stack[-1]
        list.append(value)
    dispatch[APPEND] = load_append

    def load_appends(self):
        stack = self.stack
        mark = self.marker()
        list = stack[mark - 1]
	for i in range(mark + 1, len(stack)):
            list.append(stack[i])

        del stack[mark:]
    dispatch[APPENDS] = load_appends
           
    def load_setitem(self):
        stack = self.stack
        value = stack[-1]
        key = stack[-2]
        del stack[-2:]
        dict = stack[-1]
        dict[key] = value
    dispatch[SETITEM] = load_setitem

    def load_setitems(self):
        stack = self.stack
        mark = self.marker()
        dict = stack[mark - 1]
	for i in range(mark + 1, len(stack), 2):
            dict[stack[i]] = stack[i + 1]

        del stack[mark:]
    dispatch[SETITEMS] = load_setitems

    def load_build(self):
        stack = self.stack
        value = stack[-1]
        del stack[-1]
        inst = stack[-1]
        try:
            setstate = inst.__setstate__
        except AttributeError:
            for key in value.keys():
                setattr(inst, key, value[key])
        else:
            setstate(value)
    dispatch[BUILD] = load_build

    def load_mark(self):
        self.append(self.mark)
    dispatch[MARK] = load_mark

    def load_stop(self):
        value = self.stack[-1]
        del self.stack[-1]
        raise STOP, value
    dispatch[STOP] = load_stop


# Shorthands

from StringIO import StringIO

def dump(object, file, bin = 0):
    Pickler(file, bin).dump(object)

def dumps(object, bin = 0):
    file = StringIO()
    Pickler(file, bin).dump(object)
    return file.getvalue()

def load(file):
    return Unpickler(file).load()

def loads(str):
    file = StringIO(str)
    return Unpickler(file).load()


# The rest is used for testing only

class C:
    def __cmp__(self, other):
        return cmp(self.__dict__, other.__dict__)

def test():
    fn = 'out'
    c = C()
    c.foo = 1
    c.bar = 2
    x = [0, 1, 2, 3]
    y = ('abc', 'abc', c, c)
    x.append(y)
    x.append(y)
    x.append(5)
    f = open(fn, 'w')
    F = Pickler(f)
    F.dump(x)
    f.close()
    f = open(fn, 'r')
    U = Unpickler(f)
    x2 = U.load()
    print x
    print x2
    print x == x2
    print map(id, x)
    print map(id, x2)
    print F.memo
    print U.memo

if __name__ == '__main__':
    test()