cpython-withatomic / Lib / pyclbr.py

The branch '2.3' does not exist.
"""Parse a Python module and describe its classes and methods.

Parse enough of a Python file to recognize imports and class and
method definitions, and to find out the superclasses of a class.

The interface consists of a single function:
        readmodule_ex(module [, path])
where module is the name of a Python module, and path is an optional
list of directories where the module is to be searched.  If present,
path is prepended to the system search path sys.path.  The return value
is a dictionary.  The keys of the dictionary are the names of the
classes and top-level functions defined in the module (including ones
that are defined via the from XXX import YYY construct).  The values are
instances of the classes Class and Function defined here.  One special
key/value pair is present for packages: the key '__path__' has as its
value a list which contains the package search path.

(For compatibility, a function readmodule is also defined: it works just
like readmodule_ex, but the dictionary it returns has only key/value
pairs whose value is an instance of class Class, _not_ ones for which it
would be an instance of Function. nor the special key/value pair for key
'__path__' as described in the previous paragraph).

A class is described by the class Class in this module.  Instances
of this class have the following instance variables:
        module -- the module name
        name -- the name of the class
        super -- a list of super classes (Class instances)
        methods -- a dictionary of methods
        file -- the file in which the class was defined
        lineno -- the line in the file on which the class statement occurred
The dictionary of methods uses the method names as keys and the line
numbers on which the method was defined as values.
If the name of a super class is not recognized, the corresponding
entry in the list of super classes is not a class instance but a
string giving the name of the super class.  Since import statements
are recognized and imported modules are scanned as well, this
shouldn't happen often.

A function is described by the class Function in this module.
Instances of this class have the following instance variables:
        module -- the module name
        name -- the name of the function
        file -- the file in which the function was defined
        lineno -- the line in the file on which the def statement occurred
"""

import sys
import imp
import tokenize # Python tokenizer
from token import NAME, DEDENT, NEWLINE

__all__ = ["readmodule", "readmodule_ex", "Class", "Function"]

_modules = {}                           # cache of modules we've seen

# each Python class is represented by an instance of this class
class Class:
    '''Class to represent a Python class.'''
    def __init__(self, module, name, super, file, lineno):
        self.module = module
        self.name = name
        if super is None:
            super = []
        self.super = super
        self.methods = {}
        self.file = file
        self.lineno = lineno

    def _addmethod(self, name, lineno):
        self.methods[name] = lineno

class Function:
    '''Class to represent a top-level Python function'''
    def __init__(self, module, name, file, lineno):
        self.module = module
        self.name = name
        self.file = file
        self.lineno = lineno

def readmodule(module, path=[]):
    '''Backwards compatible interface.

    Call readmodule_ex() and then only keep Class objects from the
    resulting dictionary.'''

    dict = _readmodule(module, path)
    res = {}
    for key, value in dict.items():
        if isinstance(value, Class):
            res[key] = value
    return res

def readmodule_ex(module, path=[]):
    '''Read a module file and return a dictionary of classes.

    Search for MODULE in PATH and sys.path, read and parse the
    module and return a dictionary with one entry for each class
    found in the module.

    If INPACKAGE is true, it must be the dotted name of the package in
    which we are searching for a submodule, and then PATH must be the
    package search path; otherwise, we are searching for a top-level
    module, and PATH is combined with sys.path.
    '''
    return _readmodule(module, path)

def _readmodule(module, path, inpackage=None):
    '''Do the hard work for readmodule[_ex].'''
    # Compute the full module name (prepending inpackage if set)
    if inpackage:
        fullmodule = "%s.%s" % (inpackage, module)
    else:
        fullmodule = module

    # Check in the cache
    if fullmodule in _modules:
        return _modules[fullmodule]

    # Initialize the dict for this module's contents
    dict = {}

    # Check if it is a built-in module; we don't do much for these
    if module in sys.builtin_module_names and not inpackage:
        _modules[module] = dict
        return dict

    # Check for a dotted module name
    i = module.rfind('.')
    if i >= 0:
        package = module[:i]
        submodule = module[i+1:]
        parent = _readmodule(package, path, inpackage)
        if inpackage:
            package = "%s.%s" % (inpackage, package)
        return _readmodule(submodule, parent['__path__'], package)

    # Search the path for the module
    f = None
    if inpackage:
        f, file, (suff, mode, type) = imp.find_module(module, path)
    else:
        f, file, (suff, mode, type) = imp.find_module(module, path + sys.path)
    if type == imp.PKG_DIRECTORY:
        dict['__path__'] = [file]
        path = [file] + path
        f, file, (suff, mode, type) = imp.find_module('__init__', [file])
    _modules[fullmodule] = dict
    if type != imp.PY_SOURCE:
        # not Python source, can't do anything with this module
        f.close()
        return dict

    stack = [] # stack of (class, indent) pairs

    g = tokenize.generate_tokens(f.readline)
    try:
        for tokentype, token, start, end, line in g:
            if tokentype == DEDENT:
                lineno, thisindent = start
                # close nested classes and defs
                while stack and stack[-1][1] >= thisindent:
                    del stack[-1]
            elif token == 'def':
                lineno, thisindent = start
                # close previous nested classes and defs
                while stack and stack[-1][1] >= thisindent:
                    del stack[-1]
                tokentype, meth_name, start, end, line = g.next()
                if tokentype != NAME:
                    continue # Syntax error
                if stack:
                    cur_class = stack[-1][0]
                    if isinstance(cur_class, Class):
                        # it's a method
                        cur_class._addmethod(meth_name, lineno)
                    # else it's a nested def
                else:
                    # it's a function
                    dict[meth_name] = Function(module, meth_name, file, lineno)
                stack.append((None, thisindent)) # Marker for nested fns
            elif token == 'class':
                lineno, thisindent = start
                # close previous nested classes and defs
                while stack and stack[-1][1] >= thisindent:
                    del stack[-1]
                tokentype, class_name, start, end, line = g.next()
                if tokentype != NAME:
                    continue # Syntax error
                # parse what follows the class name
                tokentype, token, start, end, line = g.next()
                inherit = None
                if token == '(':
                    names = [] # List of superclasses
                    # there's a list of superclasses
                    level = 1
                    super = [] # Tokens making up current superclass
                    while True:
                        tokentype, token, start, end, line = g.next()
                        if token in (')', ',') and level == 1:
                            n = "".join(super)
                            if n in dict:
                                # we know this super class
                                n = dict[n]
                            else:
                                c = n.split('.')
                                if len(c) > 1:
                                    # super class is of the form
                                    # module.class: look in module for
                                    # class
                                    m = c[-2]
                                    c = c[-1]
                                    if m in _modules:
                                        d = _modules[m]
                                        if c in d:
                                            n = d[c]
                            names.append(n)
                            super = []
                        if token == '(':
                            level += 1
                        elif token == ')':
                            level -= 1
                            if level == 0:
                                break
                        elif token == ',' and level == 1:
                            pass
                        else:
                            super.append(token)
                    inherit = names
                cur_class = Class(module, class_name, inherit, file, lineno)
                if not stack:
                    dict[class_name] = cur_class
                stack.append((cur_class, thisindent))
            elif token == 'import' and start[1] == 0:
                modules = _getnamelist(g)
                for mod, mod2 in modules:
                    try:
                        # Recursively read the imported module
                        if not inpackage:
                            _readmodule(mod, path)
                        else:
                            try:
                                _readmodule(mod, path, inpackage)
                            except ImportError:
                                _readmodule(mod, [])
                    except:
                        # If we can't find or parse the imported module,
                        # too bad -- don't die here.
                        pass
            elif token == 'from' and start[1] == 0:
                mod, token = _getname(g)
                if not mod or token != "import":
                    continue
                names = _getnamelist(g)
                try:
                    # Recursively read the imported module
                    d = _readmodule(mod, path, inpackage)
                except:
                    # If we can't find or parse the imported module,
                    # too bad -- don't die here.
                    continue
                # add any classes that were defined in the imported module
                # to our name space if they were mentioned in the list
                for n, n2 in names:
                    if n in d:
                        dict[n2 or n] = d[n]
                    elif n == '*':
                        # don't add names that start with _
                        for n in d:
                            if n[0] != '_':
                                dict[n] = d[n]
    except StopIteration:
        pass

    f.close()
    return dict

def _getnamelist(g):
    # Helper to get a comma-separated list of dotted names plus 'as'
    # clauses.  Return a list of pairs (name, name2) where name2 is
    # the 'as' name, or None if there is no 'as' clause.
    names = []
    while True:
        name, token = _getname(g)
        if not name:
            break
        if token == 'as':
            name2, token = _getname(g)
        else:
            name2 = None
        names.append((name, name2))
        while token != "," and "\n" not in token:
            tokentype, token, start, end, line = g.next()
        if token != ",":
            break
    return names

def _getname(g):
    # Helper to get a dotted name, return a pair (name, token) where
    # name is the dotted name, or None if there was no dotted name,
    # and token is the next input token.
    parts = []
    tokentype, token, start, end, line = g.next()
    if tokentype != NAME and token != '*':
        return (None, token)
    parts.append(token)
    while True:
        tokentype, token, start, end, line = g.next()
        if token != '.':
            break
        tokentype, token, start, end, line = g.next()
        if tokentype != NAME:
            break
        parts.append(token)
    return (".".join(parts), token)

def _main():
    # Main program for testing.
    import os
    mod = sys.argv[1]
    if os.path.exists(mod):
        path = [os.path.dirname(mod)]
        mod = os.path.basename(mod)
        if mod.lower().endswith(".py"):
            mod = mod[:-3]
    else:
        path = []
    dict = readmodule_ex(mod, path)
    objs = dict.values()
    objs.sort(lambda a, b: cmp(getattr(a, 'lineno', 0),
                               getattr(b, 'lineno', 0)))
    for obj in objs:
        if isinstance(obj, Class):
            print "class", obj.name, obj.super, obj.lineno
            methods = obj.methods.items()
            methods.sort(lambda a, b: cmp(a[1], b[1]))
            for name, lineno in methods:
                if name != "__path__":
                    print "  def", name, lineno
        elif isinstance(obj, Function):
            print "def", obj.name, obj.lineno

if __name__ == "__main__":
    _main()
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.